RESEARCH

Open Access

Existence of positive solutions of the Cauchy problem for a second-order differential equation

Toshiharu Kawasaki^{1*} and Masashi Toyoda²

^{*}Correspondence: toshiharu.kawasaki@nifty.ne.jp ¹College of Engineering, Nihon University, Fukushima, 963-8642, Japan Full list of author information is available at the end of the article

Abstract

In this paper we consider the equation u''(t) = f(t, u(t), u'(t)) and prove the unique solvability of the Cauchy problem u(0) = 0, $u'(0) = \lambda$ with $\lambda > 0$.

1 Introduction

In [1], Knežević-Miljanović considered the Cauchy problem

$$\begin{cases} u''(t) = P(t)t^a u(t)^{\sigma}, & t \in (0,1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases}$$
(1)

where *P* is continuous, $a, \sigma, \lambda \in \mathbb{R}$ with $\sigma < 0$ and $\lambda > 0$, and $\int_0^1 |P(t)| t^{a+\sigma} dt < \infty$. Moreover, in [2], Kawasaki and Toyoda considered the Cauchy problem

$$\begin{cases} u''(t) = f(t, u(t)), & \text{for almost every } t \in [0, 1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases}$$
(2)

where *f* is a mapping from $[0,1] \times (0,\infty)$ into \mathbb{R} and $\lambda \in \mathbb{R}$ with $\lambda > 0$. They proved the unique solvability of Cauchy problem (2) using the Banach fixed point theorem. The theorem in [2] is as follows.

Theorem Suppose that a mapping f from $[0,1] \times [0,\infty)$ into \mathbb{R} satisfies the following.

- (a) The mapping $t \mapsto f(t, u)$ is measurable for any $u \in (0, \infty)$, and the mapping $u \mapsto f(t, u)$ is continuous for almost every $t \in [0, 1]$.
- (b) $|f(t, u_1)| \ge |f(t, u_2)|$ for almost every $t \in [0, 1]$ and for any $u_1, u_2 \in [0, \infty)$ with $u_1 \le u_2$.
- (c) There exists $\alpha \in \mathbb{R}$ with $0 < \alpha < \lambda$ such that

$$\int_0^1 |f(t,\alpha t)|\,dt<\infty.$$

(d) There exists $\beta \in \mathbb{R}$ with $\beta > 0$ such that

$$\left|\frac{\partial f}{\partial u}(t,u)\right| \leq \frac{\beta |f(t,u)|}{u}$$

for almost every $t \in [0,1]$ and for any $u \in (0,\infty)$.

©2013 Kawasaki and Toyoda; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Then there exists $h \in \mathbb{R}$ with $0 < h \le 1$ such that Cauchy problem (2) has a unique solution in X, where X is a subset

$$X = \begin{cases} u & u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ and \ \alpha t \le u(t) \text{ for any } t \in [0,h] \end{cases}$$

of C[0,h], which is the class of continuous mappings from [0,h] into \mathbb{R} .

The case that $f(t, u(t)) = P(t)t^a u(t)^{\sigma}$ in the above theorem is the theorem of Knežević-Miljanović [1].

In this paper, we consider the Cauchy problem

$$\begin{cases} u''(t) = f(t, u(t), u'(t)), & \text{for almost every } t \in [0, 1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases}$$

where *f* is a mapping from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} and $\lambda \in \mathbb{R}$ with $\lambda > 0$. We prove the unique solvability of this Cauchy problem using the Banach fixed point theorem.

In Section 2, we consider the following four cases for u and v.

- (I) Decreasing for $u \inf f(t, u, v)$ (b1) and decreasing for $v \inf f(t, u, v)$ (b3).
- (II) Decreasing for $u \inf f(t, u, v)$ (b1) and increasing for $v \inf f(t, u, v)$ (b4).
- (III) Increasing for u in f(t, u, v) (b2) and decreasing for v in f(t, u, v) (b3).
- (IV) Increasing for $u \inf f(t, u, v)$ (b2) and increasing for $v \inf f(t, u, v)$ (b4).

Theorems 2.1, 2.2, 2.3 and 2.4 are the cases of (I), (II), (III) and (IV), respectively.

2 Main results

In this section, we consider the Cauchy problem

$$\begin{cases} u''(t) = f(t, u(t), u'(t)), & \text{for almost every } t \in [0, 1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases}$$
(3)

where *f* is a mapping from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} and $\lambda \in \mathbb{R}$ with $\lambda > 0$. First, we consider the case of (I).

Theorem 2.1 Let λ be a real number with $\lambda > 0$. Suppose that a mapping f from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} satisfies the following:

- (a) The mapping $t \mapsto f(t, u, v)$ is measurable for any $(u, v) \in (0, \infty) \times \mathbb{R}$, and the mapping $(u, v) \mapsto f(t, u, v)$ is continuous for almost every $t \in [0, 1]$;
- (b1) $|f(t, u_1, v)| \ge |f(t, u_2, v)|$ for almost every $t \in [0, 1]$, for any $u_1, u_2 \in (0, \infty)$ with $u_1 \le u_2$ and for any $v \in \mathbb{R}$;
- (b3) $|f(t, u, v_1)| \ge |f(t, u, v_2)|$ for almost every $t \in [0, 1]$, for any $u \in (0, \infty)$ and for any $v_1, v_2 \in \mathbb{R}$ with $v_1 \le v_2$;
- (c1) There exist $\alpha_1 \in \mathbb{R}$ with $0 < \alpha_1 < \lambda$ and $\alpha_2 \in \mathbb{R}$ with $\alpha_2 < \lambda$ such that

$$\int_0^1 \left| f(t,\alpha_1 t,\alpha_2) \right| dt < \infty;$$

(d1) There exists $\beta_1 \in \mathbb{R}$ with $\beta_1 > 0$ such that

$$\left|\frac{\partial f}{\partial u}(t,u,v)\right| \leq \frac{\beta_1|f(t,u,v)|}{u}$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$; (d2) There exists $\beta_2 \in \mathbb{R}$ with $\beta_2 > 0$ such that

$$\left|\frac{\partial f}{\partial \nu}(t, u, \nu)\right| \leq \beta_2 \left|f(t, u, \nu)\right|$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$;

(e) There exists the limit

$$\lim_{t \to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds$$

for any continuously differentiable mapping u from [0,1] into $[0,\infty)$; (f1) For α_1 and α_2 ,

$$\lim_{t\to 0+}\frac{1}{t^2}\int_0^t s \big|f(s,\alpha_1s,\alpha_2)\big|\,ds=0.$$

Then there exists $h \in \mathbb{R}$ with $0 < h \le 1$ such that Cauchy problem (3) has a unique solution in *X*, where *X* is a subset

$$X = \left\{ u \mid u \in C^{1}[0,h], u(0) = 0, u'(0) = \lambda, \\ \alpha_{1}t \leq u(t) \text{ and } \alpha_{2} \leq u'(t) \text{ for any } t \in [0,h] \\ and \text{ there exists the limit } \lim_{t \to 0^{+}} \frac{tu'(t) - u(t)}{t^{2}} \right\}$$

of $C^{1}[0,h]$, which is the class of continuously differentiable mappings from [0,h] into \mathbb{R} .

Proof It is noted that $C^{1}[0, h]$ is a Banach space by the maximum norm

$$||u|| = \max\{\max\{|u(t)| \mid t \in [0,h]\}, \max\{|u'(t)| \mid t \in [0,h]\}\}.$$

Instead of Cauchy problem (3), we consider the integral equation

$$u(t) = \lambda t + \int_0^t (t-s)f(s, u(s), u'(s)) ds.$$

By condition (c1), there exists $h_1 \in \mathbb{R}$ with $0 < h_1 \le 1$ such that

$$\int_0^{h_1} \left| f(t,\alpha_1 t,\alpha_2) \right| dt < \min \left\{ \lambda - \alpha_1, \lambda - \alpha_2, \left(\frac{\beta_1}{\alpha_1} + 2\beta_2 \right)^{-1} \right\}.$$

By condition (f1), there exists $h \in \mathbb{R}$ with $0 < h \le h_1$ such that

$$\sup_{t\in(0,h]}\frac{1}{t^2}\int_0^t s\big|f(s,\alpha_1s,\alpha_2)\big|\,ds\leq \int_0^{h_1}\big|f(t,\alpha_1t,\alpha_2)\big|\,dt.$$

Let *A* be an operator from *X* into $C^{1}[0, h]$ defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s),u'(s)) ds.$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover, we have $A(X) \subset X$. Indeed, by condition (a), $Au \in C^1[0, h], Au(0) = 0$ and

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s), u'(s)) ds\right]_{t=0} = \lambda.$$

By conditions (b1) and (b3), we obtain that

$$Au(t) = \lambda t + \int_0^t (t-s)f(s, u(s), u'(s)) ds$$

$$\geq \lambda t - t \int_0^h |f(s, u(s), u'(s))| ds$$

$$\geq \lambda t - t \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds$$

$$\geq \alpha_1 t$$

and

$$(Au)'(t) = \lambda + \int_0^t f(s, u(s), u'(s)) ds$$

$$\geq \lambda - \int_0^h |f(s, u(s), u'(s))| ds$$

$$\geq \lambda - \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds$$

$$\geq \alpha_2$$

for any $t \in [0, h]$. Moreover, by condition (e), there exists the limit

$$\lim_{t\to 0+} \frac{t(Au)'(t) - Au(t)}{t^2} = \lim_{t\to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds.$$

We will find a fixed point of *A*. Let φ be an operator from *X* into $C^1[0, h]$ defined by

$$\varphi[u](t) = \begin{cases} \frac{u(t)}{t} & \text{if } t \in (0,h], \\ \lambda & \text{if } t = 0. \end{cases}$$

Let $\varphi[X]$ be a subset defined by

$$\varphi[X] = \{\varphi[u] \mid u \in X\}.$$

Then we have

$$\varphi[X] = \left\{ \nu \mid \nu \in C^1[0,h], \nu(0) = \lambda, \\ \alpha_1 \le \nu(t) \text{ and } \alpha_2 \le \nu(t) + t\nu'(t) \text{ for any } t \in [0,h] \right\}$$

and $\varphi[X]$ is a closed subset of $C^1[0, h]$. Hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi\varphi[u]=\varphi[Au].$$

By the mean value theorem, for any $u_1, u_2 \in X$, there exist mappings ξ , η such that

$$\begin{split} f(t, u_{1}(t), u_{1}'(t)) &- f(t, u_{2}(t), u_{2}'(t)) \\ &= \frac{\partial f}{\partial u} (t, \xi(t), u_{1}'(t)) (u_{1}(t) - u_{2}(t)) + \frac{\partial f}{\partial v} (t, u_{2}(t), \eta(t)) (u_{1}'(t) - u_{2}'(t)) \\ &= \left(t \frac{\partial f}{\partial u} (t, \xi(t), u_{1}'(t)) + \frac{\partial f}{\partial v} (t, u_{2}(t), \eta(t)) \right) (\varphi[u_{1}](t) - \varphi[u_{2}](t)) \\ &+ t \frac{\partial f}{\partial v} (t, u_{2}(t), \eta(t)) (\varphi[u_{1}]'(t) - \varphi[u_{2}]'(t)), \\ \min \{ u_{1}(t), u_{2}(t) \} \leq \xi(t) \leq \max \{ u_{1}(t), u_{2}(t) \} \end{split}$$

and

$$\min\{u_1'(t), u_2'(t)\} \le \eta(t) \le \max\{u_1'(t), u_2'(t)\}$$

for almost every $t \in [0, h]$. Therefore, by conditions (b1), (b3), (d1) and (d2), we obtain that

$$\begin{split} \left| f(t, u_{1}(t), u_{1}'(t)) - f(t, u_{2}(t), u_{2}'(t)) \right| \\ &= \left| \left(t \frac{\partial f}{\partial u}(t, \xi(t), u_{1}'(t)) + \frac{\partial f}{\partial v}(t, u_{2}(t), \eta(t)) \right) (\varphi[u_{1}](t) - \varphi[u_{2}](t)) \right. \\ &+ t \frac{\partial f}{\partial v}(t, u_{2}(t), \eta(t)) (\varphi[u_{1}]'(t) - \varphi[u_{2}]'(t)) \right| \\ &\leq \left(t \left| \frac{\partial f}{\partial u}(t, \xi(t), u_{1}'(t)) \right| + \left| \frac{\partial f}{\partial v}(t, u_{2}(t), \eta(t)) \right| \right) |\varphi[u_{1}](t) - \varphi[u_{2}](t)| \\ &+ t \left| \frac{\partial f}{\partial v}(t, u_{2}(t), \eta(t)) \right| |(\varphi[u_{1}]'(t) - \varphi[u_{2}]'(t))| \\ &\leq \left(\frac{\beta_{1}}{\alpha_{1}} + \beta_{2} \right) |f(t, \alpha_{1}t, \alpha_{2})| |\varphi[u_{1}](t) - \varphi[u_{2}]'(t))| \\ &+ \beta_{2}t |f(t, \alpha_{1}t, \alpha_{2})| |(\varphi[u_{1}]'(t) - \varphi[u_{2}]'(t))| \end{split}$$

for almost every $t \in [0, h]$. Therefore we have

$$\begin{split} \left| \Phi \varphi[u_{1}](t) - \Phi \varphi[u_{2}](t) \right| \\ &= \left| \frac{1}{t} \int_{0}^{t} (t-s) (f(s, u_{1}(s), u_{1}'(s)) - f(s, u_{2}(s), u_{2}'(s))) ds \right| \\ &\leq \int_{0}^{t} \left| f(s, u_{1}(s), u_{1}'(s)) - f(s, u_{2}(s), u_{2}'(s)) \right| ds \\ &\leq \int_{0}^{t} \left[\left(\frac{\beta_{1}}{\alpha_{1}} + \beta_{2} \right) |f(s, \alpha_{1}s, \alpha_{2})| |\varphi[u_{1}](s) - \varphi[u_{2}](s) | \right] \end{split}$$

$$+ \beta_2 s |f(s, \alpha_1 s, \alpha_2)| | (\varphi[u_1]'(s) - \varphi[u_2]'(s))|] ds$$

$$\leq \left(\frac{\beta_1}{\alpha_1} + 2\beta_2\right) \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds ||\varphi[u_1] - \varphi[u_2]||$$

for any $t \in [0, h]$. Moreover, we have

$$\begin{split} \left| \left(\Phi \varphi[u_{1}] \right)'(t) - \left(\Phi \varphi[u_{2}] \right)'(t) \right| \\ &= \left| \frac{1}{t^{2}} \int_{0}^{t} s \left(f\left(s, u_{1}(s), u_{1}'(s) \right) - f\left(s, u_{2}(s), u_{2}'(s) \right) \right) ds \right| \\ &\leq \frac{1}{t^{2}} \int_{0}^{t} s \left| f\left(s, u_{1}(s), u_{1}'(s) \right) - f\left(s, u_{2}(s), u_{2}'(s) \right) \right| ds \\ &\leq \frac{1}{t^{2}} \int_{0}^{t} s \left[\left(\frac{\beta_{1}}{\alpha_{1}} + \beta_{2} \right) \left| f(s, \alpha_{1}s, \alpha_{2}) \right| \left| \varphi[u_{1}](s) - \varphi[u_{2}](s) \right| \\ &+ \beta_{2} s \left| f(s, \alpha_{1}s, \alpha_{2}) \right| \left| \left(\varphi[u_{1}]'(s) - \varphi[u_{2}]'(s) \right) \right| \right] ds \\ &\leq \left[\left(\frac{\beta_{1}}{\alpha_{1}} + \beta_{2} \right) \int_{0}^{h_{1}} \left| f(s, \alpha_{1}s, \alpha_{2}) \right| ds \\ &+ \beta_{2} \int_{0}^{h} \left| f(s, \alpha_{1}s, \alpha_{2}) \right| ds \right] \left\| \varphi[u_{1}] - \varphi[u_{2}] \right\| \end{split}$$

for any $t \in [0, h]$. Hence we obtain that

$$\begin{split} \left\| \Phi \varphi[u_1] - \Phi \varphi[u_2] \right\| \\ &\leq \left(\frac{\beta_1}{\alpha_1} + 2\beta_2 \right) \int_0^{h_1} \left| f(s, \alpha_1 s, \alpha_2) \right| ds \left\| \varphi[u_1] - \varphi[u_2] \right\|. \end{split}$$

By the Banach fixed point theorem, there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$. Then Au = u. *u* is a solution of (3).

Next, we consider the case of (II).

Theorem 2.2 Let λ be a real number with $\lambda > 0$. Suppose that a mapping f from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} satisfies the following:

- (a) The mapping $t \mapsto f(t, u, v)$ is measurable for any $(u, v) \in (0, \infty) \times \mathbb{R}$, and the mapping $(u, v) \mapsto f(t, u, v)$ is continuous for almost every $t \in [0, 1]$;
- (b1) $|f(t, u_1, v)| \ge |f(t, u_2, v)|$ for almost every $t \in [0, 1]$, for any $u_1, u_2 \in (0, \infty)$ with $u_1 \le u_2$ and for any $v \in \mathbb{R}$;
- (b4) $|f(t, u, v_1)| \le |f(t, u, v_2)|$ for almost every $t \in [0, 1]$, for any $u \in (0, \infty)$ and for any $v_1, v_2 \in \mathbb{R}$ with $v_1 \le v_2$;
- (c2) There exist $\alpha_1 \in \mathbb{R}$ with $0 < \alpha_1 < \lambda$ and $\alpha_2 \in \mathbb{R}$ with $\alpha_2 > \lambda$ such that

$$\int_0^1 \left| f(t,\alpha_1 t,\alpha_2) \right| dt < \infty;$$

(d1) There exists $\beta_1 \in \mathbb{R}$ with $\beta_1 > 0$ such that

$$\left|\frac{\partial f}{\partial u}(t,u,v)\right| \leq \frac{\beta_1 |f(t,u,v)|}{u}$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$; (d2) There exists $\beta_2 \in \mathbb{R}$ with $\beta_2 > 0$ such that

$$\left|\frac{\partial f}{\partial \nu}(t, u, \nu)\right| \leq \beta_2 \left|f(t, u, \nu)\right|$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$;

(e) There exists the limit

$$\lim_{t\to 0^+}\frac{1}{t^2}\int_0^t sf(s,u(s),u'(s))\,ds$$

for any continuously differentiable mapping u from [0,1] into $[0,\infty)$; (f1) For α_1 and α_2 ,

$$\lim_{t\to 0+}\frac{1}{t^2}\int_0^t s\big|f(s,\alpha_1s,\alpha_2)\big|\,ds=0.$$

Then there exists $h \in \mathbb{R}$ with $0 < h \le 1$ such that Cauchy problem (3) has a unique solution in *X*, where *X* is a subset

$$X = \left\{ u \mid u \in C^{1}[0,h], u(0) = 0, u'(0) = \lambda, \\ \alpha_{1}t \leq u(t) \text{ and } u'(t) \leq \alpha_{2} \text{ for any } t \in [0,h] \\ and \text{ there exists the limit } \lim_{t \to 0^{+}} \frac{tu'(t) - u(t)}{t^{2}} \right\}$$

of $C^{1}[0, h]$.

Proof By condition (c2), there exists $h_1 \in \mathbb{R}$ with $0 < h_1 \le 1$ such that

$$\int_0^{h_1} \left| f(t,\alpha_1 t,\alpha_2) \right| dt < \min \left\{ \lambda - \alpha_1, \alpha_2 - \lambda, \left(\frac{\beta_1}{\alpha_1} + 2\beta_2 \right)^{-1} \right\}.$$

By condition (f1), there exists $h \in \mathbb{R}$ with $0 < h \le h_1$ such that

$$\sup_{t\in(0,h]}\frac{1}{t^2}\int_0^t s\big|f(s,\alpha_1s,\alpha_2)\big|\,ds\leq \int_0^{h_1}\big|f(t,\alpha_1t,\alpha_2)\big|\,dt.$$

Let *A* be an operator from *X* into $C^{1}[0, h]$ defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s),u'(s)) ds.$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover, we have $A(X) \subset X$. Indeed, by condition (a), $Au \in C^1[0, h], Au(0) = 0$ and

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s), u'(s)) ds\right]_{t=0} = \lambda.$$

By conditions (b1) and (b4), we obtain that

$$Au(t) = \lambda t + \int_0^t (t-s)f(s, u(s), u'(s)) ds$$

$$\geq \lambda t - t \int_0^h |f(s, u(s), u'(s))| ds$$

$$\geq \lambda t - t \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds$$

$$\geq \alpha_1 t$$

and

$$(Au)'(t) = \lambda + \int_0^t f(s, u(s), u'(s)) ds$$

$$\leq \lambda + \int_0^h |f(s, u(s), u'(s))| ds$$

$$\leq \lambda + \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds$$

$$\leq \alpha_2$$

for any $t \in [0, h]$. Moreover, by condition (e), there exists the limit

$$\lim_{t\to 0+} \frac{t(Au)'(t) - Au(t)}{t^2} = \lim_{t\to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds.$$

We will find a fixed point of *A*. Let φ be an operator from *X* into $C^{1}[0, h]$ defined by

$$\varphi[u](t) = \begin{cases} \frac{u(t)}{t} & \text{if } t \in (0,h], \\ \lambda & \text{if } t = 0, \end{cases}$$

and

$$\varphi[X] = \left\{ \varphi[u] \mid u \in X \right\}$$
$$= \left\{ \nu \mid v \in C^1[0,h], \nu(0) = \lambda, \\ \alpha_1 \le \nu(t) \text{ and } \nu(t) + t\nu'(t) \le \alpha_2 \text{ for any } t \in [0,h] \right\}.$$

Then $\varphi[X]$ is a closed subset of $C^1[0, h]$ and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi\varphi[u] = \varphi[Au].$$

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$ and hence Au = u.

Next, we consider the case of (III).

Theorem 2.3 Let λ be a real number with $\lambda > 0$. Suppose that a mapping f from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} satisfies the following:

- (a) The mapping $t \mapsto f(t, u, v)$ is measurable for any $(u, v) \in (0, \infty) \times \mathbb{R}$, and the mapping $(u, v) \mapsto f(t, u, v)$ is continuous for almost every $t \in [0, 1]$;
- (b2) $|f(t, u_1, v)| \le |f(t, u_2, v)|$ for almost every $t \in [0, 1]$, for any $u_1, u_2 \in (0, \infty)$ with $u_1 \le u_2$ and for any $v \in \mathbb{R}$;
- (b3) $|f(t, u, v_1)| \ge |f(t, u, v_2)|$ for almost every $t \in [0, 1]$, for any $u \in (0, \infty)$ and for any $v_1, v_2 \in \mathbb{R}$ with $v_1 \le v_2$;
- (c3) There exist $\alpha_1 \in \mathbb{R}$ with $0 < \alpha_1 < \lambda$ and $\alpha_2 \in \mathbb{R}$ with $\alpha_2 < \lambda$ such that

$$\int_0^1 \left| f\left(t, (2\lambda - \alpha_1)t, \alpha_2\right) \right| dt < \infty;$$

(d1) There exists $\beta_1 \in \mathbb{R}$ with $\beta_1 > 0$ such that

$$\left|\frac{\partial f}{\partial u}(t,u,v)\right| \leq \frac{\beta_1 |f(t,u,v)|}{u}$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$; (d2) There exists $\beta_2 \in \mathbb{R}$ with $\beta_2 > 0$ such that

$$\left|\frac{\partial f}{\partial \nu}(t, u, v)\right| \leq \beta_2 |f(t, u, v)|$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$;

(e) There exists the limit

$$\lim_{t\to 0+}\frac{1}{t^2}\int_0^t sf\left(s,u(s),u'(s)\right)ds$$

for any continuously differentiable mapping u from [0,1] into $[0,\infty)$;

(f2) For α_1 and α_2 ,

$$\lim_{t\to 0+}\frac{1}{t^2}\int_0^t s\big|f\big(s,(2\lambda-\alpha_1)s,\alpha_2\big)\big|\,ds=0.$$

Then there exists $h \in \mathbb{R}$ with $0 < h \le 1$ such that Cauchy problem (3) has a unique solution in *X*, where *X* is a subset

$$X = \begin{cases} u & \in C^1[0,h], u(0) = 0, u'(0) = \lambda, \\ \alpha_1 t \le u(t) \le (2\lambda - \alpha_1)t \text{ and } \alpha_2 \le u'(t) \text{ for any } t \in [0,h] \\ and there \text{ exists the limit } \lim_{t \to 0^+} \frac{tu'(t) - u(t)}{t^2} \end{cases} \end{cases}$$

 $of C^{1}[0,h].$

Proof By condition (c3), there exists $h_1 \in \mathbb{R}$ with $0 < h_1 \le 1$ such that

$$\int_0^{h_1} \left| f\left(t, (2\lambda - \alpha_1)t, \alpha_2\right) \right| dt < \min\left\{\lambda - \alpha_1, \lambda - \alpha_2, \left(\frac{\beta_1}{\alpha_1} + 2\beta_2\right)^{-1}\right\}.$$

By condition (f2), there exists $h \in \mathbb{R}$ with $0 < h \le h_1$ such that

$$\sup_{t\in(0,h]}\frac{1}{t^2}\int_0^t s\Big|f\big(s,(2\lambda-\alpha_1)s,\alpha_2\big)\Big|\,ds\leq \int_0^{h_1}\Big|f\big(t,(2\lambda-\alpha_1)t,\alpha_2\big)\Big|\,dt.$$

Let *A* be an operator from *X* into $C^{1}[0, h]$ defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s),u'(s)) ds.$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover, $A(X) \subset X$. Indeed, by condition (a), $Au \in C^1[0, h], Au(0) = 0$,

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s), u'(s)) ds\right]_{t=0} = \lambda,$$

by conditions (b2) and (b3),

$$Au(t) = \lambda t + \int_{0}^{t} (t-s)f(s,u(s),u'(s)) ds$$

$$\geq \lambda t - t \int_{0}^{h} |f(s,u(s),u'(s))| ds$$

$$\geq \lambda t - t \int_{0}^{h} |f(s,(2\lambda - \alpha_{1})s,\alpha_{2})| ds$$

$$\geq \alpha_{1}t,$$

$$Au(t) = \lambda t + \int_{0}^{t} (t-s)f(s,u(s),u'(s)) ds$$

$$\leq \lambda t + t \int_{0}^{h} |f(s,u(s),u'(s))| ds$$

$$\leq \lambda t + t \int_{0}^{h} |f(s,(2\lambda - \alpha_{1})s,\alpha_{2})| ds$$

$$\geq \lambda - \int_{0}^{h} |f(s,u(s),u'(s))| ds$$

$$\geq \lambda - \int_{0}^{h} |f(s,u(s),u'(s))| ds$$

$$\geq \lambda - \int_{0}^{h} |f(s,(2\lambda - \alpha_{1})s,\alpha_{2})| ds$$

$$\geq \lambda - \int_{0}^{h} |f(s,(2\lambda - \alpha_{1})s,\alpha_{2})| ds$$

$$\geq \lambda - \int_{0}^{h} |f(s,(2\lambda - \alpha_{1})s,\alpha_{2})| ds$$

$$\geq \alpha_{2}$$

for any $t \in [0, h]$, and by condition (e), there exists the limit

$$\lim_{t\to 0+} \frac{t(Au)'(t) - Au(t)}{t^2} = \lim_{t\to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds.$$

We will find a fixed point of *A*. Let φ be an operator from *X* into $C^{1}[0, h]$ defined by

$$\varphi[u](t) = \begin{cases} \frac{u(t)}{t} & \text{if } t \in (0, h], \\ \lambda & \text{if } t = 0, \end{cases}$$

and

$$\varphi[X] = \left\{ \varphi[u] \mid u \in X \right\}$$
$$= \left\{ \nu \mid \nu \in C^1[0,h], \nu(0) = \lambda, \\ \alpha_1 \le \nu(t) \le 2\lambda - \alpha_1 \text{ and } \alpha_2 \le \nu(t) + t\nu'(t) \text{ for any } t \in [0,h] \right\}.$$

Then $\varphi[X]$ is a closed subset of $C^1[0, h]$, and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

 $\Phi\varphi[u] = \varphi[Au].$

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$ and hence Au = u.

Finally, we consider the case of (IV).

Theorem 2.4 Let λ be a real number with $\lambda > 0$. Suppose that a mapping f from $[0,1] \times (0,\infty) \times \mathbb{R}$ into \mathbb{R} satisfies the following:

- (a) The mapping $t \mapsto f(t, u, v)$ is measurable for any $(u, v) \in (0, \infty) \times \mathbb{R}$, and the mapping $(u, v) \mapsto f(t, u, v)$ is continuous for almost every $t \in [0, 1]$;
- (b2) $|f(t, u_1, v)| \leq |f(t, u_2, v)|$ for almost every $t \in [0, 1]$, for any $u_1, u_2 \in (0, \infty)$ with $u_1 \leq u_2$ and for any $v \in \mathbb{R}$;
- (b4) $|f(t, u, v_1)| \le |f(t, u, v_2)|$ for almost every $t \in [0, 1]$, for any $u \in (0, \infty)$ and for any $v_1, v_2 \in \mathbb{R}$ with $v_1 \le v_2$;
- (c4) *There exist* $\alpha_1 \in \mathbb{R}$ *with* $0 < \alpha_1 < \lambda$ *and* $\alpha_2 \in \mathbb{R}$ *with* $\alpha_2 > \lambda$ *such that*

$$\int_0^1 \left| f\left(t, (2\lambda - \alpha_1)t, \alpha_2\right) \right| dt < \infty;$$

(d1) There exists $\beta_1 \in \mathbb{R}$ with $\beta_1 > 0$ such that

$$\left|\frac{\partial f}{\partial u}(t,u,v)\right| \leq \frac{\beta_1|f(t,u,v)|}{u}$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$; (d2) There exists $\beta_2 \in \mathbb{R}$ with $\beta_2 > 0$ such that

$$\left|\frac{\partial f}{\partial \nu}(t, u, \nu)\right| \leq \beta_2 \left|f(t, u, \nu)\right|$$

for almost every $t \in [0,1]$, for any $u \in (0,\infty)$ and for any $v \in \mathbb{R}$;

$$\lim_{t \to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds$$

for any continuously differentiable mapping u from [0,1] into $[0,\infty)$; (f2) For α_1 and α_2 ,

$$\lim_{t\to 0+}\frac{1}{t^2}\int_0^t s\big|f\big(s,(2\lambda-\alpha_1)s,\alpha_2\big)\big|\,ds=0.$$

Then there exists $h \in \mathbb{R}$ with $0 < h \le 1$ such that Cauchy problem (3) has a unique solution in *X*, where *X* is a subset

$$X = \begin{cases} u &| u \in C^1[0,h], u(0) = 0, u'(0) = \lambda, \\ \alpha_1 t \le u(t) \le (2\lambda - \alpha_1)t \text{ and } u'(t) \le \alpha_2 \text{ for any } t \in [0,h] \\ and there exists the limit $\lim_{t \to 0^+} \frac{tu'(t) - u(t)}{t^2} \end{cases}$$$

of $C^{1}[0,h]$.

Proof By condition (c4), there exists $h_1 \in \mathbb{R}$ with $0 < h_1 \le 1$ such that

$$\int_0^{h_1} \left| f\left(t, (2\lambda - \alpha_1)t, \alpha_2\right) \right| dt < \min\left\{\lambda - \alpha_1, \alpha_2 - \lambda, \left(\frac{\beta_1}{\alpha_1} + 2\beta_2\right)^{-1}\right\}.$$

By condition (f2), there exists $h \in \mathbb{R}$ with $0 < h \le h_1$ such that

$$\sup_{t\in(0,h]}\frac{1}{t^2}\int_0^t s\Big|f\big(s,(2\lambda-\alpha_1)s,\alpha_2\big)\Big|\,ds\leq \int_0^{h_1}\Big|f\big(t,(2\lambda-\alpha_1)t,\alpha_2\big)\Big|\,dt.$$

Let *A* be an operator from *X* into $C^{1}[0, h]$ defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s),u'(s)) ds.$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover, $A(X) \subset X$. Indeed, by condition (a), $Au \in C^1[0, h], Au(0) = 0$,

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s), u'(s)) ds\right]_{t=0} = \lambda,$$

by conditions (b2) and (b4),

$$Au(t) = \lambda t + \int_0^t (t-s)f(s, u(s), u'(s)) ds$$

$$\geq \lambda t - t \int_0^h |f(s, u(s), u'(s))| ds$$

$$\geq \lambda t - t \int_0^h |f(s, (2\lambda - \alpha_1)s, \alpha_2)| ds$$

 $\geq \alpha_1 t$,

$$Au(t) = \lambda t + \int_0^t (t - s) f(s, u(s), u'(s)) ds$$

$$\leq \lambda t + t \int_0^h |f(s, u(s), u'(s))| ds$$

$$\leq \lambda t + t \int_0^h |f(s, (2\lambda - \alpha_1)s, \alpha_2)| ds$$

$$\leq (2\lambda - \alpha_1)t,$$

$$(Au)'(t) = \lambda + \int_0^t f(s, u(s), u'(s)) ds$$

$$\leq \lambda + \int_0^h |f(s, u(s), u'(s))| ds$$

$$\leq \lambda + \int_0^h |f(s, \alpha_1 s, \alpha_2)| ds$$

$$\leq \alpha_2$$

for any $t \in [0, h]$, and by condition (e), there exists the limit

$$\lim_{t \to 0+} \frac{t(Au)'(t) - Au(t)}{t^2} = \lim_{t \to 0+} \frac{1}{t^2} \int_0^t sf(s, u(s), u'(s)) \, ds.$$

We will find a fixed point of *A*. Let φ be an operator from *X* into $C^{1}[0, h]$ defined by

$$\varphi[u](t) = \begin{cases} \frac{u(t)}{t} & \text{if } t \in (0,h], \\ \lambda & \text{if } t = 0, \end{cases}$$

and

$$\begin{split} \varphi[X] &= \left\{ \varphi[u] \mid u \in X \right\} \\ &= \left\{ \nu \mid v \in C^1[0,h], \nu(0) = \lambda, \\ \alpha_1 \leq \nu(t) \leq 2\lambda - \alpha_1 \text{ and } \nu(t) + t\nu'(t) \leq \alpha_2 \text{ for any } t \in [0,h] \right\}. \end{split}$$

Then $\varphi[X]$ is a closed subset of $C^1[0, h]$ and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi\varphi[u] = \varphi[Au].$$

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$ and hence Au = u.

Competing interests The authors declare that they have no competing interests.

Authors' contributions

TK wrote first draft. MT wrote final manuscript. All authors read and approved the final manuscript.

Author details

¹College of Engineering, Nihon University, Fukushima, 963-8642, Japan. ²Marine Faculty of Engineering, Tamagawa University, Tokyo, 194-8610, Japan.

Received: 1 June 2013 Accepted: 20 September 2013 Published: 07 Nov 2013

References

- 1. Knežević-Miljanović, J: On the Cauchy problem for an Emden-Fowler equation. Differ. Equ. 45(2), 267-270 (2009)
- Kawasaki, T, Toyoda, M: Existence of positive solution for the Cauchy problem for an ordinary differential equation. In: Li, S, Wang, X, Okazaki, Y, Kawabe, J, Murofushi, T, Guan, L (eds.) Nonlinear Mathematics for Uncertainly and Its Applications. Advances in Intelligent and Soft Computing, vol. 100, pp. 435-441. Springer, Berlin (2011)

10.1186/1029-242X-2013-465

Cite this article as: Kawasaki and Toyoda: Existence of positive solutions of the Cauchy problem for a second-order differential equation. *Journal of Inequalities and Applications* 2013, 2013:465

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com