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Abstract
A variety of identities involving harmonic numbers and generalized harmonic
numbers have been investigated since the distant past and involved in a wide range
of diverse fields such as analysis of algorithms in computer science, various branches
of number theory, elementary particle physics and theoretical physics. Here we show
how one can obtain further interesting identities about certain finite series involving
binomial coefficients, harmonic numbers and generalized harmonic numbers by
applying the usual differential operator to a known identity.
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1 Introduction and preliminaries
The generalized harmonic numbersH (s)

n of order s are defined by (cf. []; see also [, ], [,
p.] and [, Section .])

H (s)
n :=

n∑
j=


js

(n ∈N; s ∈C), (.)

and

Hn :=H ()
n =

n∑
j=


j

(n ∈ N) (.)

are the harmonic numbers. Here N and C denote the set of positive integers and the set
of complex numbers, respectively, and we assume that

H := , H (s)
 := 

(
s ∈C \ {}) and H ()

 := .

The generalized harmonic functions H (s)
n (z) are defined by (see [, ]; see also [, ])

H (s)
n (z) :=

n∑
j=


(j + z)s

(
n ∈N; s ∈C \Z–;Z– := {–,–,–, . . .}) (.)
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so that, obviously,

H (s)
n () =H (s)

n .

Equation (.) can be written in the following form:

H (s)
n = ζ (s) – ζ (s,n + )

(�(s) > ;n ∈N
)

(.)

by recalling the well-known (easily-derivable) relationship between the Riemann zeta
function ζ (s) and the Hurwitz (or generalized) zeta function ζ (s,a) (see [, Eq. .()])

ζ (s) = ζ (s,n + ) +
n∑
k=

k–s
(
n ∈N :=N∪ {}). (.)

The polygamma functions ψ (n)(s) (n ∈N) are defined by

ψ (n)(s) :=
dn+

dzn+
log�(s) =

dn

dsn
ψ(s)

(
n ∈N; s ∈C \Z–

 := Z
– ∪ {}), (.)

where �(s) is the familiar gamma function, and the psi-function ψ is defined by

ψ(s) :=
d
ds

log�(s) and ψ ()(s) = ψ(s)
(
s ∈ C \Z–


)
.

A well-known (and potentially useful) relationship between the polygamma functions
ψ (n)(s) and the generalized zeta function ζ (s,a) is given by

ψ (n)(s) = (–)n+n!
∞∑
k=


(k + s)n+

= (–)n+n!ζ (n + , s)
(
n ∈ N; s ∈ C \Z–


)
. (.)

It is also easy to have the following expression (cf. [, Eq. .()]):

ψ (m)(s + n) –ψ (m)(s) = (–)mm!H (m+)
n (s – ) (m,n ∈N), (.)

which immediately gives H (s)
n another expression for H (s)

n as follows (cf. [, Eq. ()]):

H (m)
n =

(–)m–

(m – )!
[
ψ (m–)(n + ) –ψ (m–)()

]
(m ∈N;n ∈N). (.)

By using finite differences, Spivey [] presented many summation formulas involving
binomial coefficients, the Stirling numbers of the first and second kind and harmonic
numbers, two of which are chosen to be recalled here: [, Identity ]

n∑
k=

(
n
k

)
Hk = n

(
Hn –

n∑
k=


kk

)
(n ∈N), (.)

which was also given by Paule and Schneider [, Eq. ()] by deriving it automatically
by means of the Sigma package in [], together with the following identity [, Iden-
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tity ]:

n∑
k=

(–)k
(
n
k

)
Hk = –


n

(n ∈N). (.)

Paule and Schneider [] proved five conjectured harmonic number identities similar
to those arising in the context of supercongruences for Apéry numbers, one of which is
recalled here as follows [, Eq. ()]:

n∑
j=

( – jHj + jHn–j)
(
n
j

)

= (–)n
n∑
j=

(
n
j

)(n + j
j

)
. (.)

Greene and Knuth [, p.] recorded six commonly used identities that involve both
binomial coefficients and harmonic numbers, two of which are recalled here:

n∑
j=

Hj = (n + )Hn – n (n ∈N); (.)

n∑
j=

(
j
m

)
Hj =

(
n + 
m + 

)(
Hn+ –


m + 

)
(m,n ∈N). (.)

Alzer et al. [, Eq. (.)] proved, by using the principle ofmathematical induction, that

n∑
j=

Hj

j
=


[
(Hn) +H ()

n
]

(n ∈N). (.)

By using (.) in conjunction with the following elementary identity (see []):

Hj+ =Hj +


j + 
, (.)

we obtain

n∑
j=

Hj

j + 
=


[
(Hn+) –H ()

n+
]

(n ∈ N). (.)

Chu and De Donno [] made use of the classical hypergeometric summation theorems
to derive several striking identities for harmonic numbers other than those discovered
recently by Paule and Schneider [], one of which is recalled below [, Thereoem ].

n∑
k=

(
n +μn

k

)(
n + λn
n – k

)
Hλn+k

=
(
n + λn +μn

n

)
(Hλn+n +Hλn+μn+n –Hλn+μn+n) (λ,μ ∈N). (.)

One interesting special case of (.) is when we set μ = . We thus find that

n∑
k=

(
n
k

)(
n + λn
n – k

)
Hλn+k =

(
n + λn

n

)
(Hλn+n –Hλn+n), (.)
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which can be further specialized, with λ = , to the following form:

n∑
k=

(
n
k

)

Hk =
(
n
n

)
(Hn –Hn). (.)

Dattolli and Srivastava [] proposed several generating functions involving harmonic
numbers by making use of an interesting approach based on the umbral calculus. Subse-
quently, Cvijović [] showed the truth of the conjectured relations in [] by using simple
analytical arguments.
For a concise and beautiful description of these numbers, we refer also to Wolfram-

MathWorld’s website [].
As we have seen in the above brief eclectic review, harmonic and generalized harmonic

numbers are involved in a variety of useful identities. Of course, certain interesting prop-
erties of harmonic and generalized harmonic numbers have been studied (see, e.g., []).
Here we aim at presenting further interesting identities about certain interesting finite se-
ries associated with binomial coefficients, harmonic numbers and generalized harmonic
numbers.

2 Finite-series involving binomial coefficients, harmonic numbers and
generalized harmonic numbers

As the illustrative identities in Section , we consider certain interesting identities about
finite-series involving binomial coefficients, harmonic numbers and generalized harmonic
numbers. We begin by recalling a known formula (cf. [, p., Entry (..)]; see also
[, Eq. (.)]):

n∑
j=

(–)j
(a + )j
(b + )j

(
n
j

)[
ψ(a +  + j) –ψ(a + )

]

=
(b – a)n
(b + )n

[
ψ(b – a) –ψ(b – a + n)

]
(
n ∈N;a,b ∈C \Z–;b – a ∈ C \Z–


)
, (.)

where (α)n denotes the Pochhammer symbol defined (for α ∈C) by

(α)n :=

⎧⎨
⎩ (n = ),

α(α + ) · · · (α + n – ) (n ∈N).
(.)

Differentiating each side of (.) with respect to the variables a and b, respectively, using
(.) and considering the following easily derivable identities:

d
dα

(α)n = (α)nH ()
n (α – )

(
n ∈N;α ∈C \Z–


)

(.)

and

d
dα


(α)n

= –
H ()

n (α – )
(α)n

(
n ∈N;α ∈ C \Z–


)
, (.)

we obtain the following formulas in Theorem .
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Theorem  Each of the following identities holds true:

n∑
j=

(–)j
(a + )j
(b + )j

(
n
j

)[{
H ()

j (a)
} –H ()

j (a)
]

=
(b – a)n
(b + )n

[{
H ()

n (b – a – )
} –H ()

n (b – a – )
] (

n ∈ N;a,b ∈C \Z–) (.)

and

n∑
j=

(–)j+
(a + )j
(b + )j

(
n
j

)
H ()

j (a)H ()
j (b)

=
(b – a)n
(b + )n

[
H ()

n (b – a – ) –H ()
n (b – a – )

{
H ()

n (b – a – ) –H ()
n (b)

}]
(
n ∈N;a,b ∈C \Z–). (.)

Setting a = b –  =  in (.), (.) and (.) and using (.) and (.), we get certain
interesting finite-sum identities involving binomial coefficients and harmonic numbers,
respectively, asserted by Corollary .

Corollary  Each of the following identities holds true:

n∑
j=

(–)j+

j + 

(
n
j

)
Hj =

Hn

n + 
(n ∈N); (.)

n∑
j=

(–)j+

j + 

(
n
j

)[
H ()

j – (Hj)
]
=


n + 

[
H ()

n – (Hn)
]

(n ∈N) (.)

and

n∑
j=

(–)j+

j + 

(
n
j

)
Hj(Hj+ – ) =


n + 

[
H ()

n –
n

n + 
Hn

]
(n ∈N). (.)

Remark  In the course of presenting a closed-form evaluation of some useful series in-
volving the generalized zeta function ζ (s,a), Choi et al. [] made use of the identity (.)
without its proof. Choi and Srivastava [] proved Eq. (.) as a special case of (.) here
and presented another illustrative proof.

We will try to express a class of the following finite sums involving harmonic numbers
and binomial coefficients as given above:

n∑
j=

(–)j+

(j + )k

(
n
j

)
Hj (n ∈N;k ∈N). (.)

Here we give the answers for k =  and k =  in (.) asserted by the following lemma.
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Lemma  Each of the following identities holds true:

n∑
j=

(–)j+

(j + )

(
n
j

)
Hj =


(n + )

[
(Hn+) –H ()

n+
]

(n ∈ N) (.)

and

n∑
j=

(–)j+

(j + )

(
n
j

)
Hj =


(n + )

n∑
j=


j + 

[
(Hj+) –H ()

j+
]

(n ∈N). (.)

Proof Wewill prove only (.) by using the same method as in [, pp.-]. A sim-
ilar argument will establish (.). We first recall two basic relations for binomial coeffi-
cients:

(
n + 
j

)
=

(
n
j

)
+

(
n

j – 

)
and

(
n

j – 

)
=

j
n + 

(
n + 
j

)
. (.)

We let the left-hand side of (.) be

fn :=
n∑
j=

(–)j+

(j + )

(
n
j

)
Hj (.)

so that, using the first one of (.),

fn+ =
(–)n

(n + )
Hn+

+
n∑
j=

(–)j+

(j + )

[(
n
j

)
+

(
n

j – 

)]
Hj

=
(–)n

(n + )
Hn+ + fn +

n∑
j=

(–)j+

(j + )

(
n

j – 

)
Hj. (.)

We now see that, using the second one of (.),

n∑
j=

(–)j+

(j + )

(
n

j – 

)
Hj

=


n + 

n∑
j=

(–)j+
(
n + 
j

)
j

(j + )
Hj

=


n + 

[ n∑
j=

(–)j+

j + 

(
n + 
j

)
Hj –

n∑
j=

(–)j+

(j + )

(
n + 
j

)
Hj

]
. (.)

By using the identity in (.), we find that

n∑
j=

(–)j+

j + 

(
n + 
j

)
Hj =

 – (–)n

n + 
Hn+ (n ∈N). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/49
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We also have

n∑
j=

(–)j+

(j + )

(
n + 
j

)
Hj = fn+ –

(–)n

(n + )
Hn+ (n ∈N). (.)

Thus, substituting from (.) and (.) into (.), we obtain

n∑
j=

(–)j+

(j + )

(
n

j – 

)
Hj

=


n + 

[
 – (–)n

n + 
Hn+ – fn+ +

(–)n

(n + )
Hn+

]
(n ∈N). (.)

Finally, it follows from (.) and (.) that

(n + )fn+ – (n + )fn =
Hn+

n + 
.

Let an := (n + )fn so that we have

an+ – an =
Hn+

n + 
and a =



H =



. (.)

By telescoping this last sum (.), we obtain

an = (n + )fn =
n∑
j=

Hj

j + 
. (.)

Applying (.) to (.), we get the desired identity (.). �

Applying (.) and (.) to (.) and considering (.), we obtain two interesting iden-
tities asserted by the following theorem.

Theorem  Each of the following identities holds true:

n∑
j=

(–)j+

j + 

(
n
j

)
(Hj) =


(n + )

[
H ()

n – (Hn)
]

(n ∈N) (.)

and

n∑
j=

(–)j+

j + 

(
n
j

)
H ()

j =


(n + )
[
H ()

n – (Hn)
]

(n ∈N). (.)

Differentiating (.) and (.) with respect to a and observing the following identity:

d
dα

H (�)
j (α) = –�H (�)

j (α) (� ∈ N), (.)

we obtain further interesting identities involving binomial coefficients and generalized
harmonic functions asserted by the following theorem.

http://www.journalofinequalitiesandapplications.com/content/2013/1/49
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Theorem  Each of the following identities holds true:

n∑
j=

(–)j+
(a + )j
(b + )j

(
n
j

)[{
H ()

j (a)
} – H ()

j (a)H ()
j (a) + H ()

j (a)
]

=
(b – a)n
(b + )n

[{
H ()

n (b – a – )
} – H ()

n (b – a – )H ()
n (b – a – ) + H ()

n (b – a – )
]

(
n ∈N;a,b ∈C \Z–) (.)

and

n∑
j=

(–)j+
(a + )j
(b + )j

(
n
j

)
H ()

j (b)
[{
H ()

j (a)
} –H ()

j (a)
]

=
(b – a)n
(b + )n

[
H ()

n (b – a – ) – H ()
n (b – a – )H ()

n (b – a – )

+
({
H ()

n (b – a – )
} –H ()

n (b – a – )
){
H ()

n (b – a – ) –H ()
n (b)

}]
(
n ∈N;a,b ∈C \Z–). (.)

Setting a = b –  =  in (.) and (.), we find certain interesting identities and using
(.), respectively, assert the following corollary.

Corollary  Each of the following identities holds true:

n∑
j=

(–)j+

j + 

(
n
j

)[
(Hj) – HjH ()

j + H ()
j

]

=


n + 
[
(Hn) – HnH ()

n + H ()
n

]
(n ∈N) (.)

and

n∑
j=

(–)j+

j + 

(
n
j

)
(Hj+ – )

[
(Hj) –H ()

j
]

=


n + 

[
H ()

n – HnH ()
n +

n
n + 

{
(Hn) –H ()

n
}]

(n ∈ N). (.)

Remark  As in getting the results in Theorem , it is seen that a variety of interesting
identities involving the generalized harmonic numbers can be obtained by applying the
differential operator to the parameters of known formulas.

3 Inverse relations and a question
By using the known orthogonal relation

n∑
k=j

(–)k+j
(
n
k

)(
k
j

)
= δnj (n≥ j;n, j ∈N), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/49
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with δnj the Kronecker delta (δnn = , δnj =  if n �= j) and a manipulation of double series

n∑
k=

k∑
j=

Ak,j =
n∑
j=

n∑
k=j

Ak,j, (.)

it is easy to find the following simplest inverse relation (see [, Chapter ]):

an =
n∑

k=

(–)k
(
n
k

)
bk ⇔ bn =

n∑
k=

(–)k
(
n
k

)
ak . (.)

Applying this inverse relation to the identities in Section , we obtain many formulas
involving binomial coefficients, harmonic numbers and generalized harmonic numbers
asserted by the following corollary.

Corollary  Each of the following identities holds true:

n∑
j=

(–)j+

j + 

(
n
j

)[
H ()

j –
j

j + 
Hj

]
=
Hn(Hn+ – )

n + 
(n ∈N); (.)

n∑
j=

(–)j+

j + 

(
n
j

)[
(Hj+) –H ()

j+
]
=

Hn

(n + )
(n ∈N); (.)

n∑
j=

(–)j+

j + 

(
n
j

)[
H ()

j – (Hj)
]
=
(Hn)

n + 
(n ∈N); (.)

n∑
j=

(–)j+

j + 

(
n
j

)[
H ()

j – (Hj)
]
=
H ()

n

n + 
(n ∈ N); (.)

n∑
j=

(–)j+

j + 

(
n
j

)
(Hj+ – )

[
H ()

j – HjH ()
j +

j
j + 

{
(Hj) –H ()

j
}]

=
(Hn+ – )[(Hn) –H ()

n ]
n + 

(n ∈N). (.)

It is observed that Eqs. (.), (.) and (.) are of the following form:

n∑
j=

(–)j+
(
n
j

)
aj = an (n ∈N) and a = . (.)

By using the first one of (.), we find an identity in the following lemma.

Lemma  If Eq. (.) holds true, then we obtain the following identity:

n∑
j=

(–)j+j
(
n
j

)
aj = n(an – an–) (n ∈N). (.)

Applying Eq. (.) to Eqs. (.), (.) and (.), we get some interesting identities as-
serted by the following corollary.

http://www.journalofinequalitiesandapplications.com/content/2013/1/49
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Corollary  Each of the following identities holds true:

n∑
j=

(–)j+
j

j + 

(
n
j

)
Hj =


n + 

( –Hn–) (n ∈N); (.)

n∑
j=

(–)j+
j

j + 

(
n
j

)[
H ()

j – (Hj)
]

=


n + 
[
(Hn) –H ()

n
]
–

n
Hn– (n ∈N); (.)

n∑
j=

(–)j
j

j + 

(
n
j

)[
(Hj) – HjH ()

j + H ()
j

]

=


n + 
[
(Hn) – HnH ()

n + H ()
n

]
(n ∈N). (.)

Question We conclude this paper by posing a natural question: Under what conditions
does Eq. (.) hold true?
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