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Abstract
In this paper, we prove that if the distribution of an n×mp randommatrix Y is a left
ellipsoidal distribution with parameter μ∗ =μ(II′m ⊗ Ip), �∗ =m� , and Y1,Y2, . . . ,Ym
are independent and identical distributions, the maximum likelihood estimations of
μ, � are Y , S2 if and only if Y ∼ Nn×mp(μ∗,�∗). If Y1,Y2, . . . ,Ym are not independent
and identical distributions, then Y may be not a normal distribution.
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1 Introduction
Let X = (x,x, . . . ,xn), x,x, . . . ,xn be independent standard normal distributions. A ran-
dom matrix Yn×p is said to be a left stochastic ellipsoid matrix if it satisfies (see [])

Yn×p = An×nXn×p +μn×p, �n×nXn×p
d= Xn×p, EXX ′ = In,

and its distribution, which is denoted by En×p(μ,�), is called a left ellipsoidal distribution,
where � = AA′ is reversible, and E is ellipsoid. Besides, d denotes identical distribution,
S denotes XX ′, and all �n×n ∈ o(n) are orthogonal matrices with order n. Then we have
conclusions:

ESkX = , ESk = αkIn,

where k is an arbitrary integer and k is a constant (see []).
If X has the distribution density, the distribution density has the form f (X ′X), then the

distribution density is said to be spherical distribution. If the distribution density of Y is

|�|– p
 f

(
(Y –μ)′�–(Y –μ)

)
,

then the distribution density is called left ellipsoidal distribution contour, and the contour
surface is

(Y –μ)′�–(Y –μ) =D.

When p = , it is an ellipsoidal surface. The spectral decomposition of � is ���′, where
� is an orthogonal matrix, � = diag(λ, . . . ,λn), λ > · · · > λn > .
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If the distribution density of Y is

|�|– p
 f

[
(Y –μ)′�–(Y –μ)

]
=

(√
p
π

)np

|�|– p
 exp

{
–
p

tr(Y –μ)′�–(Y –μ)

}
,

the elongated vector of Y , which is denoted by �Y , is normal Nnp( �μ, p Ip ⊗ �) distribution.
For the sake of consistency of symbols, we denote the normal distribution by Nn×p(μ,�).
Classical statistical analysis is built on the basis of normal distribution. However, it is

still an important problem whether these graceful properties can also be satisfied without
the condition that it is a normal distribution.
Since the left ellipsoidal distribution family has much more members than the normal

distribution family (in fact, it almost includes all common distributions), a large amount
of scholars’ fruitful research shows: on the one hand, the left ellipsoidal distribution as a
multivariate normal distribution promotion is ideal; on the other hand, based on the re-
search of the left ellipsoidal distribution, we can getmany statistics used as solid properties
of hypothesis test (see []). It is a trivial idea to extend the properties of the normal dis-
tribution family to the left ellipsoidal distribution family. Nevertheless, that is not always
true. In this article, we prove that themaximum likelihood property of normal distribution
cannot be extended to the left ellipsoidal distribution.
Let Y,Y, . . . ,Ym be the samples of independent identical distributions, and in the con-

dition of normal distribution,

Y =

m

m∑
i=

Yi, S =

m

m∑
i=

(Yi – Y )(Yi – Y )′

are the maximum likelihood estimations of μ, �, respectively, if m is big enough and S

is positive definite. When p = , S is positive definite with probability  if m > n (see []).
Additionally, the rank of S does not decrease with the increasing of the columns in Y so
that S is positive definite whenm > n. Now we discuss them in the case ofm >max(n, ).
When one focuses on the maximum likelihood estimation, the likelihood equations need
to be deduced by thematrix differential method. Therefore, we add a trivial condition that
the distribution density of En×p(μ,�) is differentiable (see [–]).
We draw the following conclusions.

Theorem . Let Y,Y, . . . ,Ym be independent identically distributed, and Yi ∼ En×p(μ,
�). The maximum likelihood estimation of μ, � is Y , S if and only if Yi ∼Nn×p(μ,�).

Note that for the proof of Theorem . one can refer to [].
When the variables of μ∗ are not independent, we have the solution as follows.

Theorem . Let Y ∼ En×mp(μ∗,�∗), μ∗ = μ(II′m ⊗ Ip), and �∗ = m�. Besides, Y =
(Y,Y, . . . ,Ym),where Yi is an n×pmatrix.Then if Y,Y, . . . ,Ym aremutually independent
identically distributed, the maximum likelihood estimations of μ, � are

Y =

m
Y

(
II′m ⊗ Ip

)
, S =


m
Y (I – PIIm ⊗ Ip)Y ′

if and only if Y ∼Nn×mp(μ∗,�∗),where PIIm = 
m IImII

′
m,we note it P = PIIm ⊗ Ip in the proof

below.
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Theorem . Under the conditions of Theorem ., if Y,Y, . . . ,Ym are not independent
identically distributed, and the maximum likelihood estimations of μ, � are

Y =

m
Y

(
II′m ⊗ Ip

)
, S =


m
Y (I – PIIm ⊗ Ip)Y ′,

then Y may be not a normal distribution.

2 The proof of Theorem 1.2
Let Y,Y, . . . ,Ym be mutually identically independent distributions, and Yi ∼ En×p(μ,�).
Besides, we assume that Y = Y,Y, . . . ,Ym, and Yi = AXi +μ, then

Y =mA
(

m
X

)
+μ

(
II′m ⊗ Ip

)
,

�n×n

(

m
X

)
d=


m
X,

E
(

m
X

)(

m
X

)′
= I,

where � is a random orthogonal matrix with order n. As a result, Y ∼ En×mp(μ(II′m ⊗
Ip),m�).
Now the above proposition can be transformed to a research of the form of the left

stochastic ellipsoid distribution with a degraded mean.
Notice that

Y =

m

m∑
i=

Yi =

m
Y (IIm ⊗ Ip),

S =

m

m∑
i=

(Yi –μ)(Yi –μ)′

=

m

m∑
i=

(Yi – Y )(Yi – Y )′ =

m
(YP – Y )(YP – Y )′ =


m
Y (I – P)Y ′,

where μ = Y , P = PIIm ⊗ Ip. Therefore, utilizing the single mean degraded left stochastic
ellipsoid to express Theorem ., we can obtain Theorem ..

3 The proof of Theorem 1.3
Based on the above discussion, we get the question: If the condition ofmutually identically
independent distribution is discarded, can one obtain the same solution with Theorem .
from Y ∼ En×mp(μ · (II′m ⊗ Ip),m�)? In other words, can the proposition be proved or not?
Let Y ∼ En×mp(μ · (II′m ⊗ Ip),m�), and then the maximum likelihood estimations of μ,

� are

Y =

m
Y

(
II′m ⊗ Ip

)
, S =


m
Y (I – P)Y ′.

Here, P = PIIm ⊗ Ip if and only if Y ∼Nn×mp(μ(II′m ⊗ Ip),m�).
The proposition is proved not to be true through the above discussion, and we can give

the paradoxical instance. Now, we firstly deduce the necessary and sufficient conditions
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that the maximum likelihood estimation of the parameters μ, � in the left stochastic el-
lipsoid En×mp(μ(II′m ⊗ Ip),m�) is Y , S.
We assume that Y has the distribution density, namely the likelihood function is

L(Y ,μ,�) = |�|–mp
 f

((
Y –μ

(
II′m ⊗ Ip

))′(m�)–
(
Y –μ

(
II′m ⊗ Ip

)))
.

Computing the logarithm difference of both sides, we can get

d lnL(Y ,μ,�) = – trG
(
Y –μ

(
II′m ⊗ Ip

))′
�– · dμ · (II′m ⊗ Ip

)

– tr

(
�–(Y –μ

(
II′m ⊗ Ip

))′G
(
Y –μ

(
II′m ⊗ Ip

))
�– +

mp


�–
)
d�,

where A = (Y –μ(II′m ⊗ Ip))′(m�)–(Y –μ(II′m ⊗ Ip)) = (aij)n×n and A′ = A.

d ln f (A) =
∑
i<j

∂ ln f (A)
∂aij

daij

=
∑
i·j

ln f (A)ij daij

= trG(A)dA.

We define

G(A)ii =
∂ ln f (A)

∂aij
, G(A)ij =




∂ ln f (A)
∂aij

, G =G(A).

Let P = PIIm ⊗ Ip, and then themaximum likelihood estimation ofμ,�, which is denoted
by μ̂, �̂, satisfies

(
II′m ⊗ Ip

)
G · P · Y ′ =

(
II′m ⊗ Ip

)
G · Y ′,

Y
(
(I – P)G(I – P) +

P

Ip

)
Y ′ = .

Namely,

PGP = PG,

(I – P)G(I – P) +
P

(I – P) = .

Then we can obtain

PGP = PG,(
G +

P


)
(I – P) = .

As a result, we can conclude that

G = –
P

I +CP,

where C is a randommp×mpmatrix.
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Since G′ = G, CP = PC′. Besides, the -order differential of a likelihood function needs
to satisfy: ∀dμ,d�,d lnL(Y ,μ,�) < .

∵ L = |�|–mp
 f (A),

∴ d lnL = –
mp


tr�– d� + d ln f (A) = –
mp


tr�– d� + trGd(A).

Additionally,

d lnL =
mp


tr�– d��– d� + trG · dA + tr(dG)dA

= tr

(
mp


+�–((Y –μ
(
II′m ⊗ Ip

))(
Y –μ

(
II′m ⊗ Ip

))′))
�– d��– d�

+ trG(IIm ⊗ Ip)dμ′(m�)– dμ
(
II′m ⊗ Ip

)
+ tr(dG)dA

= trG(IIm ⊗ Ip)dμ′(m�)– dμ
(
II′m ⊗ Ip

)
+ tr(dG)dA

= –
mp


tr dμ′(m�)– dμ + trC · P(IIm ⊗ Ip)dμ′(m�)– dμ
(
II′m ⊗ Ip

)
+ tr(dC) · PdA

= –
mp


tr dμ′(m�)– dμ + tr
(
II′m ⊗ Ip

) ·C · (IIm ⊗ Ip) · dμ′(m�)– dμ

+ tr(dC) · PdA.

Consequently, we have the conclusion as follows.
Let Y ∼ En×mp(μ · (II′m ⊗ Ip),m�), and then the maximum likelihood estimations of μ,

� are Y , S if and only if
() G = – P

 I +CP, CP = PC′.
() tr(II′m ⊗ Ip) ·C · (II′m ⊗ Ip) · dμ′(m�)– dμ + tr(dC) · PdA < mp

 tr dμ′(m�)– dμ

∀dμ,d�.
Since Y ∼ En×mp(μ · (II′m ⊗ Ip),m�) if and only if C = , Y may not be a normal random

matrix in general.
For instance, letC = cI , c = – p

 trPA, P = PIIm ⊗ Ip, andA = (Y –μ · (II′m ⊗ Ip))′(m�)–(Y –
μ · (II′m ⊗ Ip)).
Then the distribution density of Y is

L(Y ,μ,�) = C|�|–mp
 exp

{
–
p

(
trA + tr PA

)}
,

where C = (
∫ |�|–mp

 exp{– p
 (trA + tr PA)}dY )–.

Since G = – P
 I + CP and CP = PC′, and (m tr dμ′(m�)– dμ)(– p

 trPA) + (trPdA)×
(– p

 trPdA) <  < mp
 tr dμ′(m�)– dμ so that the maximum likelihood estimations of μ,

� are Y , S, then the distribution of Y is not a normal distribution.

4 Conclusion
In this paper, we proved that if the distribution of an n×mp random matrix Y is a left
ellipsoidal distribution with parameter μ∗ = μ(II′m ⊗ Ip), �∗ =m�, and Y,Y, . . . ,Ym are
independent and identical distributions, and Y ∼ Nn×mp(μ∗,�∗), then the maximum like-
lihood estimations of μ, � are Y , S. If Y,Y, . . . ,Ym are not independent and identical
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distributions, then the maximum likelihood estimations of μ, � are Y , S. We used the
matrix differential method to deduce that only and only if Y ∼ En×mp(μ · (II′m ⊗ Ip),m�),
which needs to satisfy two conditions.
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