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Abstract
The notion of μ-smooth point of an Lp(Rn)-function f is introduced in terms of some
‘maximal function.’ Then the connection between the order of μ-smoothness of the
function f and the rate of convergence of the Gauss-Weierstrass means to f , when ε
tends to 0, is obtained.
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1 Introduction and formulations of main results
Let � ∈ C(Rn)∩L(Rn) and �() = . The �-means of the integral

∫
Rn f (x)dx are defined

as [, p.]

Mε,�(f ) =
∫
Rn

�(εx)f (x)dx (ε > ).

If limε→+ Mε,�(f ) = l, then it is said that the (divergent) integral
∫
Rn f (x)dx is summable

to l. It is possible to obtain various summability methods by choosing a suitable function
�. For example, by letting�(x) = e–|x|,�(x) = e–|x| or for δ > ,�(x) =

{ ( – |x|)δ ; |x| ≤ 
; |x| > 

}
, the

classical Abel, Gauss-Weierstrass and Bochner-Riesz means and corresponding summa-
bility methods are obtained. One of the important problems in classical harmonic analysis
is to construct an (unknown) function f by means of its Fourier transform F(f ) defined as

F(f )(x) =
∫
Rn

f (t)e–π ix·t dt.

However, F(f ) needs not be integrable for some f ∈ Lp(Rn), and hence the formula

f (x) =
∫
Rn

F(f )(t)eπ ix·t dt

becomes incorrect. To overcome this difficulty, onemay apply suitable summability meth-
ods (see, e.g., [–]).
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Whenever a function � is radial, it is well known that [, p.] for the �-means of the
convergent or divergent integral

∫
Rn F(f )(t)eπ ix·t dt, the following equality holds:

∫
Rn

F(f )(x)eπ ix·t�(εx)dx =
∫
Rn

f (x)ϕε(t – x)dx, (.)

where ϕε(x) = (/ε)nϕε(x/ε) and ϕ(x) = F(�).
In particular, putting the function e–|x| instead of �(x) in (.), the following formula

for the Gauss-Weierstrass means of the integral
∫
Rn F(f )(t)eπ ix·t dt

S(x, ε) =
∫
Rn

f (t)ϕε(x – t)dt (ε > ) (.)

is obtained. Here, the function ϕε is defined as

ϕε(x)≡W (x, ε) = (πε)–(n/)e–|x|/ε , (.)

and called the Gauss-Weierstrass kernel.
One of the well-known and basic results for the Gauss-Weierstrass means is the follow-

ing ([, p.], [, p.]).

Proposition . Let f ∈ Lp(Rn) ( ≤ p < ∞), and let the Gauss-Weierstrass means of f be
defined as in (.). Then
(a) limε→ ‖S(x, ε) – f ‖Lp = ;
(b) limε→ S(x, ε) = f (x) at each x belonging to the Lebesgue set of f ;
(c) supε> |S(x, ε)| ≤ c(Mf )(x), where (Mf )(x) is the Hardy-Littlewood maximal function.

Various aspects of the Gauss-Weierstrass and Abel-Poisson type summability of the
multiple Fourier series and integrals have been studied in Stein and Weiss [], Golubov
[, ] and Gorodetskii []; see also Weisz [] and [] and references therein.
The aim of the paper is to investigate the error of approximation of f (x) by its Gauss-

Weierstrass means S(x, ε) as ε →  at the so-called μ-smoothness point of f . Note that
some problems of the Bochner-Riesz summability of Fourier transformof f ∈ Lp(Rn) at the
Dini-like points was studied in []. Also, the rate of convergence of theGauss-Weierstrass
means of relevant Fourier series at some kind of smoothness points was studied in [].

Definition . Letμ(r) be a positive function on (,∞), and assume that limr→+ μ(r) = .
If ψ(t,x), defined on R

n ×R
n, is measurable, we define its μ-maximal function by

(Mμψ)(x) = sup
r>


μ(r)rn

∫
|t|<r

∣∣ψ(t,x)
∣∣dt. (.)

Definition . Let, for a constant ρ < , a function μ(r) be a continuous and positive
function on the interval (,ρ), and assume that limr→+ μ(r) = μ() = . We say that a
function f ∈ Lloc(Rn) is μ-smooth of order μ(r) at x ∈R

n if

Dμ(x) = sup
<r<


rnμ(r)

∫
|t|<r

∣∣f (x – t) – f (x)
∣∣dt < ∞. (.)

The points x ∈R
n, for which (.) holds, are called μ-smoothness points of f .
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Remark . Simple characterization of a μ-smoothness point is not known. However,
most of the classes of ‘smooth’ functions in a classical sense have the μ-smoothness prop-
erty. For example, if the modulus of continuity of f

wf (r) = sup
|x|≤r

∥∥f (· – x) – f (·)∥∥∞

satisfies the inequality wf (r)≤ cμ(r) for r → , then every point x ∈R
n is a μ-smoothness

point of f , as can easily be seen from (.). In particular, if f satisfies the local Lipschitz
(Hölder) condition

∣∣f (x – t) – f (x)
∣∣ ≤ c|t|α ,  < α ≤ ,

then x is a μ-smoothness point of f , provided μ(r) = rα .

From now on, we will assume that the function μ(r) is continued as a constant from
[,ρ] to [ρ,∞), that is, μ(r) = μ(ρ), r ≥ ρ .
Now, we state the main results of the paper.

Theorem . Let f ∈ Lp(Rn),  < p < ∞, be μ-smooth at x ∈ R
n. Then the following esti-

mate holds:

∣∣S(x, ε) – f (x)
∣∣ ≤ c

∫ ∞


rn+e–r

/μ(εr)dr + cε–n/e–/ε
(
ε → +

)
, (.)

where c and c are constants independent of ε.

Corollary . Let f ∈ Lp(Rn),  ≤ p < ∞, have theμ-smoothness property at x, and letμ(r)
be a modulus of continuity (see [, p.]) on [,ρ] and continued as a constant to [ρ,∞),
i.e., μ(r) = μ(ρ), r ≥ ρ ( < ρ < ). Then, under the conditions of Theorem ., we have

∣∣S(x, ε) – f (x)
∣∣ ≤ cμ(ε) (ε → ). (.)

Corollary . Let α >  and μ(r) = ( 
ln 

r
)α , then

∣∣S(x, ε) – f (x)
∣∣ ≤ c

(


ln 
ε

)α

(ε → ). (.)

Corollary . Let α >  and –∞ < β < ∞ be fixed parameters. If we take μ(r) = rα| ln r|β
for  < r ≤ ρ <  and μ(r) = μ(ρ) for ρ < r < ∞, then under the conditions of Theorem .,

∣∣S(x, ε) – f (x)
∣∣ ≤ cεα| ln ε|β (ε → ). (.)

In particular, for β =  in (.), we obtain |S(x, ε) – f (x)| ≤ cεα as ε → .

The following lemma plays a crucial role in the proof of the main results.
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Lemma A (cf. [, Lemma A]) Suppose that ϕ is differentiable on (,∞), and that the fol-
lowing limits exist:

lim
r→∞ rnμ(r)ϕ(r) =  and lim

r→+
rnμ(r)ϕ(r) = . (.)

Let ψ(t,x) be measurable on R
n ×R

n and (Mμψ)(x) < ∞, then

∫
Rn

∣∣ψ(t,x)ϕ
(|t|)∣∣dt ≤ (Mμψ)(x)

∫ ∞


rnμ(r)

∣∣ϕ′(r)
∣∣dr, (.)

where (Mμψ)(x) is a μ-maximal function defined by (.) and ϕ′ is a derivative of ϕ.

We need also the following lemmas on the well-known properties of the Gauss-
Weierstrass kernel and the upper incomplete gamma function.

Lemma . [, p.] The Gauss-Weierstrass kernel,W (t, ε) = (πε)–(n/)e–|t|/ε , has the fol-
lowing property:

∫
Rn

W (t, ε)dt =  (for all ε > ). (.)

Lemma . [, p.] The upper incomplete gamma function, defined as

�(s, τ ) =
∫ ∞

τ

us–e–u du (s > , τ > ),

has the following asymptotic property:

�(s, τ ) =O()τ s–e–τ as τ → ∞. (.)

2 Proof of themain results

Proof of Lemma A Changing variables to polar coordinates t → (r, θ ),  < r < ∞, θ ∈ Sn–

(Sn– is the unite sphere of Rn), the left side of (.) becomes

I(x) =
∫
Rn

∣∣ψ(t,x)ϕ
(|t|)∣∣dt

=
∫ ∞


rn–

[∫
Sn–

∣∣ψ(rθ ,x)ϕ(r)
∣∣dσ (θ )

]
dr

=
∫ ∞


rn–

∣∣ϕ(r)∣∣[∫
Sn–

∣∣ψ(rθ ,x)
∣∣dσ (θ )

]
dr.

Now, denoting

λ(t) =
∫
Sn–

∣∣ψ(tθ ,x)
∣∣dσ (θ ), ≤ t < ∞, (.)

�(r) =
∫ r


λ(t)tn– dt,  ≤ r ≤ ∞, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/428
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we get

I(x) =
∫ ∞


rn–

∣∣ϕ(r)∣∣λ(r)dr = ∫ ∞



∣∣ϕ(r)∣∣d�(r)

=
∣∣ϕ(r)∣∣�(r)|∞ –

∫ ∞


�(r) sgnϕ(r)ϕ′(r)dr.

Using (.) and considering the inequality

�(r) =
∫ r


λ(t)tn– =

∫
|t|≤r

∣∣ψ(t,x)
∣∣dx ≤ rnμ(r)(Mμψ)(x), (.)

we have

∣∣ϕ(r)∣∣�(r)|∞ = .

Thus,

I(x) = –
∫ ∞


�(r) sgnϕ(r)ϕ′(r)dr

≤
∫ ∞


�(r)

∣∣ϕ′(r)
∣∣dr (.)≤ (Mμψ)(x)

∫ ∞


rnμ(r)

∣∣ϕ′(r)
∣∣dr.

That completes the proof. �

Proof of Theorem . Let us fix x, a μ-smoothness point of f , and consider the difference

∣∣S(x, ε) – f (x)
∣∣ = ∣∣∣∣

∫
Rn

[
f (x – t) – f (x)

]
W (t, ε)dt

∣∣∣∣
≤

∫
|t|≤

∣∣f (x – t) – f (x)
∣∣W (t, ε)dt +

∫
|t|>

∣∣f (x – t) – f (x)
∣∣W (t, ε)dt

= A(ε) +A(ε). (.)

In order to estimate A(ε), we let

ψ(t,x) =

{
f (x – t) – f (x), |t| ≤ ;
, |t| > ,

and then

A(ε) =
∫
Rn

W (t, ε)
∣∣ψ(t,x)

∣∣dt, W (t, ε) = (πε)–(n/)e–|t|/ε . (.)

Now, by Lemma A, taking ϕ(|t|) = (πε)–n/e–|t|/ε , we have

A(ε) ≤ (Mμψ)(x)
∫ ∞


rnμ(r)

∣∣ϕ′(r)
∣∣dr, where ϕ(r) = (πε)–(n/)e–r/ε . (.)
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Since f is μ-smooth at the point x ∈R
n, we have (Mμψ)(x)≡Dμ(x) < ∞ (see (.)). So we

get

A(ε) ≤ c
∫ ∞


rnμ(r)

∣∣ϕ′(r)
∣∣dr ≤ c

∫ ∞


rn+e–r

/μ(εr)dr. (.)

To estimate A(ε), we first apply Hölder’s inequality for p >  and observe that

A(ε) ≤ ∣∣f (x)∣∣ ∫
|t|>

W (t, ε)dt

+
(∫

|t|>

∣∣f (x – t)
∣∣p dt)/p(∫

|t|>

∣∣W (t, ε)
∣∣q dt)/q (


p
+

q
= 

)
. (.)

Let us estimate the first term on the right of (.). Changing variables to polar coordinates
yields

∫
|t|>

W (t, ε)dt = k
∫ ∞


rn–

[∫
Sn–

ε–n/e–r
/ε dσ (θ )

]
dr

= k
∫ ∞


rn–ε–n/e–r

/ε

= k
∫ ∞

(/
√

ε)

rn–e–r

dr (we set u = r, du = r dr)

= k
∫ ∞

(/ε)

un/–e–u du

= k�
(
n

,

ε

)
,

where �(s, τ ) is the upper incomplete gamma function. Now, using asymptotic formula
(.), we get

∫
|t|>

W (t, ε)dt =O
(
ε–

n
 e–/ε

)
as ε → +. (.)

The same is true for the second term of (.):

(∫
|t|>

∣∣W (t, ε)
∣∣q dt)/q

= k
(∫ ∞


rn–

[∫
Sn–

(
ε–n/e–r

/ε
)q dσ (θ )

]
dr

)/q

= kε
n
q–

n


(∫ ∞

(√q/
√

ε)

rn–e–r

dr

)/q

= kε
n
q–

n


(∫ ∞

(q/ε )

un/–e–u du
)/q

.

Now, using formula (.), we get

(∫
|t|>

∣∣W (t, ε)
∣∣q dt)/q

=O
(
ε


q–

n
 e–/ε

)
as ε → +. (.)
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Collecting estimates (.) and (.), and taking into account that

(∫
|t|>

∣∣f (x – t)
∣∣p)/p

≤ ‖f ‖p <∞,

we have

A(ε) =O
(
ε–n/e–/ε

)
as ε → +. (.)

By (.) and (.) we have shown that inequality (.) holds, as desired.
To complete the proof, we have to show that the conditions of Lemma A are satisfied;

that is, for ϕ(r) = (πε)–n/e–r/ε ,

lim
r→∞ rnμ(r)ϕ(r) =  and lim

r→+
rnμ(r)ϕ(r) = .

But this is obvious. �

Proof of Corollary . Let μ(r), r ∈ [,∞) be a modulus of continuity, i.e., (a) μ(r) →  as
r → +; (b) μ(r) is non-negative and non-decreasing on (,∞); (c) μ(r) is continuous and
subadditive (,∞).
It follows from the subadditivity of μ(r) that

μ(εr) ≤ ( + r)μ(ε) for all ε, r > .

By employing this in (.), we get

∣∣S(x, ε) – f (x)
∣∣ ≤ cμ(ε)

∫ ∞


( + r)rn+e–r dr + cε–n/e–/ε

≤ cμ(ε) + cε–n/e–/ε . (.)

Now, since the function μ(r) is a modulus of continuity, it cannot tend to zero too rapidly
as ε → , that is, for instance, if μ(ε)

ε
→  as ε → , then μ(ε) ≡ . Therefore

ε–n/e–/ε ≤ cμ(ε), ε → 

for some constant c. Taking into account this in (.), we obtain

∣∣S(x, ε) – f (x)
∣∣ ≤ cμ(ε), ε → ,

where the constant c does not depend on ε > . �

Proof of Corollary . Let us show that for some  < ρ <  the function

μ(r) =

⎧⎪⎨
⎪⎩
, r = 
(/ ln /r)α ,  < r < ρ < 
(/ ln /ρ)α , ρ ≤ r < ∞

⎫⎪⎬
⎪⎭ ( < α < ∞)

http://www.journalofinequalitiesandapplications.com/content/2013/1/428
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is a modulus of continuity, i.e., it is continuous, non-decreasing, subadditive on [,∞)
and tends to zero as r → +. The continuity and limr→ μ(r) =  are obvious. To prove the
other properties, it suffices to show that (see [], p.)

μ′(r) ≥  and
(
μ(r)/r

)′ ≤  ( < r < ρ).

Simple calculations show that the above inequalities are fulfilled if one takes ρ = e–α . �

Proof of Corollary . Let us substitute the function

μ(r) =

⎧⎪⎨
⎪⎩
, r = 
rα| ln r|β ,  < r ≤ ρ

ρα| lnρ|β , r > ρ

⎫⎪⎬
⎪⎭

in (.), where α >  and β ∈ (–∞,∞) are given numbers and  < ρ < .
If β ≥ , we have, for sufficiently small ε > ,

μ(εr) ≤ εα| ln ε|βrα
(
 +

| ln r|
| ln ε|

)β

≤ εα| ln ε|βrα(
 + | ln r|)β .

By making use of this estimate in (.), we have for ε �  that

∣∣S(x, ε) – f (x)
∣∣ ≤ cεα| ln ε|β

∫ ∞


rn+e–r

/rα( + ln r)β dr +O
(
ε–n/e–/ε

)
≤ cεα| ln ε|β + cε–n/e–/ε ≤ cεα| ln ε|α , ε → .

Let now β < . By setting δ = –β > , we have for ε � 

μ(εr) = εα| ln ε|βrα
∣∣∣∣ ln εr
ln ε

∣∣∣∣
β

= εα| ln ε|βrα
∣∣∣∣ ln ε

ln εr

∣∣∣∣
δ

= εα| ln ε|βrα
∣∣∣∣ – ln r

ln εr

∣∣∣∣
δ

≤ εα| ln ε|βrα
(
 +

| ln r|
| ln εr|

)δ

.

Since εr < ρ < , it follows that

μ(εr) ≤ εα| ln ε|βrα
(
 +

| ln r|
| lnρ|

)δ

.

Using this in (.), we get

∣∣S(x, ε) – f (x)
∣∣ ≤ cεα| ln ε|β

∫ ∞


rn+e–r

/rα
(
 +

| ln r|
| lnρ|

)δ

e–r dr + cε–n/e–/ε

≤ cεα| ln ε|β ,

which is the desired result. �
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