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1 Introduction
LetA denote the class of analytic functions f in the open unit diskU = {z ∈C : |z| < }with
the usual normalization f () = f ′() –  = . Let S *(α) and K(α) denote the subclasses of
A consisting of starlike and convex functions of order α ( ≤ α < ) and let S *() = S * and
K() = K. If f and g are analytic in U, we say that f is subordinate to g in U, written as
f ≺ g or f (z) ≺ g(z), if there exists a Schwarz function w such that f (z) = g(w(z)) (z ∈U).
A function f ∈A is said to be prestarlike of order α in U if

z
( – z)(–α) ∗ f (z) ∈ S *(α) ( ≤ α < ),

where f ∗ g denotes the familiar Hadamard product (or convolution) of two analytic func-
tions f and g inU.We denote this class byR(α) (see, for details, []).Wenote thatR() =K
andR(/) = S *(/).
LetN be the class of all functions h which are analytic and univalent in U and for which

h(U) is convex with h() = .
LetM denote the class of functions of the form

f (z) =

z
+

∞∑
k=

akzk

which are analytic in the punctured open unit disk D =U \ {}.
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For any n ∈ N = {, , , . . .}, we denote the multiplier transformations Dn
λ of functions

f ∈M by

Dn
λf (z) =


z
+

∞∑
k=

(
k +  + l

λ

)n

akzk (λ > ; z ∈ D).

Obviously, we have

Ds
λ

(
Dt

λf (z)
)
=Ds+t

λ f (z)

for all nonnegative integers s and t. The operatorsDn
λ andDn

 are themultiplier transforma-
tions introduced and studied by Sarangi andUraligaddi [] andUralegaddi and Somanatha
[, ], respectively. Analogous to Dn

λ, we here define a new multiplier transformation Inλ,μ
as follows.
Let fn(z) = /z +

∑∞
k=((k +  + λ)/λ)nzk , n ∈N, and let f †n,μ be such that

fn(z) ∗ f †n,μ(z) =

z
+

∞∑
k=

(μ)k+
()k+

zk (μ > ; z ∈D),

where (ν)k is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
gamma function) by

(ν)k :=
�(ν + k)

�(ν)
=

⎧⎨⎩ if k =  and ν ∈ C \ {},
ν(ν + ) · · · (ν + k – ) if k ∈N := {, , . . .} and ν ∈ C.

Then

Inλ,μf (z) = f †n,μ(z) ∗ f (z). (.)

We note that I,f (z) = zf ′(z) + f (z) and I,f (z) = f (z). It is easily verified from (.) that

z
(
In+λ,μ f (z)

)′ = λInλ,μf (z) – (λ + )In+λ,μ f (z) (.)

and

z
(
Inλ,μf (z)

)′ = μInλ,μ+f (z) – (μ + )Inλ,μf (z). (.)

The definition (.) of the multiplier transformation Inλ,μ is motivated essentially by the
Choi-Saigo-Srivastava operator [] for analytic functions, which includes the Noor inte-
gral operator studied by Liu [] (also, see [–]).
We also define the function φ(a, c; z) by

φ(a, c; z) :=

z
+

∞∑
k=

(a)k+
(c)k+

zk
(
z ∈U;a ∈R; c ∈R \Z–

;Z
–
 := {–,–, . . .}). (.)

By using the operator Inλ,μ, we introduce the following class of analytic functions for
γ > , λ > , s ∈R, μ >  and h ∈N :

Mn
λ,μ(γ ;h) :=

{
f ∈M : ( – γ )zInλ,μf (z) + γ z

(
Inλ,μf (z)

)′ ≺ h(z)
}
.
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In the present paper, we derive some inclusion relations, convolution properties and
integral preserving properties for the classMn

λ,μ(γ ;h).
The following lemmas will be required in our investigation.

Lemma . [, Lemma , p.] Let g be analytic in U and h be analytic and convex
univalent in U with h() = g(). If

g(z) +

γ
zg ′(z) ≺ h(z)

(
Re{γ } ≥ ;γ 	= 

)
, (.)

then

g(z) ≺ h̃(z) = γ z–γ

∫ z


tγ–h(t)dt ≺ h(z)

and h̃ is the best dominant of (.).

Lemma . [, Theorem ., p.] Let f ∈ S *(α) and g ∈ R(α). Then for any analytic
function F in U,

g ∗ (fF)
g ∗ f

(U) ⊂ co
(
F(U)

)
,

where co(F(U)) denotes the convex hull of F(U).

Lemma . [, Lemma , p.] Let  < a≤ c. Then

Re
{
zφ(a, c; z)

}
>



(z ∈U),

where φ is given by (.).

2 Inclusion relations
Theorem . If  ≤ γ < γ, then

Mn
λ,μ(γ;h) ⊂Mn

λ,μ(γ;h).

Proof Let

g(z) = zInλ,μf (z)
(
f ∈Mn

λ,μ(γ;h) : z ∈U
)
. (.)

Then the function g is analytic in U with g() = . Differentiating both sides of (.), we
have

( + γ)zInλ,μf (z) + γz
(
Inλ,μf (z)

)′ = g(z) + γzg ′(z) ≺ h(z). (.)

Hence an application of Lemma . with μ = /γ yields

g(z) ≺ h(z). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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Since  ≤ γ/γ <  and h is convex univalent inU , it follows from (.), (.) and (.) that

( + γ)zInλ,μf (z) + γz
(
Inλ,μf (z)

)′

=
γ

γ

[
( – γ)zInλ,μf (z) + γz

(
Inλ,μf (z)

)′] +(
 –

γ

γ

)
g(z)

≺ h(z).

Therefore f ∈Mn
λ,μ(γ;h), and so we complete the proof of Theorem .. �

Theorem . If  < μ ≤ μ, then

Mn
λ,μ (γ ;h) ⊂Mn

λ,μ (γ ;h).

Proof Let f ∈Mn
λ,μ

(γ ;h). Then

( + γ )zInλ,μ f (z) + γ z
(
Inλ,μ f (z)

)′

= zφ(μ,μ; z) ∗
[
( + γ )zInλ,μ f (z) + γ z

(
Inλ,μ f (z)

)′]. (.)

In view of Lemma ., we see that the function zφ(μ,μ; z) has the Herglotz representa-
tion

zφ(μ,μ; z) =
∫

|x|=
dμ(x)
 – xz

(z ∈ U), (.)

where μ(x) is a probability measure defined on the unit circle |x| <  and∫
|x|=

dμ(x) = .

Since h is convex univalent in U, it follows from (.) and (.) that

( + γ )zInλ,μ f (z) + γ z
(
Inλ,μ f (z)

)′ =
∫

|x|=
h(xz)dμ(x) ≺ h(z),

which completes the proof of Theorem .. �

Theorem . If μ > , then

Mn
λ,μ+(γ ; h̃)⊂Mn

λ,μ(γ ;h),

where

h̃(z) = μz–μ

∫ z


tμ–h(t)dt ≺ h(z).

Proof Let

g(z) = ( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′ (f ∈M; z ∈U). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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Then from (.) and (.), we have

z–g(z) = γμInλ,μ+f (z) + ( – γμ)Inλ,μf (z). (.)

Differentiating both sides of (.) and using (.), we obtain

z–
(
zg ′(z) + g(z)

)
= γμz

(
Inλ,μ+f (z)

)
+ ( – γμ)

(
μInλ,μ+f (z) – (μ + )Inλ,μf (z)

)
. (.)

By a simple calculation with (.) and (.), we get

g(z) +
zg ′(z)

μ
= ( + γ )

Inλ,μ+f (z)
z

+ γ
(
Inλ,μ+f (z)

)′. (.)

If f ∈Mn
λ,μ+(γ ;h), then it follows from (.) that

g(z) +
zg ′(z)

μ
≺ h(z) (μ > ).

Hence an application of Lemma . yields

g(z) ≺ h̃(z) = μz–μ

∫ z


tμ–h(t)dt ≺ h(z),

which shows that

f ∈Mn
λ,μ+(γ ; h̃)⊂Mn

λ,μ(γ ;h). �

Theorem . If s ∈R and λ > , then

Mn
λ,μ(γ ; h̃)⊂Mn+

λ,μ (γ ;h),

where

h̃(z) = λz–λ

∫ z


tλ–h(t)dt ≺ h(z).

Proof By using the same techniques as in the proof of Theorem . and (.), we have
Theorem . and so we omit the detailed proof involved. �

Theorem . Let γ > , β >  and f ∈Mn
λ,μ(γ ;βh +  – β). If β ≤ β, where

β =



(
 –


γ

∫ 



u

γ –

 + u
du

)–

, (.)

then f ∈Mn
λ,μ(;h). The bound β is sharp for the function

h(z) =


 – z
(z ∈ U).

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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Proof Let

g(z) = zInλ,μf (z)
(
f ∈Mn

λ,μ(γ ;βh +  – β);γ > ;β > 
)
. (.)

Then we have

g(z) + γ zg ′(z) = ( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′

≺ βh(z) +  – β .

Hence an application of Lemma . yields

g(z) ≺ β

γ
z–


γ

∫ z


t

γ –h(t)dt +  – β = (h ∗ ψ)(z), (.)

where

ψ(z) =
β

γ
z–


γ

∫ z



t

γ –

 – t
dt +  – β . (.)

If  < β ≤ β, where β is given by (.), then from (.), we have

Re
{
ψ(z)

}
=

β

γ

∫ 


u


γ –Re

{


 – uz
du

}
+  – β

>
β

γ

∫ 



u

γ –

 + u
du +  – β

≥ 

.

By using the Herglotz representation for ψ , it follows from (.) and (.) that

zInλ,μf (z) ≺ (h ∗ ψ)(z) ≺ h(z)

since h is convex univalent in U. This shows that f ∈Mn
λ,μ(;h).

For h(z) = /( – z) and f ∈M defined by

zInλ,μf (z) =
β

γ
z–


γ

∫ z



t

γ –

 – t
dt +  – β ,

it is easy to verify that

( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′ = βh(z) +  – β .

Thus f ∈Mn
λ,μ(γ ;βh +  – β). Furthermore, for β > β, we have

Re
{
zInλ,μf (z)

} → β

γ

∫ 



u

γ –

 + u
du +  – β <




(z → –),

which implies that f /∈ Mn
λ,μ(;h). Hence the bound β cannot be increased when h(z) =

/( – z) (z ∈U). �
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3 Convolution properties
Theorem . If f ∈Mn

λ,μ(γ ;h) and

Re
{
zg(z)

}
>



(g ∈M; z ∈U),

then

f ∗ g ∈Mn
λ,μ(γ ;h).

Proof Let f ∈Mn
λ,μ(γ ;h) and g ∈M. Then we have

( + γ )zInλ,μ(f ∗ g)(z) + γ z
(
Inλ,μ(f ∗ g)(z)

)′ = zg(z) ∗ ψ(z),

where

ψ(z) = ( + γ )z
Inλ,μf (z)

+
γ z

(
Inλ,μf (z)

)′ ≺ h(z).

The remaining part of the proof of Theorem . is similar to that of Theorem ., and so
we omit the details involved. �

Corollary . Let f ∈Mn
λ,μ(γ ;h) be given by (.). Then the function

σm(z) =
∫ 


tSm(tz)dt (z ∈U),

where

Sm(z) =

z
+

m–∑
n=

anzn–
(
m ∈N \ {}; z ∈U

)
,

is also in the classMn
λ,μ(γ ;h).

Proof We have

σm(z) =

z
+

m–∑
n=

an
n – 

zn+ = (f ∗ gm)(z)
(
m ∈N \ {}), (.)

where

f (z) =

z
+

∞∑
n=

anzn– ∈Mn
λ,μ(γ ;h)

and

gm(z) =

z
+

m–∑
n=

zn

n – 
∈M,

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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while, it is known [] that

Re
{
zgm(z)

}
= Re

{
 +

m–∑
n=

zn

n + 

}
>



(
m ∈ N \ {}; z ∈U

)
. (.)

In view of (.) and (.), an application of Theorem . leads to σm ∈Mn
λ,μ(γ ;h). �

Theorem . If f ∈Mn
λ,μ(γ ;h) and

zg(z) ∈ R(α) (g ∈M; z ∈U),

then

(f ∗ g) ∈Mn
λ,μ(γ ;h).

Proof By using a similar method as in the proof of Theorem ., we have

( + γ )zInλ,μ(f ∗ g)(z) + γ z
(
Inλ,μ(f ∗ g)(z)

)′ =
zg(z) ∗ (zψ(z))

zg(z) ∗ z
(z ∈U), (.)

where

ψ(z) = ( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′ ≺ h(z).

Since h is convex univalent in U, it follows from (.) and Lemma . that Theorem .
holds true. �

If we take α =  and α = / in Theorem ., we have the following corollary.

Corollary . If f ∈Mn
λ,μ(γ ;h) and g ∈M satisfies one of the following conditions:

(i) zg(z) is convex univalent in U

or
(ii) zg(z) ∈ S*(  ),

then (f ∗ g) ∈Mn
λ,μ(γ ;h).

4 Integral operators
Theorem . If f ∈Mn

λ,μ(γ ;h), then the function F defined by

F(z) =
c – 
zc

∫ z


tc–f (t)dt

(
Re{c} > 

)
(.)

is in the classMn
λ,μ(γ ; h̃), where

h̃(z) = (c – )z–(c–)
∫ z


tch(t)dt ≺ h(z).

Proof Let f ∈Mn
λ,μ(γ ;h). Then from (.), we obtain

(c – )f (z) = zF ′(z) + cF(z). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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Define the function G by

z–G(z) = ( + γ )Inλ,μF(z) + γ z
(
Inλ,μF(z)

)′ (z ∈D). (.)

Differentiating both sides of (.) with respect to z, we get

zG′(z) –G(z) = ( + γ )zInλ,μ
(
zF ′(z)

)
+ γ z

(
Inλ,μ

(
zF ′(z)

))′. (.)

Furthermore, it follows from (.), (.) and (.) that

( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′

= ( + γ )zInλ,μ

(
zF ′(z) + cF(z)

c – 

)
+ γ z

(
Inλ,μ

(
zF ′(z) + cF(z)

c – 

))′

=
c

c – 
G(z) +


c – 

(
zG′(z) –G(z)

)
=G(z) +


c – 

zG′(z). (.)

Since f ∈Mn
λ,μ(γ ;h), from (.), we have

G(z) +


c – 
zG′(z) ≺ h(z)

(
Re{c} > 

)
,

and so an application of Lemma . yields

G(z) ≺ h̃(z) =
c – 
zc–

∫ z


tch(t)dt ≺ h(z).

Therefore we conclude that

F ∈Mn
λ,μ(γ ; h̃)⊂Mn

λ,μ(γ ;h). �

Theorem . If f ∈M and F are defined as in Theorem ., if

( – α)zInλ,μF(z) + αzInλ,μf (z) ≺ h(z) (α > ), (.)

then F ∈Mn
λ,μ(; h̃), where

h̃(z) =
c – 
α

z–
α
c–

∫ z


t
c–
α –h(t) ≺ h(z)

(
Re{c} > 

)
.

Proof Let

G(z) = zInλ,μF(z) (z ∈D). (.)

Then G is analytic in U with G() =  and

zG′(z) = z
(
Inλ,μF(z)

)′ +G(z). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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It follows from (.), (.), (.) and (.) that

( – α)zInλ,μF(z) + αzInλ,μf (z)

= ( – α)z
Inλ,μF(z)

+
α

c – 
[
czInλ,μF(z) + z

(
Inλ,μF(z)

)′]
=G(z) +

α

c – 
zG′(z) ≺ h(z)

(
Re{c} > ;α > 

)
.

Therefore, by Lemma ., we conclude that Theorem . holds true as stated. �

Theorem . Let F ∈Mn
λ,μ(γ ;h). If the function f is defined by

F(z) =
c – 
zc

∫ z


tc–f (t)dt (c > ), (.)

then

σ f (σ z) ∈Mn
λ,μ(γ ;h),

where

σ = σ (c) =
√
 + (c – ) – 

c – 
. (.)

The bound σ is sharp for the function

h(z) = β + ( – β)
 + z
 – z

(β 	= ; z ∈U). (.)

Proof We note that for F ∈M,

F(z) = F(z) ∗ 
z( – z)

and zF ′(z) = F(z) ∗
(


z( – z)

–


z( – z)

)
.

Then from (.), we have

f (z) =
cF(z) + zF ′(z)

c – 
= (F ∗ g)(z) (c > ; z ∈D), (.)

where

g(z) =


c – 

(
(c – )


z( – z)

+


z( – z)

)
∈M. (.)

Next, we show that

Re
{
zg(z)

}
>



(|z| < σ
)
, (.)

where σ = σ (c) is given by (.). Letting


 – z

= Reiθ
(|z| = r < ;R > 

)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/46
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we see that

cos θ =
 + R( – r)

R
and R≥ 

 + r
. (.)

Then for (.) and (.), we have

Re
{
zg(z)

}
=


c – 

[
(c – )R cos θ + R( cos θ – 

)]
=

R

c – 
[
c
(
 – r

)
+ R( – r

) – 
]
+ 

≥ R

c – 
[
c –  – r – (c – )r

]
+ .

This evidently gives (.), which is equivalent to

Re
{
σ zg(σ z)

}
>



(z ∈U). (.)

Let F ∈Mn
λ,μ(γ ;h). Then, by using (.) and (.), an application of Theorem . yields

σ f (σ z) = F(z) ∗ σ g(σ z) ∈Mn
λ,μ(γ ;h).

For h given by (.), we consider the function F ∈M defined by

( + γ )zInλ,μF(z) + γ z
(
Inλ,μF(z)

)′ = β + ( – β)
 + z
 – z

(β 	= ; z ∈U). (.)

Then from (.), (.) and (.), we find that

( + γ )zInλ,μf (z) + γ z
(
Inλ,μf (z)

)′

= β + ( – β)
 + z
 – z

+
z

c – 

(
β + ( – β)

 + z
 – z

)′

= β +
( – β)(c –  + z – (c – )z)

(c – )( – z)

= β (z = –σ ).

Therefore we conclude that the bound σ = σ (c) cannot be increased for each c (c > ). �
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