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Abstract
Very recently, some authors discovered that some fixed point results in the context of
a G-metric space can be derived from the fixed point results in the context of a
quasi-metric space and hence the usual metric space. In this article, we investigate
some fixed point results in the framework of a G-metric space via�-distance that
cannot be obtained by the usual fixed point results in the literature. We also add an
application to illustrate our results.
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1 Introduction and preliminaries
Very recently, Jleli and Samet [] and Samet et al. [] proved that some fixed point results
in the setting of G-metric spaces, introduced by Sims and Mustafa [], are consequences
of thewell-known fixed point theorem in the context of the usualmetric space. Indeed, au-
thors in [, ] noticed thatG(x, y, y) = q(x, y) is a quasi-metric and obtained that the results
are just a characterization of existence results in the framework of a quasi-metric. On the
other hand, a G-metric was introduced as a generalization of the (usual) metric. Basically,
G-metrics claim the geometry of three points instead of two points. Consequently, Jleli
and Samet [] and Samet et al. [] concluded that if the expression in the fixed point the-
orem can be reduced to two points, then it can be written as a consequence of the related
existence result in the literature.
Recently, Saadati et al. [] introduced the concept of�-distance on a completeG-metric

space as a generalized notion of ω-distance due to Kada et al. []. In these papers, the
authors investigate the existence/uniqueness of a fixed point of certain operators in this
setting. In this paper, we revise some published papers (see, e.g., [, ]) and improve the
statements in a way that cannot be manipulated by the techniques used in [, ] (see also
[–]).
We first recall some necessary definitions and basic results on the topics in the literature.

Definition  ([]) Let X be a non-empty set. A function G : X ×X ×X → [,∞) is called
a G-metric if the following conditions are satisfied:

(i) G(x, y, z) =  if x = y = z (coincidence),
(ii) G(x,x, y) >  for all x, y ∈ X , where x �= y,
(iii) G(x,x, z)≤G(x, y, z) for all x, y, z ∈ X , with z �= y,
(iv) G(x, y, z) =G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),
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(v) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
A G-metric is said to be symmetric if G(x, y, y) =G(y,x,x) for all x, y ∈ X.

Definition  ([]) Suppose that (X,G) is a G-metric space.

() A sequence {xn} in X is said to be G-Cauchy sequence if, for each ε > , there exists
a positive integer n such that for all n,m, l ≥ n, G(xn,xm,xl) < ε.

() A sequence {xn} in X is said to be G-convergent to a point x ∈ X if, for each ε > ,
there exists a positive integer n such that for all m,n≥ n, G(xm,xn,x) < ε.

Definition  ([]) Let (X,G) be a G-metric space. Then a function � : X × X × X −→
[,∞) is called an �-distance on X if the following conditions are satisfied:
(a) �(x, y, z) ≤ �(x,a,a) +�(a, y, z) for all x, y, z,a ∈ X ,
(b) �(x, y, ·),�(x, ·, y) : X → [,∞) are lower semi-continuous for any x, y ∈ X ,
(c) for each ε > , there exists δ >  such that �(x,a,a)≤ δ and �(a, y, z) ≤ δ imply

G(x, y, z) ≤ ε.

Example  ([]) Suppose that (X,d) is a metric space. Let G : X −→ [,∞) be defined as
follows:

G(x, y, z) =max
{
d(x, y),d(y, z),d(x, z)

}

for all x, y, z ∈ X. Then one can easily show that � =G is an �-distance on X.

Example  ([]) Let X =R and (X,G) be a G-metric, where

G(x, y, z) =


(|x – y| + |y – z| + |x – z|)

for all x, y, z ∈ X. If we define � :R −→ [,∞) as follows:

�(x, y, z) =


(|z – x| + |x – y|)

for all x, y, z ∈ X, then it is an �-distance on R.

We refer, e.g., to [, ] for more details and examples on the topic.

Lemma  [] Suppose that (X,G) is a G-metric space and � is an �-distance on X. Let
{xn}, {yn} be sequences in X and {αn}, {βn} be sequences in [,∞) converging to zero and
x, y, z,a ∈ X. Then
(a) if �(y,xn,xn) ≤ αn and �(xn, y, z) ≤ βn for n ∈N, then G(y, y, z) < ε, and hence y = z;
(b) if �(yn,xn,xn) ≤ αn and �(xn, ym, z) ≤ βn for m > n, then G(yn, ym, z) → , and hence

yn → z;
(c) if �(xn,xm,xl)≤ αn for any l,m,n ∈N with n≤m ≤ l, then {xn} is a G-Cauchy

sequence;
(d) if �(xn,a,a)≤ αn for any n ∈N, then {xn} is a G-Cauchy sequence.

Definition  ([]) Suppose that (X,G) is a G-metric space and � is an �-distance on X.
(X,G) is called �-bounded if there is a constant C >  with �(x, y, z) ≤ C for all x, y, z ∈ X.

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Gholizadeh and Karapınar Journal of Inequalities and Applications #CITATION Page 3 of 15
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

Definition  Let (X,≤) be a partially ordered set. A self-mapping T : X → X is said to be
non-decreasing if, for x, y ∈ X,

x ≤ y �⇒ T(x)≤ T(y).

The tripled (X,G,≤) is called a partially ordered G-metric space if (X,≤) is a partially
ordered set endowed with a G-metric on X; see also [, ].

2 Fixed point theorems on partially ordered G-metric spaces
We start this section with the following classes of mappings:

� =
{
φ|φ : [,∞) → [,∞) continuous, non-decreasing

}
and


 =
{
ψ |ψ : [,∞)→ [,∞) continuous, non-decreasing

}

with φ–({}) =ψ–({}) = {}.

Definition  Let (X,≤) be a partially ordered space. Suppose that there exists aG-metric
on X such that (X,G) is a complete G-metric space. A self-mapping T : X → X is said to
be a generalized weak-contraction mapping if it satisfies the following condition:

ψ
(
�

(
Tx,Tx,Ty

)) ≤ ψ
(
�(x,Tx, y)

)
– φ

(
�(x,Tx, y)

)
for all x, y ∈ X, with x ≤ y,

where ψ ∈ 
 and φ ∈ �.

Theorem  Let (X,G,≤) be a partially ordered complete G-metric space, and let� be an
�-distance on X. Suppose that a non-decreasing self-mapping T : X → X is a generalized
weak-contraction mapping, that is,

ψ
(
�

(
Tx,Tx,Ty

)) ≤ ψ
(
�(x,Tx, y)

)
– φ

(
�(x,Tx, y)

)
for all x, y ∈ X, with x ≤ Tx,

with ψ ∈ 
 and φ ∈ �. Suppose also that inf{�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x≤ Tx} >
 for every y ∈ X with y �= Ty. If there exists x ∈ X with x ≤ Tx, then T has a unique fixed
point, say u ∈ X.Moreover, �(u,u,u) = .

Proof If x = Tx, then the proof is finished. Suppose that x �= Tx. Since x ≤ Tx and T
is non-decreasing, we obtain

x ≤ Tx ≤ Tx ≤ · · · ≤ Tn+x ≤ · · · .

Now, if for some n ∈N, �(Tnx,Tn+x,Tn+x) = , then

ψ
(
�

(
Tn+x,Tn+x,Tn+x

)) ≤ ψ
(
�

(
Tnx,Tn+x,Tn+x

))
– φ

(
�

(
Tnx,Tn+x,Tn+x

))
,

then �(Tn+x,Tn+x,Tn+x) = . Due to [(a), Definition ], we have �(Tnx,Tn+x,
Tn+x) = . On the other hand, by [(c), Definition ], we easily derive thatG(Tnx,Tn+x,
Tn+x) = , which completes the proof.
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Consequently, throughout the proof, we suppose that�(Tnx,Tn+x,Tn+x) >  for all
n ∈N. Hence, we have

ψ
(
�

(
Tnx,Tn+x,Tn+x

)) ≤ ψ
(
�

(
Tn–x,Tnx,Tnx

))
– φ

(
�

(
Tn–x,Tnx,Tnx

))
, (.)

which yields that

ψ
(
�

(
Tnx,Tn+x,Tn+x

)) ≤ ψ
(
�

(
Tn–x,Tnx,Tnx

))
.

As a result, we conclude that {�(Tnx,Tn+x,Tn+x)} is non-increasing. Thus, there ex-
ists r ≥  such that

lim
n→∞�

(
Tnx,Tn+x,Tn+x

)
= r.

We shall show that r = . Suppose, on the contrary, that r > . Then we have φ(r) > .
Letting n → ∞ on (.), we obtain

ψ(r)≤ ψ(r) – φ(r),

a contraction. Hence, we have

lim
n→∞�

(
Tnx,Tn+x,Tn+x

)
= . (.)

Recursively, we obtain that

lim
n→∞�

(
Tnx,Tn+x,Tn+tx

)
=  (.)

for every t ∈N.
Let l ≥m ≥ n withm = n+ k and l =m+ t (k, t ∈N). By the triangle inequality, we derive

that

�
(
Tnx,Tmx,Tlx

) ≤ �
(
Tnx,Tn+x,Tn+x

)
+�

(
Tn+x,Tmx,Tlx

)
≤ �

(
Tnx,Tn+x,Tn+x

)
+�

(
Tn+x,Tn+x,Tn+x

)
+ · · · +�

(
Tm–x,Tmx,Tlx

)
.

Letting n → ∞ in the inequality above, by keeping the limits (.) and (.), we obtain

lim
n,m,l→∞

�
(
Tnx,Tmx,Tlx

)
= .

Therefore, {Tnx} is a G-Cauchy sequence. Since X is G-complete, {Tnx} converges to a
point u ∈ X. Now, for ε >  and by the lower semi-continuity of �,

�
(
Tnx,Tmx,u

) ≤ lim inf
p→∞ �

(
Tnx,Tmx,Tpx

) ≤ ε, m ≥ n,
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and

�
(
Tnx,u,Tlx

) ≤ lim inf
p→∞ �

(
Tnx,Tpx,Tlx

) ≤ ε, l ≥ n.

Assume that u �= Tu. Since Tnx ≤ Tn+x,

 < inf
{
�

(
Tnx,u,Tnx

)
+�

(
Tnx,u,Tn+x

)
+�

(
Tnx,Tn+x,u

)
: n ∈N

} ≤ ε,

a contraction. Hence, we have u = Tu.
We shall show that u is the unique fixed point of T . Suppose, on the contrary, that v is

another fixed point of T . So, we have

ψ
(
�(u,u, v)

)
= ψ

(
�

(
Tu,Tu,Tv

))
≤ ψ

(
�(u,Tu, v)

)
– φ

(
�(u,Tu, v)

)
= ψ

(
�(u,u, v)

)
– φ

(
�(u,u, v)

)
< ψ

(
�(u,u, v)

)
,

a contraction. Thus, the fixed point u is unique. Now, since u = Tu, we have

ψ
(
�(u,u,u)

)
= ψ

(
�

(
Tu,Tu,Tu

))
≤ ψ

(
�(u,Tu,u)

)
– φ

(
�(u,Tu,u)

)
= ψ

(
�(u,u,u)

)
– φ

(
�(u,u,u)

)
.

So, �(u,u,u) = . �

Definition  Let (X,≤) be a partially ordered space. Suppose that there exists aG-metric
on X such that (X,G) is a complete G-metric space. A self-mapping T : X → X is said to
be a weak-contraction mapping if it satisfies the following condition:

�
(
Tx,Tx,Ty

) ≤ �(x,Tx, y) – φ
(
�(x,Tx, y)

)
for all x, y ∈ X, with x ≤ y,

where φ ∈ �.

Corollary  Let (X,G,≤) be a partially ordered complete G-metric space, and let � be
an �-distance on X. Suppose that a non-decreasing self-mapping T : X → X is a weak-
contraction mapping, that is,

�
(
Tx,Tx,Ty

) ≤ �(x,Tx, y) – φ
(
�(x,Tx, y)

)
for all x, y ∈ X, with x≤ Tx,

where φ ∈ �. Suppose also that inf{�(x, y,x)+�(x, y,Tx)+�(x,Tx, y) : x≤ Tx} >  for every
y ∈ X with y �= Ty. If there exists x ∈ X with x ≤ Tx, then T has a unique fixed point, say
u ∈ X.Moreover, �(u,u,u) = .

If we take φ(t) = kt, where k ∈ [, ), we derive Theorem. [] as the following corollary.
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Corollary  Let (X,G,≤) be a partially ordered complete G-metric space, and let � be
an �-distance on X. Suppose that there exists k ∈ [, ) such that

�
(
Tx,Tx,Ty

) ≤ k�(x,Tx, y) for all x, y ∈ X, with x ≤ Tx.

Suppose also that inf{�(x, y,x) + �(x, y,Tx) + �(x,Tx, y) : x ≤ Tx} >  for every y ∈ X with
y �= Ty. If there exists x ∈ X with x ≤ Tx, then T has a unique fixed point, say u ∈ X.
Moreover, �(u,u,u) = .

Definition  Let (X,≤) be a partially ordered space. Suppose that there exists aG-metric
on X such that (X,G) is a complete G-metric space. A self-mapping T : X → X is said to
be a Ćirić-type contraction mapping if it satisfies that there exists ≤ k <  such that

�
(
Tx,Tx,Ty

) ≤ kM(x,x, y),

where

M(x,x, y) =max

{
�(x,Tx,Tx),�(y,Ty,Ty),



�(x,Ty,Ty)

}

for all x, y ∈ X with x≤ y.

Theorem  Let (X,G,≤) be a partially ordered complete G-metric space, and let� be an
�-distance on X . Suppose that a non-decreasing self-mapping T : X −→ X is a Ćirić-type
contraction mapping.

(i) For every x ∈ X and y ∈ X with y �= T(y),
inf{�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x ≤ T(x)} > ,

(ii) There exists x ∈ X such that x ≤ T(x),
then T has a fixed point u in X and �(u,u,u) = .

Proof By assumption (ii), there exists x ∈ X such that x ≤ T(x). We fix x ∈ X such that
x = T(x). Since T is a non-decreasing mapping, Tx ≤ Tx. There exists x ∈ X such that
Tx = x. Recursively, we construct the sequence {xn} in the following way:

xn+ = Txn ≤ Txn+ = xn+ for all n ≥ .

Since T is a Ćirić-type contraction mapping, by replacing x = xn and y = xn+, we get that

�(xn+,xn+,xn+) = �(Txn,Txn+,Txn+) ≤ kM(xn,xn,xn+), (.)

where

M(xn,xn,xn+) = max

{
�(xn,Txn,Txn),�(xn+,Txn+,Txn+),



�(xn,Txn+,Txn+)

}

= max

{
�(xn,xn+,xn+),�(xn+,xn+,xn+),
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�(xn,xn+,xn+)

}

≤ max

{
�(xn,xn+,xn+),�(xn+,xn+,xn+),



[
�(xn,xn+,xn+) +�(xn+,xn+,xn+)

]}

= max
{
�(xn,xn+,xn+),�(xn+,xn+,xn+)

}
.

Notice that if M(xn,xn,xn+) ≤ �(xn+,xn+,xn+), then (.) yields a contradiction since
k < .
Thus,M(xn,xn,xn+) ≤ �(xn,xn+,xn+) and inequality (.) and k <  turn into

�(xn+,xn+,xn+) ≤ k�(xn,xn+,xn+). (.)

Upon the discussion above, we conclude that the sequence {�(xn,xn+,xn+)} is non-
increasing and bounded below. Therefore, there exists r ≥  such that

lim
n→∞�(xn,xn+,xn+) = r.

We shall show that r = . By a standard calculation, using inequality (.) and keeping
k <  in mind, we obtain limn→∞ �(xn,xn+,xn+) = . We claim that the sequence {xn} is
G-Cauchy. Let l ≥m ≥ n withm = n + k and l =m+ t (k, t ∈N). By the triangle inequality,
we derive that

�(xn,xm,xl) ≤ �(xn,xn+,xn+) +�(xn+,xm,xl)

≤ �(xn,xn+,xn+) +�(xn+,xn+,xn+) + · · · +�(xm–,xm,xl). (.)

On the other hand, we have

�(xm–,xm,xm+t) ≤ kM(xm–,xm–,xm+t–)

= kmax

{
�(xm–,xm–,xm–),�(xm+t–,xm+t ,xm+t),



�(xm–,xm+t ,xm+t)

}

≤ kmax

{
�(xm–,xm–,xm–),�(xm+t–,xm+t ,xm+t),



[
�(xm–,xm–,xm–) +�(xm–,xm,xm)

+ · · · +�(xm+t–,xm+t ,xm+t)
]}

. (.)

By combining expressions (.) and (.), we find that

�(xn,xm,xl)

≤ �(xn,xn+,xn+) +�(xn+,xn+,xn+) + · · · +�(xm–,xm–,xm–)
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+ kmax

{
�(xm–,xm–,xm–),�(xm+t–,xm+t ,xm+t),



[
�(xm–,xm–,xm–)

+�(xm–,xm,xm) + · · · +�(xm+t–,xm+t ,xm+t)
]}

. (.)

Taking n→ ∞ in (.), we conclude that

lim
n,m,l→∞

�(xn,xm,xl) = ,

and hence {xn} is a G-Cauchy sequence due to expression (c) of Lemma . Since X is G-
complete, {xn} converges to a point u ∈ X. Thus, for ε >  and by the lower semi-continuity
of �, we have

�(xn,xm,u) ≤ lim inf
p→∞ �(xn,xm,xp) ≤ ε, m≥ n,

and

�(xn,u,xl) ≤ lim inf
p→∞ �(xn,xp,xl) ≤ ε, l ≥ n.

Assume that u �= Tu. Since xn+ ≤ xn+,

 < inf
{
�(xn+,u,xn+) +�(xn+,u,xn+) +�(xn+,xn+,u) : n ∈N

} ≤ ε

for every ε > , that is a contraction. Therefore, we have u = Tu and �(u,u,u) = . �

Definition  Let (X,≤) be a partially ordered space and f , g : X → X. We say that g is an
f -monotone mapping if

x, y ∈ X, f (x)≤ f (y) �⇒ g(x)≤ g(y).

Theorem  Let (X,G,≤) be a partially ordered complete G-metric space, and let� be an
�-distance on X such that X is �-bounded. Let f : X −→ X and g : f (X)−→ X commute, f
be non-decreasing and g be an f -monotone mapping such that:
(a) gf (X) ⊆ f (X);
(b) �(gfx, gy, gx) ≤ kM(x,x, y), where

M(x,x, y) =max{�(f x, fy, fgx),�(fy, fy, gy),�(f x, f x, fgx)} for all x, y ∈ X with
f (x) ≤ f (y) and  ≤ k < ;

(c) for every x ∈ X and z ∈ X with f z �= gfz,

inf
{
�(x, z,x) +�(x,x, z) +�

(
f x, gx, gfx

)
: f x ≤ gfx

}
> ;

(d) there exists x ∈ f (X) such that f (x) ≤ g(x);
then f and g have a unique common fixed point u in X and �(u,u,u) = .

Proof Let x ∈ f (X) such that f (x) ≤ g(x). By part (a), we can choose x ∈ f (X) such
that f (x) = g(x). Again from part (a), we can choose x ∈ f (X) such that f (x) = g(x).

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Gholizadeh and Karapınar Journal of Inequalities and Applications #CITATION Page 9 of 15
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

Continuing this process, we can construct sequences {xn} in f (X) and {zn} in f (X) such
that

yn = gxn = fxn+, (.)

and

zn = gyn– = gfxn = fgxn = fyn. (.)

Since f (x) ≤ g(x) and f (x) = g(x), we have f (x)≤ f (x). Then by Definition , g(x) ≤
g(x). Continuing, we obtain

gxn ≤ gxn+, ∀n≥ . (.)

So, by (.) and (.), for all t ≥ , fxn ≤ fxn+t . Now, for all s≥ ,

�(zn, zn+s, zn+) = �
(
gfxn, gxn+s–, gxn

)
≤ kmax

{
�

(
f xn, fyn+s–, fgxn

)
,�(fyn+s–, fyn+s–, gyn+s–),

�
(
f xn, f xn, fgxn

)}
= kmax

{
�(zn–, zn+s–, zn),�(zn+s–, zn+s–, zn+s),

�(zn–, zn–, zn)
}
.

Then, for s = ,

�(zn, zn, zn+) ≤ k�(zn–, zn–, zn).

For s = ,

�(zn, zn+, zn+) ≤ k+max
{
�(zn–, zn, zn),�(zn–, zn–, zn)

}
.

For s = ,

�(zn, zn+, zn+) ≤ k+max
{
�(zn–, zn+, zn),�(zn–, zn–, zn)

}

and

�(zn–, zn–, zn) ≤ kmax
{
�(zn–, zn–, zn–),�(zn–, zn–, zn–),�(zn–, zn–, zn–)

}
= k�(zn–, zn–, zn–)
...

≤ kn–�(z, z, z).

Therefore, for all n≥  and s≥ ,

�(zn, zn+s, zn+) ≤ kn+smax
{
�(zn–, zn+s–, zn),�(z, z, z)

}
. (.)
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Notice that if �(zn, zn+s, zn+) ≤ kn+s�(z, z, z), so for all s ≥ , limn→∞ �(zn, zn+s, zn+) =
. If �(zn, zn+s, zn+) ≤ kn+s�(zn–, zn+s–, zn), so {�(zn–, zn+s–, zn)} is non-increasing and
bounded below. Therefore, there exists r ≥  such that

lim
n→∞�(zn–, zn+s–, zn) = r.

We shall show that r = . By a standard calculation, using inequality (.) and keeping k <
 in mind, we obtain limn→∞ �(zn–, zn+s–, zn) = . Now, for any l ≥ m ≥ n with m = n + k
and l =m + t (k, t ∈N), we have

�(zn, zm, zl) ≤ �(zn, zn+, zn+) +�(zn+, zm, zl)

≤ �(zn, zn+, zn+) +�(zn+, zn+, zn+) + · · · +�(zm–, zm, zl)

≤ �(zn, zn+, zn+) +�(zn+, zn+, zn+) + · · · +�(zm–, zm, zm)

+�(zm, zm+, zm+) + · · · +�(zm+t–, zm, zm+t).

So,

lim
n,m,l→∞

�(zn, zm, zl) = ,

and consequently, by Part () of Lemma , {zn} is a G-Cauchy sequence. Since X is G-
complete, {zn} converges to a point z ∈ X. Thus, for ε >  and by the lower semi-continuity
of �, we have

�(zn, zm, z) ≤ lim inf
p→∞ �(zn, zm, zp) ≤ ε, m ≥ n,

and

�(zn, z, zl) ≤ lim inf
p→∞ �(zn, zp, zl) ≤ ε, l ≥ n.

Assume that f z �= gfz. Since f is non-decreasing, we obtain

zn = f xn+ = f (fxn+) ≤ f (fxn+) = gfxn+ = zn+,

then zn ≤ zn+. Also, for all n≥ ,

�
(
f zn, gzn, gfzn

)
= �

(
gfzn–, gzn, gzn–

)
≤ kmax

{
�

(
f zn–, fzn, fgzn–

)
,�(fzn, fzn, gzn),

�
(
f zn–, f zn–, fgzn–

)}
= kmax

{
�

(
gfzn–, gzn–, gzn–

)
,�(fzn, fzn, gzn),

�
(
gfzn–, gfzn–, gzn–

)}
≤ kmax

{
�

(
f zn–, fzn–, fgzn–

)
,�(fzn–, fzn–, gzn–),

�
(
f zn–, f zn–, fgzn–

)
,�(fzn, fzn, gzn),
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�
(
f zn–, f zn–, fgzn–

)
,�

(
f zn–, f zn–, gfzn–

)
,

�
(
f zn–, f zn–, fgzn–

)}
= kmax

{
�

(
f zn–, fzn–, fgzn–

)
,�(fzn–, fzn–, gzn–),

�
(
f zn–, f zn–, fgzn–

)
,�(fzn, fzn, gzn)

}
...

≤ kn+max
{
�

(
f z, gz, gfz

)
,�

(
f z, f z, fgz

)
,

�(fzi, fzi, gzi), ≤ i ≤ n
}

≤ kn+C,

where C = max{�(f z, gz, gfz),�(f z, f z, fgz),�(fzi, fzi, gzi),  ≤ i ≤ n}, and conse-
quently limn→∞ �(f zn, gzn, gfzn) = . Therefore,

 < inf
{
�(zn, z, zn) +�(zn, zn, z) +�

(
f zn, gzn, gfzn

)
: n ∈N

} ≤ ε

for every ε > , that is a contraction. So, we have f z = gfz. Then, by (b),

�
(
gf z, g(gfz), gfz

) ≤ kmax
{
�

(
f fz, f (gfz), fg(fz)

)
,�

(
f (gfz), f (gfz), g(gfz)

)
,

�
(
f (fz), f (fz), fg(fz)

)}
.

So, �(gf z, g(gfz), gfz) = . Since X is �-bounded, �(gf z, g(gfz), gfz) =  <M. Similarly,
�(gf z, gfz, gfz) ≤ k�(f z, f z, f z) <M. By part (c) of Definition , G(gf z, gfz, gfz) = .
Then gfz = gfz, which implies that gfz is a fixed point for g . Now,

f (gfz) = gf z = gfz = gfz.

Then u = gfz is a common fixed point of f and g .
Uniqueness. Assume that there exists v ∈ X such that fv = gv = v. Hence, we have

�(v, v, v)≤ k�(v, v, v),

and so �(v, v, v) =�(u,u,u) = . Also, �(v,u, v) = . Then, by Part (c) of Definition , u = v
and �(u,u,u) = . �

The following corollary is a generalization of Theorem . [].
Denote by � the set of all functions λ : [, +∞) → [, +∞) satisfying the following hy-

potheses:
(i) λ is a Lebesgue-integrable mapping on each compact subset of [, +∞),
(ii) for every ε > , we have

∫ ε

 λ(s)ds > ,
(iii) ‖λ‖ < , where ‖λ‖ denotes the norm of λ.

Now, we have the following corollary.

Corollary  Let (X,G,≤) be a partially ordered complete G-metric space, let � be an �-
distance on X, and let T : X → X be a non-decreasing self-mapping. Suppose that ψ ∈ 
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and φ ∈ � such that

∫ ψ(�(Tx,Tx,Ty))


λ(s)ds≤

∫ ψ(�(x,Tx,y))


λ(s)ds –

∫ φ(�(x,Tx,y))


λ(s)ds, (.)

for all x ≤ Tx, y ∈ X, where λ ∈ �. Also, for every x ∈ X,

inf
{
�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x≤ Tx

}
> 

for every y ∈ X with y �= Ty. If there exists x ∈ X with x ≤ Tx, then T has a unique fixed
point.

Proof Define γ : [, +∞) → [, +∞) by γ (t) =
∫ t
 λ(s)ds, then from inequality (.), we

have

γ
(
ψ

(
�

(
Tx,Tx,Ty

))) ≤ γ
(
ψ

(
�(x,Tx, y)

))
– γ

(
φ
(
�(x,Tx, y)

))
,

which can be written as

ψ
(
�

(
Tx,Tx,Ty

)) ≤ ψ
(
�(x,Tx, y)

)
– φ

(
�(x,Tx, y)

)
,

where ψ = γ ◦ ψ and φ = γ ◦ φ. Since the functions ψ and φ satisfy the properties of ψ
and φ, by Theorem , T has a unique fixed point. �

Corollary  Let (X,G,≤) be a partially ordered complete G-metric space, let � be an
�-distance on X, and let T : X → X be a non-decreasing self-mapping. Suppose that there
exists  ≤ k <  such that

∫ ψ(�(Tx,Tx,Ty))


kλ(s)ds≤

∫ M(x,x,y)


λ(s)ds (.)

for all x ≤ Tx, y ∈ X, where

M(x,x, y) =max

{
�(x,Tx,Tx),�(y,Ty,Ty),



�(x,Ty,Ty)

}

and λ ∈ �. Also, for every x ∈ X,

inf
{
�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x≤ Tx

}
> 

for every y ∈ X with y �= Ty. If there exists x ∈ X with x ≤ Tx, then T has a unique fixed
point.

3 Application
In this section, we give an existence theorem for a solution of the following integral equa-
tions:

x(t) =
∫ 


K

(
t, s,x(s)

)
ds + g(t), t ∈ [, ]. (.)
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Let X = C([, ]) be the set of all continuous functions defined on [, ]. Define G : X ×
X ×X →R by

G(x, y, z) = ‖x – y‖ + ‖y – z‖ + ‖z – x‖,

where ‖x‖ = sup{|x(t)| : t ∈ [, ]}. Then (X,G) is a complete G-metric space. Let � = G.
Then � is an �-distance on X. Define an ordered relation ≤ on X by

x ≤ y iff x(t)≤ y(t), ∀t ∈ [, ].

Then (X,≤) is a partially ordered set. Now, we prove the following result.

Theorem  Suppose the following hypotheses hold:
() K : [, ]× [, ]×R

+ →R
+ and g : [, ] →R are continuous mappings,

() K is non-decreasing in its first coordinate and g is non-decreasing,
() There exists a continuous function G : [, ]× [, ]→ [, +∞) such that

∣∣K (t, s,u) –K (t, s, v)
∣∣ ≤G(t, s)|u – v|

for every comparable u, v ∈R
+ and s, t ∈ [, ] with supt∈[,]

∫ 
 G(t, s)ds≤ 

 ,
() There exist continuous, non-decreasing functions φ,ψ : [,∞)→ (,∞) with

ψ–({}) = φ–({}) = {} and ψ(r) ≤ ψ(r) – φ(r) for all r ∈ [,∞).
Then the integral equation has a solution in C([, ]).

Proof Define Tx(t) =
∫ 
 K (t, s,x(s))ds + g(t). By hypothesis (), we have that T is non-

decreasing.
Now, if

inf
{
�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x≤ Tx

}
= 

for every y ∈ X with y �= Ty, then for each n ∈ N, there exists xn ∈ C([, ]) with xn ≤ Txn
such that

�(xn, y,xn) +�(xn, y,Txn) +�(xn,Txn, y) ≤ 
n
.

Then we have

�(xn, y,Txn) = sup
t∈[,]

|xn – y| + sup
t∈[,]

|y – Txn| + sup
t∈[,]

|Txn – xn| ≤ 
n
.

Thus,

lim
n→∞xn(t) = y(t), lim

n→∞Txn(t) = y(t).

By the continuity of K , we have

y(t) = lim
n→∞Txn(t) =

∫ 


K

(
t, s, lim

n→∞xn(s)
)
ds + g(t)

=
∫ 


K

(
t, s, y(s)

)
ds + g(t) = Ty(t),
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which is a contradiction. Therefore,

inf
{
�(x, y,x) +�(x, y,Tx) +�(x,Tx, y) : x≤ Tx

}
> .

Now, for x, y ∈ X with x ≤ Tx, we have

ψ
(
�

(
Tx,Tx,Ty

))
= ψ

(
sup
t∈[,]

∣∣Tx(t) – Tx(t)
∣∣ + sup

t∈[,]

∣∣Tx(t) – Ty(t)
∣∣

+ sup
t∈[,]

∣∣Ty(t) – Tx(t)
∣∣)

≤ ψ

(
sup
t∈[,]

∫ 



∣∣K(
t, s,x(s)

)
–K

(
t, s,Tx(s)

)∣∣ds

+ sup
t∈[,]

∫ 



∣∣K(
t, s,Tx(s)

)
–K

(
t, s, y(s)

)∣∣ds

+ sup
t∈[,]

∫ 



∣∣K(
t, s, y(s)

)
–K

(
t, s,x(s)

)∣∣ds
)

≤ ψ

(
sup
t∈[,]

(∫ 


G(t, s)

∣∣x(s) – Tx(s)
∣∣ds

)

+ sup
t∈[,]

(∫ 


G(t, s)

∣∣Tx(s) – y(s)
∣∣ds

)

+ sup
t∈[,]

(∫ 


G(t, s)

∣∣y(s) – x(s)
∣∣ds

))

≤ ψ

(
sup
t∈[,]

(∣∣x(t) – Tx(t)
∣∣) sup

t∈[,]

∫ 


G(t, s)ds

+ sup
t∈[,]

(∣∣Tx(t) – y(t)
∣∣) sup

t∈[,]

∫ 


G(t, s)ds

+ sup
t∈[,]

(∣∣y(t) – x(t)
∣∣) sup

t∈[,]

∫ 


G(t, s)ds

)

≤ ψ

(



sup
t∈[,]

(∣∣x(t) – Tx(t)
∣∣) + 


sup
t∈[,]

(∣∣Tx(t) – y(t)
∣∣)

+



sup
t∈[,]

(∣∣y(t) – x(t)
∣∣))

≤ ψ

(


�(x,Tx, y)

)
≤ ψ

(
�(x,Tx, y)

)
– φ

(
�(x,Tx, y)

)
.

Thus, by Theorem , there exists a solution u ∈ C[, ] of integral equation (.). �
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