
Karaisa Journal of Inequalities and Applications 2013, 2013:503
http://www.journalofinequalitiesandapplications.com/content/2013/1/503

RESEARCH Open Access

Hausdorff measure of noncompactness in
some sequence spaces of a triple band matrix
Ali Karaisa*

*Correspondence:
alikaraisa@hotmail.com;
akaraisa@konya.edu.tr
Department of
Mathematics-Computer Science,
Necmettin Erbakan University,
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1 Introduction
By w, we shall denote the space of all real- or complex-valued sequences. Any vector sub-
space of w is called a sequence space. We shall write �∞, c and c for the spaces of all
bounded, convergent and null sequences, respectively. Also, by � and �p ( < p < ∞), we
denote the spaces of all absolutely and p-absolutely convergent series, respectively. Fur-
ther, we shall write bs, cs for the spaces of all sequences associated with bounded and
convergent series.
The β-duals of a subset X of w are defined by

Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
.

Let μ and γ be two sequence spaces and A = (ank) be an infinite matrix of real or complex
numbers ank , where n,k ∈N. Then we say that A defines a matrix mapping from μ into γ ,
and we denote it by writing A : μ → γ if for every sequence x = (xk) ∈ μ, the sequence
Ax = (Ax)n, the A-transform of x is in γ , where

(Ax)n =
∑
k

ankxk (n ∈N). (.)

The notation (μ : γ ) denotes the class of all matrices A such that A : μ → γ . Thus, A ∈
(μ : γ ) if and only if the series on the right-hand side of (.) converges for each n ∈N and
every x ∈ μ, and we have Ax = {(Ax)n}n∈N ∈ γ for all x ∈ μ. The matrix domain μA of an
infinite matrix A in a sequence space μ is defined by

μA =
{
x = (xk) ∈ ω : Ax ∈ μ

}
.
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The theory of BK-spaces is the most powerful tool in the characterization of the matrix
transformation between sequence spaces. A sequence space X is called a BK-space if it is
a Banach space with the maps pi : μ −→ C defined by pi(x) = xi being continuous for all
i ∈ N, where C denotes the complex field and N = {, , , . . .}.
The sequence spaces c, c, �∞ and � are BK-spaces with the usual sup-norm defined by

‖x‖∞ = supk |xk| and ‖x‖� =
∑

k |xk| [].

2 The sequence spaces c0(B) and �∞(B)
Let r, s and t be non-zero real numbers, and define the triple band matrix B(r, s, t) =
{bnk(r, s, t)}

bnk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r, k = n,

s, k = n – ,

t, k = n – ,

, otherwise.

Recently, Sömez [] introduced the sequence spaces c(B) and �∞(B) as thematrix domain
of the triangleB(r, s, t) in the spaces c and �∞, respectively. It obvious that c(B) and �∞(B)
are BK-spaces with the same norm by

‖x‖�∞(B(r,s,t)) =
∥∥B(r, s, t)(x)∥∥

�∞ = sup
n

∣∣Bn(r, s, t)(x)
∣∣. (.)

Throughout, for any sequence x = (xk) ∈ w, we define the sequence y = (yk) which will
be frequently used, as the B(r, s, t)-transform of a sequence x = (xk), i.e.,

yk = rxk + sxk– + txk–. (.)

Since the spaces λB(r,s,t) and λ are norm isomorphic, one can easily observe that x = (xk) ∈
λB(r,s,t) if and only if y = (yk) ∈ λ, where the sequences x = (xk) and y = (yk) are connected
with relation (.); furthermore, ‖x‖�∞(B(r,s,t)) = ‖y‖�∞ , where λ is any of the sequences c
or �∞.

3 Compactness by the Hausdorff measure of noncompactness
In the present paper, we establish some identities or estimates for the operator norms
and the Hausdorffmeasures of noncompactness of certain matrix operators on the spaces
c(B) and �∞(B). Further, by using the Hausdorff measure of noncompactness, we charac-
terize some classes of compact operators on these spaces. It is quite natural to find con-
dition for a matrix map between BK-spaces to define a compact operator since a matrix
transformation between BK-spaces is continuous. This can be achieved by applying the
Hausdorff measure of noncompactness. Recently, several authors characterized classes
of compact operators given by infinite matrices on some sequence spaces by using this
method. For example, in [, ], Mursaleen and Noman, Malkowsky and Rakoc̆ević [],
Djolović and Malkowsky [] and Kara and Başarır [, ] established some identities or
estimates for the operator norms and the Hausdorff measure of noncompactness of the
linear operator given by infinite matrices that map an arbitrary BK-space or the matrix
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domain of triangles in an arbitrary BK-space. Further, they characterized some classes of
compact operators on these spaces by using the Hausdorff measure of noncompactness.
Now, we give some related definitions, notation and preliminary result.
Let X and Y be Banach spaces. Then we write B(X,Y ) for the set of all bounded (contin-

uous) linear operators L : X −→ Y , which is a Banach space with the operator norm given
by ‖L‖ = supx∈SX ‖L(x)‖Y for all L ∈ B(X,Y ), where SX denotes the unit sphere in X, the
sequence (L(xn)) has a subsequence which converges in Y . By C(X,Y ), we denote the class
of all compact operators in B(X,Y ). An operator L ∈ B(X,Y ) is said to be of finite rank
if dimR(L) < ∞, where R(L) denotes the range of L. An operator of finite rank is clearly
compact.
If (‖ · ‖,X) is a normed sequence space, then we write

‖a‖∗
X sup
x∈SX

∞∑
k=n

|akxk| (.)

for a ∈ w provided the expression on the right-hand side exists and is finite, which is the
case whenever X is a BK-space and a ∈ Xβ []. Let S and M be subsets of a metric space
(X,d) and ε > . Then S is called an ε-net of M in X if for every x ∈ M there exists s ∈ S
such that d(x, s) < ε. Further the set S is finite, then the ε-net S ofM is called a finite ε-net
of M, and we say that M has a finite ε-net in X. A subset of a metric space is said to be
totally bounded if it has a finite ε-net for every ε > . By MX we denote the collection of
all bounded subsets of a metric space (X,d). If Q ∈ MX , then the Hausdorff measure of
noncompactness of the set Q, denoted by χ (Q), is defined by

χ (Q) = inf{ε >  :Q has a finite ε-net in X}.

The function χ :MX −→ [,∞) is called the Hausdorff measure of noncompactness [,
p.].
The basic properties of the Hausdorff measure of noncompactness can be found in [,

Lemma ]; for example, if Q,Q and Q are bounded subsets of a metric space (X,d), then

χ (Q) =  if and only if Q is totally bounded,

Q ⊂ Q implies χ (Q) ≤ χ (Q).

Further, if X is a normed space, then the function χ has some additional properties con-
nected with the linear structure, that is,

χ (Q +Q) ≤ χ (Q) + χ (Q),

χ (αQ) = |α|χ (Q) for all α ∈C.

We shall need the following known result for our investigation.

Lemma. [, Lemma (a)] Let ϕ ⊃ X and Y be a BK-space.Thenwe also have (X,Y ) ⊂
B(X,Y ), that is, every matrix A ∈ (X,Y ) defines an operator LA ∈ B(X,Y ) by LA(x) = Ax for
all x ∈ X.
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Lemma . [, Theorem .] Let T be a triangle. Then we have
(a) For arbitrary subsets X and Y of w, A ∈ (X,YT ) if and only if B = TA ∈ (X,Y ).
(b) Further, if X and Y are BK -spaces and A ∈ (X,YT ), then ‖LA‖ = ‖LB‖.

Lemma . [, Lemma .] Let ϕ ⊃ X be a BK-space and Y be any of the spaces c, c or
�∞. If A ∈ (X,Y ), then we have

‖LA‖ = ‖A‖(X,�∞) = sup
n

|An|∗X < ∞.

Lemma . [, Theorem .] Let X denote any of the spaces c, c or �∞. If Xβ = � and
‖a‖∗

X = ‖a‖� for all a ∈ �.

Lemma . Let X denote any of the spaces c(B) and �∞(B). If a = (ak) ∈ Xβ , then we have
â = (̂ak) ∈ � and the equality

∞∑
k=

akxk =
∞∑
k=

âkyk (.)

holds for every x = (xk) ∈ X,where y = B(r, s, t)(x) is the associated sequence defined by (.)
and

âk =
n∑
j=k

k–j∑
i=

(
–s +

√
s – tr
r

)j–k–i(–s –
√
s – tr
r

)i aj
r
.

Theorem . Let X denote any of the spaces c(B) or �∞(B). Then we have

‖a‖X = ‖̂a‖� =
∞∑
k=

|̂ak| < ∞

for all a = (ak) ∈ Xβ , where â = (̂ak) is as in Lemma ..

Proof Let Y be the respective one of the spaces c or �∞, and take any a = (ak) ∈ Xβ .
Then we have by Lemma . that â = (̂ak) ∈ � and equality (.) holds for all sequences
x = (xk) ∈ X and y = (yk) ∈ Y which are connected by relation (.). Further, it follows by
(.) that x ∈ SX if and only if y ∈ SY . Therefore, we derive from (.) and (.) that

‖a‖X = sup
x∈SX

∣∣∣∣∣
∞∑
k=

akxk

∣∣∣∣∣ = sup
y∈SY

∣∣∣∣∣
∞∑
k=

âkyk

∣∣∣∣∣ = ‖̂a‖Y ,

and since â ∈ �, we obtain from Lemma . that

‖a‖∗
X = ‖̂a‖∗

Y = ‖̂a‖∗
� < ∞. �

Lemma . Let X be any of the spaces c(B) or �∞(B), let Y be the respective one of the
spaces c or �∞, Z be a sequence space and A = (ank) be an infinite matrix. If A ∈ (X,Z),

http://www.journalofinequalitiesandapplications.com/content/2013/1/503
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then Â ∈ (Y ,Z) such that Ax = Ây for all sequences x ∈ X and y ∈ Y which are connected
by relation (.), where Â = (̂ank) is the associated matrix defined by

ânk =
∞∑
j=k

k–j∑
i=

(
–s +

√
s – tr
r

)j–k–i(–s –
√
s – tr
r

)i anj
r
. (.)

Proof It can be similarly proved by the same technique as in [, Lemma .]. �

Theorem . Let X be any of the spaces c(B) or �∞(B), let A = (ank) be an infinite matrix
and Â = (̂ank) be the associated matrix. If A is any of the classes (X, c), (X, c) or (X,�∞),
then

‖LA‖ = ‖A‖(X,�∞) = sup
n

( ∞∑
n

|̂ank|
)
<∞.

Proof This is immediate by combining Lemmas . and .. �

The following result shows how to compute the Hausdorff measure of noncompactness
in the BK-space c.

Lemma . [, Theorem .] Let Q be a bounded subset of the normed space X, where
X is �p for  ≤ p < ∞ or c. If pr : X −→ X (r ∈ N) is an operator defined by pr(x) =
(x,x, . . . ,xr , , , . . .) for all x = (xk) ∈ X, then we have

χ (Q) = lim
r→∞

(
sup
x∈Q

∥∥(I – pr)(x)
∥∥

�∞

)
,

where I is the identity operator on X.
Further,we know by [, Theorem .] that every z = (zk) ∈ c has a unique representation

z = ze +
∑∞

n (zn – z)e(n), where z = limn→∞ zn. Thus, we define the projectors pr : c −→ c
(r ∈ N) by

pr = ze +
r∑

n=

(zn – z)e(n) (r ∈N)

for all z = (zk) ∈ c with z = limn→∞ zn, where e = (, , , . . .) and e(n) is the sequence whose
only non-zero term is  in the nth place for each n ∈ N, where N = {, , , . . .}. In this situ-
ation, the following result gives an estimate for the Hausdorff measure of noncompactness
in the BK-space c.

Lemma . [, Theorem (b)] Let Q ∈Mc and pr : c−→ c (r ∈ N) be the projector onto
the linear span of (e(), e(), . . . , e(r)). Then we have



lim
r→∞

(
sup
x∈Q

∥∥(I – pr)(x)
∥∥

�∞

)
≤ χ (Q) ≤ lim

r→∞

(
sup
x∈Q

∥∥(I – pr)(x)
∥∥

�∞

)
, (.)

where I is the identity operator on c.
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The next lemma is related to the Hausdorff measure of noncompactness of a bounded
linear operator.

Lemma . [, Theorem .] Let X and Y be Banach spaces and L ∈ B(X,Y ). Then we
have

‖LA‖χ = χ
(
L(SX)

)
(.)

and

L ∈ C(X,Y ) if and only if ‖LA‖χ = . (.)

4 Compact operators on the spaces c0(B) and �∞(B)
In this subsection, we establish some identities or estimates for the Hausdorffmeasures of
noncompactness of certain matrix operators on the spaces c(B) and �∞(B). Further, we
apply our results to characterize some classes of compact operators on those spaces. We
begin with the following lemmas which will be used in proving our results.

Lemma . [, Lemma .] Let X denote any of the spaces c or �∞. If A ∈ (X, c), then

αk = lim
n→∞ank exists for every k ∈N,

α = (αk) ∈ �,

sup
n

( ∞∑
k

|ank – αk|
)
< ∞,

lim
n→∞An =

∞∑
k

αkxk for all x = (xk) ∈ X.

Lemma . [, Theorem .] Let X ⊃ φ be a BK-space. Then we have
(a) If A ∈ (X, c), then

‖LA‖χ = lim sup
n→∞

‖An‖∗
X .

(b) If A ∈ (X,�∞), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖An‖∗
X .

Theorem . Let X denote any of the spaces c(B) and �∞(B). Then we have
(a) If A ∈ (X, c), then

‖LA‖χ = lim sup
n→∞

( ∞∑
k=

|̂ank|
)

(.)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂ank|
)
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/503
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(b) If A ∈ (X,�∞), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑
k=

|̂ank|
)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂ank|
)
= .

Proof Let A ∈ (X, c). Since An ∈ Xβ for all k ∈N, we have from Lemma . that

‖An‖X = ‖Ân‖� =
∞∑
k=

|̂ank| (.)

for all k ∈ N. Thus, we get (.) and (.) from (.) and Lemma .(a). Part (b) can be
proved similarly by using Lemma .(b). �

Theorem . Let X denote any of the spaces c(B) or �∞(B). If A ∈ (X, c), then we have



lim sup
n→∞

( ∞∑
k=

|̂ank – α̂k|
)

≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑
k=

|̂ank – α̂k|
)

(.)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂ank – α̂k|
)
= , (.)

where limn→∞ ânk = α̂k .

Proof By combining Lemma . and Lemma ., we deduce that the expression in (.)
exists. We write S = SX for short. Then we obtain by (.) and Lemma . that

‖LA‖χ = χ (AS) (.)

and AS ∈ Mc, where is the class of all bounded subsets of c. Then we are going to apply
Lemma . to get an estimate for the value of χ (AS) in (.). For this, let pr : c−→ c be the
projectors defined by (.). Then we have for every r ∈N that (I –pr)(z) =

∑∞
n=r+(zn – z)en

and hence

∥∥(I – pr)(z)
∥∥

�∞ = sup
n>r

|z – z| (.)

for all z ∈ c and every r ∈N. Thus, from (.) and applying Lemma ., we get that



lim
r→∞

(
sup
x∈S

∥∥(I – pr)(Ax)
∥∥

�∞

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
x∈S

∥∥(I – pr)(Ax)
∥∥

�∞

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/503


Karaisa Journal of Inequalities and Applications 2013, 2013:503 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/503

Now, for every given x ∈ X, let y ∈ Y be an associated sequence space defined by (.),
where Y is the respective one of the spaces c or �∞. Since A ∈ (X, c), we have by
Lemma . that Â ∈ (Y , c) and Ax = Ây. Further, it follows from Lemma . that the limits
α̂k = limn→∞ ânk exist for all k, α̂ = (̂αk) ∈ � = Y β and limn→∞ Ân(y) =

∑∞
k= α̂kyk . Thus we

derive from (.) that

∥∥(I – pr)(Ax)
∥∥

�∞ =
∥∥(I – pr)(Ây)

∥∥
�∞ = sup

n>r

∣∣∣∣∣Ân(y) –
∞∑
k=

α̂kyk

∣∣∣∣∣ = sup
n>r

∣∣∣∣∣
∞∑
k=

(̂ank – α̂k)yk

∣∣∣∣∣
for r ∈ N. Furthermore, since x ∈ S = SX if and only if y ∈ SY , we obtain by (.) and
Lemma .

sup
X∈S

∥∥(I – pr)(Ax)
∥∥

�∞ = sup
n>r

(
sup
Y∈SY

∣∣∣∑(̂ank – α̂k)yk
∣∣∣) = sup

n>r
‖Ân – α̂‖∗

Y = sup
n>r

‖Ân – α̂‖�

for all r ∈ N. Thus, we get (.) and (.) from (.) and (.), respectively and this con-
cludes the proof. �

Now, let F denote the collection of all finite subsets of N, and let Fr (r ∈ N) be the
subcollection of F consisting of all nonempty subsets of N with elements that are grater
than r.

Lemma . [, Proposition .] Let X ⊃ φ be a BK-space. If A ∈ (X,�), then

‖A‖(X,�) = ‖LA‖ ≤ ‖A‖(X,�),

where

‖A‖(X,�) = sup
N∈F

∥∥∥∥∥
∞∑
n∈N

An

∥∥∥∥∥
∗

X

<∞.

Lemma . [, Lemma .] Let x = (xk) ∈ �. Then the inequalities

sup
N∈Fr

∣∣∣∣∣
∞∑
n∈N

xn

∣∣∣∣∣ ≤
∞∑

n=r+

|xn| ≤  · sup
N∈Fr

∣∣∣∣∣
∞∑
n∈N

xn

∣∣∣∣∣.
Theorem . Let X denote any of the spaces c(B) or �∞(B). If A ∈ (X,�), then we have

lim
r→∞‖A‖(r)(X,�) = ‖LA‖ ≤  lim

r→∞‖A‖(r)(X,�), (.)

and

LA is compact if and only if lim
r→∞‖A‖(r)(X,�) = ,

where

‖A‖(r)(X,�) = sup
N∈F

∞∑
k=

∣∣∣∣∑
n∈N

ânk
∣∣∣∣ (r ∈ N).

http://www.journalofinequalitiesandapplications.com/content/2013/1/503
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Proof Since F ⊃ F ⊃ F · · · , the sequence (‖A‖(r)(X,�))∞r= of nonnegative reals is nonin-
creasing and bounded by Lemma .. Thus, the limit in (.) exists.
Now, let S = SX . Then we have by Lemma .(a) that LA(S) = AS ∈M� . Hence, it follows

from (.) and Lemma . that

‖LA‖χ = χ (AS) = lim
r→∞

(
sup
x∈S

( ∞∑
n=r+

∣∣An(x)
∣∣))

. (.)

Since, A ∈ (X,�), we obtain by Lemma . that

sup
N∈Fr

∣∣∣∣∣
∞∑
n∈N

An(x)

∣∣∣∣∣ ≤
∞∑

n=r+

∣∣An(x)
∣∣ ≤  · sup

N∈Fr

∣∣∣∣∣
∞∑
n∈N

An(x)

∣∣∣∣∣ (.)

for all x ∈ X and every r ∈ N. On the other hand, since An ∈ Xβ for all n ∈ N, we derive
from (.) and Lemma .

sup
x∈S

∣∣∣∣∣
∞∑
n∈N

An(x)

∣∣∣∣∣ = sup
x∈S

∣∣∣∣∣
∞∑
k=

(∑
n∈N

An

)
xk

∣∣∣∣∣ =
∥∥∥∥∥

∞∑
n∈N

An

∥∥∥∥∥
∗

X

=
∥∥∥∥∑
n∈N

Ân

∥∥∥∥
�

for all N ∈Fr (r ∈N). This, together with (.), implies that

sup
N∈Fr

∥∥∥∥∑
n∈N

Ân

∥∥∥∥
�

≤ sup
x∈S

( ∞∑
n=r+

|An|
)

≤  · sup
N∈Fr

∥∥∥∥∑
n∈N

Ân

∥∥∥∥
�

(.)

for every (r ∈N). Thus, we get (.) by passing to the limits in (.) as r −→ ∞ and using
(.). This completes the proof. �

Theorem . Let X denote any of the spaces c(B) or �∞(B). Then we have
(a) If A ∈ (X, cs), then

‖LA‖χ = lim sup
n→∞

( ∞∑
k=

|̂bnk|
)

(.)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂bnk|
)
= . (.)

(b) If A ∈ (X,bs), then

 ≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑
k=

|̂bnk|
)

(.)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂bnk|
)
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/503
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(c) If A ∈ (X, cs), then



lim sup
n→∞

( ∞∑
k=

|̂bnk – b̂k|
)

≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑
k=

|̂bnk – b̂k|
)

(.)

and

LA is compact if and only if lim
n→∞

( ∞∑
k=

|̂bnk – b̂k|
)
= , (.)

where b̂nk =
∑n

m= âmk and limn→∞ b̂nk = b̂k .

Proof Let A = (ank) be an infinite matrix and S = (snk) be the summation matrix, and we
define B = (bnk) by

bnk =
n∑

m=

amk for all (n,k ∈N),

that is, B = SA, and hence

Bn =
n∑

m=

snmAmk =

( n∑
m=

amk

)∞

k=

(n,k ∈ N).

Further, let Â = (̂ank) and B̂ = (̂bnk) be the associated matrices, respectively. Then it can be
easily seen that

b̂nk =
n∑

m=

âmk for all (n,k ∈N),

and hence

B̂n =
n∑

m=

snmÂmk =

( n∑
m=

âmk

)∞

k=

(n,k ∈ N).

Furthermore, we define the sequence b̂ = (̂bk) by

b̂k = lim
n→∞

n∑
m=

âmk for all (n,k ∈N), (.)

provided the limits in (.) exist for all k ∈N which is the case whenever A ∈ (X, cs).
Since bs = (�∞)S , cs = (c)S and cs = (c)S , (.)-(.) are obtained from Theorems .

and . by using Lemma .. This completes the proof. �
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