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Abstract
In the present paper, we are concerned with second-order duality for
nondifferentiable minimax fractional programming under the second-order
generalized convexity type assumptions. The weak, strong and converse duality
theorems are proved. Results obtained in this paper extend some previously known
results on nondifferentiable minimax fractional programming in the literature.
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1 Introduction
It is well known that the minimax fractional programming has wide applications. These
types of problems arise in the design of electronic circuits; moreover, minimax fractional
programming problems appear in formulation of discrete and continuous rational approx-
imation problems with respect to the Chebyshev norm [], continuous rational games [],
multiobjective programming [] and engineering design as well as some portfolio solution
problems discussed by Bajaona-Xandari and Martinez-Legaz [].
In the last few years, much attention has been paid to optimality conditions and duality

theorems for the minimax fractional programming problems. For the case of convex dif-
ferentiable minimax fractional programming, Yadav and Mukherjee [] formulated two
dual models for the primal problem and derived a duality theorem for convex differen-
tiable minimax fractional programming. A step forward was taken by Chandra and Ku-
mar [] who improved the dual formulation of Yadav and Mukherjee. They provided two
modified dual problems for minimax fractional programming and proved duality results.
Liu andWu [, ] and Ahmad [] obtained sufficient optimality conditions and duality for
minimax fractional programming under generalized convex type assumptions.
Mangasarian [] introduced the notion of second-order duality for nonlinear programs

and obtained second-order duality results under certain inequalities. Mond [] modified
the second-order duality results assuming rather simple inequalities. In this continuation,
Bector and Chandra [] formulated a second-order dual for a fractional programming
problem and obtained usual duality results under the assumptions [] by naming these
as convex/concave functions. Recently, Ahmad [] has formulated two types of second-
order dualities for minimax fractional programming problems and derived weak, strong
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and strict converse duality theorems under generalized convexity type assumptions. He
raised a question as to whether the second-order duality results developed in [] hold
for nondifferentiable minimax fractional programming problems. In the present paper,
a positive answer is given to the question of Ahmad [] and a second-order duality for
nondifferentiable minimax fractional programming is formulated. The weak, strong and
strict converse duality theorems are proved for these programs under the second-order
generalized convexity type assumptions.
We consider the following nondifferentiableminimax fractional programming problem:

Minimize ψ(x) = sup
y∈Y

f (x, y) + (xTCx) 

g(x, y) – (xTDx) 

subject to h(x)≤ , x ∈ Rn,

(NFP)

where Y is a compact subset of Rl , f (·, ·), g(·, ·) : Rn ×Rl → R, h(·, ·) : Rn → Rm are C func-
tions.C andD are n×n positive semidefinite symmetric matrices. Throughout this paper,
we assume that g(x, y) + (xTDx)  >  and f (x, y) + (xTCx)  ≥  for all (x, y) ∈ Rn × Rl .

2 Notations and preliminaries
Let S = {x ∈ Rn : h(x) ≤ } denote the set of all feasible solutions of (NFP), a point x ∈ S is
called the feasible point of (NFP). For each (x, y) ∈ Rn × Rl , we define

J(x) =
{
j ∈M : hj(x) = 

}
,

whereM = {, , . . . ,m},

Y (x) =
{
y ∈ Y :

f (x, y) + (xTCx) 

g(x, y) – (xTDx) 
= sup

z∈Y
f (x, z) + (xTCx) 

g(x, z) – (xTDx) 

}
,

K (x) =

{
(s, t, ȳ) ∈N × Rs

+ × Rls : ≤ s ≤ n + , t = (t, t, . . . ts) ∈ Rs
+

with
s∑
i=

ti = , ȳ = (ȳ, . . . , ȳs) where ȳi ∈ Y (x), i = , , . . . , s

}
.

Since f and g are C functions and Y is compact in Rl , it follows that for each x∗ ∈ S,
Y (x∗) �= φ, and for any ȳi ∈ Y (x∗), we have a positive constant

K =ψ
(
x∗, ȳi

)
=
f (x∗, ȳi) + (x∗TCx∗) 

g(x∗, ȳi) – (x∗TDx∗) 
.

Generalized Schwarz inequality
Let A be a positive semidefinite matrix of order n. Then, for all x,w ∈ Rn,

xTAw ≤ (
xTAx

)/(wTAw
)/. ()

Equality holds if, for some λ ≥ ,

Ax = λAw.
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Evidently, if (wTAw)/ ≤ , we have

xTAw ≤ (
xTAx

)/.

Definition . A function F : X × X × Rn → R, where X ⊆ Rn is said to be sublinear in
its third argument if ∀x, x̄ ∈ X,

(i) F (x, x̄;a + a) ≤F (x, x̄;a) +F (x, x̄;a), ∀a,a ∈ Rn,
(ii) F (x, x̄;αa) = αF (x, x̄;a), ∀α ∈ R+, a ∈ Rn.

Definition . A point x̄ ∈ S is said to be an optimal solution of (NFP) if ψ(x)≥ ψ(x̄) for
each x ∈ S.

In the case where the functions f , g and h in problem (NFP) are continuously differ-
entiable with respect to x ∈ Rn, Lai et al. [] proved the following first-order necessary
conditions for optimality of (NFP), which will be required to prove the strong duality the-
orem.

Theorem  (Necessary condition) Let x∗ be a solution (local or global) of (NFP) satisfying
x∗TCx∗ > , x∗TDx∗ > , and let ∇hj(x∗), j ∈ J(x∗) be linearly independent. Then there exist
(s∗, t∗, ȳ∗) ∈ K (x∗), k ∈ R+, w, v ∈ Rn and μ∗ ∈ Rm

+ such that

s∗∑
i=

t*i
{∇f

(
x∗, ȳ∗

i
)
+Cw – k

(∇g
(
x∗, ȳ∗

i
)
–Dv

)}
+∇

m∑
j=

μ∗
j hj

(
x∗) = , ()

f
(
x∗, ȳ∗

i
)
+

(
x∗TCx∗) 

 – k
(
g
(
x∗, ȳ∗

i
)
–

(
x∗TDx∗) 


)
= , i = , , . . . , s∗, ()

m∑
j=

μ∗
j hj

(
x∗) = , ()

t∗i ≥ ,
s∗∑
i=

t∗i = , ()

wTCw ≤ , vTDv≤ ,
(
x∗TCx∗)/ = x∗TCw,

(
x∗TDx∗)/ = x∗TDv. ()

Throughout the paper, we assume that F is a sublinear functional. For β = , , . . . , r, let
b,b,bβ : X×X → R+, φ,φ,φβ : R→ R, ρ , ρ, ρβ be real numbers, and let θ : Rn ×Rn → R.

3 Parametric nondifferentiable fractional duality
In this section, we consider the following dual to (NFP):

max
(s,t,ȳ)∈K (z)

sup
(z,μ,k,v,w,p)∈H(s,t,ȳ)

k, (FD)
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where H(s, t, ȳ) denotes the set of all (z,μ,k, v,w,p) ∈ Rn × Rm
+ × R+ × Rn × Rn × Rn satis-

fying

s∑
i=

ti
{∇f (z, ȳi) +∇f (z, ȳi)p +Cw – k

(∇g(z, ȳi) +∇g(z, ȳi)p –Dv
)}

+
m∑
j=

∇μjhj(z) +
m∑
j=

∇μjhj(z) = , ()

s∑
i=

ti
{
f (z, ȳi) –



pT∇f (z, ȳi)p + zTCw

– k
(
g(z, ȳi) –



pT∇g(z, ȳi)p – zTDv

)}
≥ , ()

m∑
j=

μjhj(z) –
m∑
j=



pT∇μjhj(z) ≥ , ()

(s, t, ȳ) ∈ k(z), ()

wTCw ≤ , vTDv≤ ,
(
zTCz

)/ = zTCw,
(
zTDz

)/ = zTCv. ()

If, for a triplet (s, t, ȳ) ∈ k(z), the set H(s, t, ȳ) = φ, then we define the supremum over it to
be –∞.

Theorem  (Weak duality) Let x and (z,μ,k, v,w, s, t, ȳ) be feasible solutions of (NFP) and
(FD), respectively. Assume that there exist F , θ , φ, b and ρ such that

b(x, z)φ

[ s∑
i=

ti
(
f (x, ȳi) + xTCw – k

(
g(x, ȳi) – xTDv

))

–
s∑
i=

ti
(
f (z, ȳi) + zTCw – k

(
g(z, ȳi) – zTDv

))

–
m∑
j=

μjhj(z) +


pT∇

s∑
i=

ti
(
f (z, ȳi) – kg(z, ȳi)

)
p +



pT∇

m∑
j=

μjhj(z)p

]
< 

⇒ F
(
x, z;

s∑
i=

ti
(∇f (z, ȳi) +∇f (z, ȳi)p +Cw – k

(∇g(z, ȳi) +∇g(z, ȳi)p –Dv
))

+
m∑
j=

(∇μjhj(z) +∇μjhj(z)p
))

< –ρ
∥∥θ (x, z)

∥∥. ()

Further assume that

a <  ⇒ φ(a) < , ()

b(x, z) > , ()

ρ ≥ . ()
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Then

sup
y∈Y

f (x, y) + (xTCx) 

g(x, y) – (xTDx) 
≥ k. ()

Proof Suppose to the contrary that

sup
y∈Y

f (x, y) + (xTCx) 

g(x, y) – (xTDx) 
< k.

Then we have

f (x, ȳi) +
(
xTCx

) 
 – k

(
g(x, ȳi) –

(
xTDx

) 

)
< 

for all ȳi ∈ Y .
It follows from () that

s∑
i=

ti
{
f (x, ȳi) +

(
xTCx

) 
 – k

(
g(x, ȳi) –

(
xTDx

) 

)} ≤ .

By the Schwarz inequality, the above inequality yields

s∑
i=

ti
(
f (x, ȳi) + xTCw – k

(
g(x, ȳi) – xTDv

))
< . ()

Inequality () together with () gives

s∑
i=

ti
(
f (x, ȳi) + xTCw – k

(
g(x, ȳi) – xTDv

))

< 

≤
s∑
i=

ti
(
f (z, ȳi) –



pT∇f (z, ȳi)p + zTCw – k

(
g(z, ȳi) –



pT∇g(z, ȳi)p – zTDv

))
.

Now, using () in the above inequality, we get

s∑
i=

ti
(
f (x, ȳi) + xTCw – k

(
g(x, ȳi) – xTDv

))

–
s∑
i=

ti
(
f (z, ȳi) + zTCw – k

(
g(z, ȳi) – zTDv

))

–
m∑
j=

μjhj(z) +


pT∇

s∑
i=

ti
(
f (z, ȳi) – kg(z, ȳi)

)
p

+


pT∇

m∑
j=

μjhj(z)p < . ()
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Using () and (), it follows from () that

b(x, z)φ

[ s∑
i=

ti
(
f (x, ȳi) + xTCw – k

(
g(x, ȳi) – xTDv

))

–
s∑
i=

ti
(
f (z, ȳi) + zTCw – k

(
g(z, ȳi) – zTDv

))

–
m∑
j=

μjhj(z) +


pT∇

s∑
i=

ti
(
f (z, ȳi) – kg(z, ȳi)

)
p +



pT∇

m∑
j=

μjhj(z)p

]
< ,

which along with () and () yields

F
(
x, z;

s∑
i=

ti
(∇f (z, ȳi) +∇f (z, ȳi)p +Cw – k

(∇g(z, ȳi) +∇g(z, ȳi)p –Dv
))

+
m∑
j=

(∇μjhj(z) +∇μjhj(z)p
))

< , ()

which contradicts (), since F (x, z; ) = . �

Theorem  (Strong duality) Let x∗ be an optimal solution of (NFP), and let ∇hj(x∗), j ∈
J(x∗) be linearly independent. Then there exist (s∗, t∗, y∗) ∈ K (x∗) and (x∗,μ∗,k∗, v∗,w∗,p* =
) ∈H(s∗, t∗, ȳ∗) such that (x∗,μ∗,k∗, v∗,w∗, s∗, t∗, ȳ∗,p∗ = ) is a feasible solution of (FD). In
addition, if the hypotheses of the weak duality theorem are satisfied for all feasible solutions
(z,μ,k, v,w, s, t, ȳ,p) of (FD), then (x∗,μ∗,k∗, v∗,w∗, s∗, t∗, ȳ∗,p∗ = ) is an optimal solution
of (FD), and the two objectives have the same optimal values.

Proof Since x∗ is an optimal solution of (NFP) and ∇hj(x∗), j ∈ J(x∗) are linearly inde-
pendent then, by Theorem , there exist (s∗, t∗, ȳ∗) ∈ k(x∗) and (x∗,μ∗,k∗, v∗,w∗,p* = ) ∈
H(s∗, t∗, ȳ∗) such that (x∗,μ∗,k∗, v∗,w∗,p* = ) is a feasible solution of (FD) and the two ob-
jectives have the same values. Optimality of (x∗,μ∗,k∗, v∗,w∗,p* = ) for (FD) thus follows
from the weak duality theorem (Theorem ). �

Theorem  (Strict converse duality) Let x∗ and (z∗,μ∗,k∗, v∗,w∗, s∗, t∗, ȳ∗,p∗) be optimal
solutions of (NFP) and (FD), respectively, and suppose that ∇hj(x*), j ∈ J(x∗) are linearly
independent and there exist F , θ , φ, b and ρ such that

b
(
x∗, z∗)φ

[ s∗∑
i=

ti
(
f
(
x∗, ȳ∗

i
)
+ x∗TCw∗ – k∗(g(x∗, ȳ∗

i
)
– x∗TDv∗))

–
s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
+ z∗TCw∗ – k∗(g(z∗, ȳ∗

i
)
– z∗TCv∗))

–
m∑
j=

μ∗
j hj

(
z∗) + 


p∗T∇

s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
– k∗g

(
z∗, ȳ∗

i
))
p∗

+


p∗T∇

m∑
j=

μ∗
j hj

(
z∗)p∗

]
≤ 
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⇒ F
(
x∗, z∗,

s∗∑
i=

ti
(∇f

(
z∗, ȳ∗

i
)
+∇f

(
z∗, ȳ∗

i
)
p∗

+Cw∗ – k∗(∇g
(
z∗, ȳ∗

i
)
+∇g

(
z∗, ȳ∗

i
)
p∗ –Dv∗))

+
m∑
j=

(∇μjhj
(
z∗) +∇μjhj

(
z∗)p∗))

< –ρ
∥∥θ

(
x∗, z∗)∥∥. ()

Further assume that

a <  ⇒ φ(a)≤ , ()

b
(
x∗, z∗) > , ()

ρ ≥ . ()

Then z∗ = x∗, that is, z∗ is an optimal solution of (NFP).

Proof We shall assume that x∗ �= z∗ and reach a contradiction. Since x∗ and (z∗,μ∗,k∗, s∗,
t∗, ȳ∗, v∗,w∗,p* = ) are optimal solutions of (NFP) and (FD), respectively, and ∇hj(x∗),
j ∈ J(x∗) are linearly independent, therefore, from the strong duality theorem (Theorem),
it follows that

f (x∗, ȳ∗
i ) + (x∗TCx∗) 

g(x∗, ȳ∗
i ) – (x∗TDx∗) 

= k∗. ()

Thus, we have

(
f
(
x∗, ȳ∗

i
)
+

(
x∗TCx∗) 

 – k∗(g(x∗, ȳ∗
i
)
–

(
x∗TDx∗) 


)) ≤  ()

for all ȳ∗
i ∈ Y (x∗), i = , , . . . , s∗.

Now, proceeding as in Theorem , we get

s∗∑
i=

ti
(
f
(
x∗, ȳ∗

i
)
+ x∗TCw∗ – k∗(g(x∗, ȳ∗

i
)
– x∗TDv∗))

–
s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
+ z∗TCw∗ – k∗(g(z∗, ȳ∗

i
)
– z∗TDv∗))

–
m∑
j=

μ∗
j hj

(
z∗) + 


p∗T∇

s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
– k∗g

(
z∗, ȳ∗

i
))
p∗

+


p∗T∇

m∑
j=

μ∗
j hj

(
z∗)p∗ ≤ . ()
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Using () and (), it follows from () that

b
(
x∗, z∗)φ

[ s∗∑
i=

ti
(
f
(
x∗, ȳ∗

i
)
+ x∗TCw∗ – k∗(g(x∗, ȳ∗

i
)
– x∗TDv∗))

–
s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
+ z∗TCw∗ – k∗(g(z∗, ȳ∗

i
)
– z∗TCv∗))

–
m∑
j=

μ∗
j hj

(
z∗) + 


p∗T∇

s∗∑
i=

ti
(
f
(
z∗, ȳ∗

i
)
– k∗g

(
z∗, ȳ∗

i
))
p∗

+


p∗T∇

m∑
j=

μ∗
j hj

(
z∗)p∗

]
≤ ,

which along with () and () implies

F
(
x∗, z∗;

s∗∑
i=

ti
(∇f

(
z∗, ȳ∗

i
)
+∇f

(
z∗, ȳ∗

i
)
p∗

+Cw∗ – k∗(∇g
(
z∗, ȳ∗

i
)
+∇g

(
z∗, ȳ∗

i
)
p∗ –Dv∗))

+
m∑
j=

(∇μ∗
j hj

(
z∗) +∇μ∗

j hj
(
z∗)p∗)) < , ()

which contradicts () since F (x∗, z∗; ) = . �

4 Conclusion and further development
In this paper, weak, strong and strict converse duality theorems have been discussed for
nondifferentiable minimax fractional programming problems in the framework of gener-
alized convexity type assumptions. This paper has generalized the results of Ahmad [].
The question arises as to whether the results developed in this paper hold for the fol-

lowing complex nondifferentiable minimax fractional problem:

Minimize ψ(ξ ) = sup
v∈W

Re[f (ξ , v) + (zTCz)  ]
Re[g(ξ , v) – (zTDz)  ]

subject to –h(z) ∈ S, ξ ∈ Cn,

where ξ = (z, z̄), v = (w,w) for z ∈ Cn, w ∈ Cl , f (·, ·), g(·, ·) : Cn ×Cl → C are analytic with
respect to W , W is a specified compact subset in Cl , S is a polyhedral cone in Cm, and
g : Cn → Cm is analytic. Also, C,D ∈ Cn×n are positive semidefinite Hermitian matrices.
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