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Abstract
In this paper, the upper bound of the Hankel determinant H3(1) for a subclass of
analytic functions associated with right half of the lemniscate of Bernoulli
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1 Introduction and preliminaries
Let A be the class of functions f of the form

f (z) = z +
∞∑
n=

anzn, (.)

which are analytic in the open unit disk E = {z : |z| < }. A function f is said to be subordi-
nate to a function g , written as f ≺ g , if there exists a Schwartz function w with w() = 
and |w(z)| <  such that f (z) = g(w(z)). In particular, if g is univalent in E, then f () = g()
and f (E)⊂ g(E).
Let P denote the class of analytic functions p normalized by

p(z) =  +
∞∑
n=

pnzn (.)

such that Rep(z) > . Let SL∗ be the class of functions defined by

SL∗ =
{
f ∈ A :

∣∣∣∣
(
zf ′(z)
f (z)

)

– 
∣∣∣∣ < 

}
, z ∈ E.

Thus a function f ∈ SL∗ is such that zf ′(z)
f (z) lies in the region bounded by the right half of the

lemniscate of Bernoulli given by the relation |w – | < . It can easily be seen that f ∈ SL∗

if it satisfies the condition

zf ′(z)
f (z)

≺ √
 + z, z ∈ E. (.)
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This class of functions was introduced by Sokół and Stankiewicz [] and further investi-
gated by some authors. For details, see [, ].
Noonan and Thomas [] have studied the qth Hankel determinant defined as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣

an an+ · · · an+q–
an+ an+ · · · an+q–
...

...
...

...
an+q– an+q– · · · an+q–

∣∣∣∣∣∣∣∣∣∣
, (.)

where n ≥  and q ≥ . The Hankel determinant plays an important role in the study of
singularities; for instance, see [, p.] and Edrei []. This is also important in the study
of power series with integral coefficients [, p.] and Cantor []. For the use of the Han-
kel determinant in the study of meromorphic functions, see [], and various properties of
these determinants can be found in [, Chapter ]. It is well known that the Fekete-Szegö
functional |a –a| =H(). This functional is further generalized as |a –μa| for some μ

(real as well as complex). Fekete and Szegö gave sharp estimates of |a –μa| forμ real and
f ∈ S, the class of univalent functions. It is a very great combination of the two coefficients
which describes the area problems posted earlier by Gronwall in -. Moreover, we
also know that the functional |aa – a| is equivalent to H(). The qth Hankel deter-
minant for some subclasses of analytic functions was recently studied by Arif et al. []
and Arif et al. []. The functional |aa – a| has been studied by many authors, see [–
]. Babalola [] studied the Hankel determinant H() for some subclasses of analytic
functions. In the present investigation, we determine the upper bounds of the Hankel de-
terminant H() for a subclass of analytic functions related with lemniscate of Bernoulli
by using Toeplitz determinants.
We need the following lemmas which will be used in our main results.

Lemma . [] Let p ∈ P and of the form (.). Then

∣∣p – vp
∣∣ ≤

⎧⎪⎨
⎪⎩
–v + , v < ,
,  ≤ v ≤ ,
v – , v > .

When v <  or v > , the equality holds if and only if p(z) is +z
–z or one of its rotations. If

 < v < , then the equality holds if and only if p(z) = +z
–z or one of its rotations. If v = , the

equality holds if and only if p(z) = (  +
η

 )
+z
–z +(


 –

η

 )
–z
+z (≤ η ≤ ) or one of its rotations. If

v = , the equality holds if and only if p is the reciprocal of one of the functions such that the
equality holds in the case of v = .Although the above upper bound is sharp,when  < v < ,
it can improved as follows:

∣∣p – vp
∣∣ + v|p| ≤  ( < v ≤ /)

and

∣∣p – vp
∣∣ + ( – v)|p| ≤  (/ < v≤ ).
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Lemma . [] If p(z) =  + pz + pz + · · · is a function with positive real part in E, then
for v a complex number

∣∣p – vp
∣∣ ≤ max

(
, |v – |).

This result is sharp for the functions

p(z) =
 + z

 – z
, p(z) =

 + z
 – z

.

Lemma . [] Let p ∈ P and of the form (.). Then

p = p + x
(
 – p

)

for some x, |x| ≤ , and

p = p + 
(
 – p

)
px –

(
 – p

)
px + 

(
 – p

)(
 – |x|)z

for some z, |z| ≤ .

2 Main results
Although we have discussed the Hankel determinant problem in the paper, the first two
problems are specifically related with the Fekete-Szegö functional, which is a special case
of the Hankel determinant.

Theorem . Let f ∈ SL∗ and of the form (.). Then

∣∣a –μa
∣∣ ≤

⎧⎪⎨
⎪⎩


 ( – μ), μ < –

 ,

 , – 

 ≤ μ ≤ 
 ,


 (μ – ), μ > 

 .

Furthermore, for –
 < μ ≤ 

 ,

∣∣a –μa
∣∣ + 


(μ + )|a| ≤ 


,

and for 
 < μ ≤ 

 ,

∣∣a –μa
∣∣ + 


( – μ)|a| ≤ 


.

These results are sharp.

Proof If f ∈ SL∗, then it follows from (.) that

zf ′(z)
f (z)

≺ φ(z), (.)
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where φ(z) =
√
 + z. Define a function

p(z) =
 +w(z)
 –w(z)

=  + pz + pz + · · · .

It is clear that p ∈ P. This implies that

w(z) =
p(z) – 
p(z) + 

.

From (.), we have

zf ′(z)
f (z)

= φ
(
w(z)

)
,

with

φ
(
w(z)

)
=

(
p(z)
p(z) + 

) 

.

Now

(
p(z)
p(z) + 

) 

=  +



pz +

[


p –




p

]
z +

[


p –




pp +



p

]
z + · · · .

Similarly,

zf ′(z)
f (z)

=  + az +
[
a – a

]
z +

[
a – aa + a

]
z + · · · .

Therefore

a =


p, (.)

a =


p –




p , (.)

a =



p –



pp +



p . (.)

This implies that

∣∣a –μa
∣∣ = 



∣∣∣∣p – 

(μ + )p

∣∣∣∣.

Now, using Lemma ., we have the required result. �

The results are sharp for the functions Ki(z), i = , , , , such that

zK ′
(z)

K(z)
=

√
 + z if μ < –



or μ >



,

zK ′
(z)

K(z)
=

√
 + z if –



< μ <



,
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zK ′
(z)

K(z)
=

√
 +�(z) if μ = –



,

zK ′
(z)

K(z)
=

√
 –�(z) if μ =



,

where �(z) = z(z+η)
+ηz with  ≤ η ≤ .

Theorem . Let f ∈ SL∗ and of the form (.). Then for a complex number μ,

∣∣a –μa
∣∣ ≤ 


max

{
;

∣∣∣∣μ –



∣∣∣∣
}
.

Proof Since

∣∣a –μa
∣∣ = 



∣∣∣∣p – 

(μ + )p

∣∣∣∣,

therefore, using Lemma ., we get the result. This result is sharp for the functions

zf ′(z)
f (z)

=
√
 + z

or

zf ′(z)
f (z)

=
√
 + z. �

For μ = , we have H().

Corollary . Let f ∈ SL∗ and of the form (.). Then

∣∣a – a
∣∣ ≤ 


.

Theorem . Let f ∈ SL∗ and of the form (.). Then

∣∣aa – a
∣∣ ≤ 


.

Proof From (.), (.) and (.), we obtain

aa – a =



(
pp –



pp +




p

)
–

(


p –




p

)

=



pp –



p –



pp +


,

p

=


,
(
pp – p – pp + p

)
.

Putting the values of p and p from Lemma ., we assume that p > , and taking p = p ∈
[, ], we get

∣∣aa – a
∣∣ = 

,
∣∣p{p + 

(
 – p

)
px –

(
 – p

)
px + 

(
 – p

)(
 – |x|)z}

– 
{
p + x

(
 – p

)} – p
{
p + x

(
 – p

)}
+ p

∣∣.
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After simple calculations, we get

∣∣aa – a
∣∣ = 

,
∣∣p – 

(
 – p

)
px – 

(
 – p

)(
 – |x|)z

+ x
(
 – p

)(
p + 

)(
 – p

)∣∣.
Now, applying the triangle inequality and replacing |x| by ρ , we obtain

∣∣aa – a
∣∣ ≤ 

,
[
p + 

(
 – p

)
+ 

(
 – p

)
pρ + ρ( – p

)(
p + 

)]

= F(p,ρ) (say).

Differentiating with respect to ρ , we have

∂F(p,ρ)
∂ρ

=


,
[

(
 – p

)
p + ρ

(
 – p

)(
p + 

)]
.

It is clear that ∂F(p,ρ)
∂ρ

> , which shows that F(p,ρ) is an increasing function on the closed
interval [, ]. This implies thatmaximumoccurs atρ = . ThereforemaxF(p,ρ) = F(p, ) =
G(p) (say). Now

G(p) =


,
[
p – p + 

]
.

Therefore

G′(p) =


,
[
p – p

]

and

G′′(p) =


,
[
p – 

]
< 

for p = . This shows that maximum of G(p) occurs at p = . Hence, we obtain

∣∣aa – a
∣∣ ≤ 

,

=



.

This result is sharp for the functions

zf ′(z)
f (z)

=
√
 + z

or

zf ′(z)
f (z)

=
√
 + z. �

Theorem . Let f ∈ SL∗ and of the form (.). Then

|aa – a| ≤ 

.
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Proof Since

a =


p,

a =


p –




p ,

a =



p –



pp +



p .

Therefore, by using Lemma ., we can obtain

|aa – a| ≤ 


{
p + pρ

(
 – p

)
+ 

(
 – p

)
+ ρ(p – )

(
 – p

)}
.

Let

F(p,ρ) =



{
p + pρ

(
 – p

)
+ 

(
 – p

)
+ ρ(p – )

(
 – p

)}
. (.)

We assume that the upper bound occurs at the interior point of the rectangle [, ]× [, ].
Differentiating (.) with respect to ρ , we get

∂F
∂ρ

=



{
p

(
 – p

)
+ ρ(p – )

(
 – p

)}
.

For  < ρ <  and fixed p ∈ (, ), it can easily be seen that ∂F
∂ρ

< . This shows that F(p,ρ)
is a decreasing function of ρ , which contradicts our assumption; therefore, maxF(p,ρ) =
F(p, ) =G(p). This implies that

G′
(p) =




{
p – p

}

and

G′′
 (p) =




{p – } < 

for p = . Therefore p =  is a point of maximum. Hence, we get the required result. �

Lemma . If the function f (z) =
∞∑
n=

anzn belongs to the class SL∗, then

|a| ≤ /, |a| ≤ /, |a| ≤ /, |a| ≤ /.

These estimations are sharp. The first three bounds were obtained by Sokół [] and the
bound for |a| can be obtained in a similar way.

Theorem . Let f ∈ SL∗ and of the form (.). Then

∣∣H()
∣∣ ≤ 


.
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Proof Since

H() = a
(
aa – a

)
– a(a – aa) + a

(
aa – a

)
.

Now, using the triangle inequality, we obtain

∣∣H()
∣∣ ≤ |a|

∣∣aa – a
∣∣ + |a||aa – a| + |a|

∣∣aa – a
∣∣.

Using the fact that a =  with the results of Corollary ., Theorem ., Theorem . and
Lemma ., we obtain

∣∣H()
∣∣ ≤ 


. �
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