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Abstract
In this paper, we study the existence of solutions of periodic boundary value
problems for impulsive differential equations depending on a parameter λ. By
employing an existing critical point theorem, we find the range of the control
parameter in which the boundary value problem admits at least one non-zero weak
solution. An example illustrates our results.
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1 Introduction
The well-known impulsive differential equations serve as basic models to study the dy-
namics of processes that are subject to sudden changes in their states, which are often
investigated in various fields of science and technology [–]. For example, in the motion
of spacecraft, one has to consider instantaneous impulses at a position with jump discon-
tinuities in velocity, but no change in the position [–]. This motivates us to consider the
following particular periodic boundary value problems:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = λf (t,u(t)), t �= tj, t ∈ [, ],

�u′(tj) = Ij(u(tj)), j = , , . . . ,m,

u() – u() = u′() – u′() = ,

(.)

where f : [, ] × R → R, Ij ∈ C(R,R),  = t < t < t < · · · < tm < tm+ = , λ is a positive
real parameter and the operator� is defined as�u′(tj) = u′(t+j )–u′(t–j ), where u′(t+j )(u′(t–j ))
denotes the right-hand (left-hand) limit of u′ at tj.
In the literature, some classical tools have been used to study impulsive differential equa-

tions. These classical techniques include some fixed point theorems, the lower and upper
solutions and the coincidence degree theory [–]. Moreover, in the last few years, some
researchers have gradually paid more attention to applying variational methods to deal
with the existence of solutions for impulsive differential equation boundary value prob-
lems [–]. The same tool has also already been used for a Neumann nonlinear differen-
tial problem in [] (see also [, ] and [] for two-point and mixed problems). In this
paper, we use critical point theory and variational methods to establish the existence of at
least one weak solution for problem (.).
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The rest of this paper is organized as follows. In Section  we present several defini-
tions and main tools. In Section , under suitable hypotheses, we prove that problem (.)
possesses at least one non-zero weak solution when λ lies in an exactly determined open
interval. Finally, an example is provided to verify our results.

2 Preliminaries
In the following, we first introduce some notations. Take X := {u(t)|u(t) ∈ W ,([, ]),
u() = u()}, in which we consider the inner product

(u, v) =
∫ 


u′(t)v′(t)dt +

∫ 


u(t)v(t)dt,

and the norm

‖u‖X =
(∫ 



∣∣u′(t)
∣∣ dt +

∫ 



∣∣u(t)∣∣ dt
) 


.

Note that this norm is equivalent to the usual norm

‖u‖ =
(∫ 



∣∣u′(t)
∣∣ dt

) 

.

Definition . f : [, ]× R→ R is an L-Carathéodory function if:
(i) t �→ f (t,u) is measurable for every u ∈R;
(ii) u �→ f (t,u) is continuous for almost every t ∈ [, ];
(iii) for every s > , there exists a function ls ∈ L([, ]) such that

sup
|u|≤s

∣∣f (t,u)∣∣ ≤ ls(t) for a.e. t ∈ [, ].

Definition . The function u : [, ] → R is called a weak solution of problem (.) if
u ∈ X and

∫ 


u′(t)v′(t)dt +

∫ 


u(t)v(t)dt +

m∑
j=

Ij
(
u(tj)

)
v(tj) = λ

∫ 


f
(
t,u(t)

)
v(t)dt

for all v ∈ X.

Note that if f is continuous, each weak solution is a classical solution of problem (.),
i.e., u ∈ C(tj–, tj), satisfies the equation of (.) a.e. on t ∈ [, ], the limits u′(t+j ), u′(t–j ),
j = , , . . . ,m, exist and �u′(tj) = Ij(u(tj)) holds.
We recall the following inequality which will be used later.

Lemma . If u ∈ X, then

‖u‖∞ ≤ √
‖u‖X , (.)

where ‖u‖∞ =maxt∈[,] |u(t)|.
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Proof The proof follows easily from the mean value theorem and the Hölder inequality,
so we omit it here. �

Next we define a functional ϕλ as

ϕλ(u) = �(u) – λ�(u), u ∈ X, (.)

where

�(u) =


‖u‖X +

m∑
j=

∫ u(tj)


Ij(s)ds (.)

and

�(u) =
∫ 


F
(
t,u(t)

)
dt, (.)

with

F(t,u) =
∫ u(t)


f (t, s)ds.

Note that ϕλ is Fréchet differentiable at any u ∈ X and for any v ∈ X, we have

ϕ′
λ(u)(v) =

∫ 



(
u′(t)v′(t) + u(t)v(t)

)
dt +

m∑
j=

Ij
(
u(tj)

)
v(tj)

– λ

∫ 


f
(
t,u(t)

)
v(t)dt. (.)

Obviously, ϕ′
λ is continuous and a critical point of ϕλ, by (.), gives a weak solution of

problem (.).
For all r, r ∈ R, with r < r, we define

β(r, r) = inf
v∈�–((r,r))

supu∈�–((r,r)) �(u) –�(v)
r –�(v)

, (.)

α(r, r) = sup
v∈�–((r,r))

�(v) – supu∈�–((–∞,r)) �(u)
�(v) – r

. (.)

Note that for all r, r ∈R, with r < r, we have β(r, r)≥ , α(r, r) ≥ .
To prove our main results, we need the following critical point theorem.

Theorem . [, Theorem .] Let X be a reflexive real Banach space. Let � : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative admits a continuous inverse on X∗; let
� : X → R be a continuously Gâteaux differentiable functional whose Gáteaux derivative
is compact. Put ϕλ = � – λ� and assume that there are r, r ∈R, with r < r, such that

β(r, r) < α(r, r), (.)
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where β and α are given by (.) and (.). Then, for each λ ∈ (/α(r, r), /β(r, r)), there
is u,λ ∈ �–((r, r)) such that ϕλ(u,λ) ≤ ϕλ(u) for all u ∈ �–((r, r)) and ϕ′

λ(u,λ) = .

For the sake of convenience, we list the following conditions.
(H) f is an L-Carathéodory function.
(H)  ≤ ∫ u

 Ij(s)ds < |u|
m , u ∈R, j = , , . . . ,m.

3 Main results
In this section, we establish existence results for the periodic boundary value problem
(.).
Given three nonnegative constants c, c, d, with c <

√
d < d < c, put

a(c,d) = 
∫ 
 max|u(t)|≤c F(t,u(t))dt –

∫ 
 F(t,d)dt

c – d (.)

and

b(c,d) = 
∫ 
 F(t,d)dt –

∫ 
 max|u(t)|≤c F(t,u(t))dt
d – c

. (.)

Theorem . Assume that (H), (H) are satisfied and there exist three nonnegative con-
stants c, c, d, with c <

√
d < d < c, such that

a(c,d) < b(c,d). (.)

Then, for each λ ∈ (/b(c,d), /a(c,d)), problem (.) admits at least one weak solution
u(t), t ∈ [, ], such that

√
c/ < ‖u‖X <

√
c/.

Proof By (.) and (.), we have that � is a nonnegative Gâteaux differentiable, coer-
cive and sequentially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗, and � is a continuously Gâteaux differentiable func-
tional whose Gâteaux is compact. Let

r =
c

, r =

c

, u(t) = d, for t ∈ [, ]. (.)

By condition (H), we have

�(u) =


‖u‖X +

m∑
j=

∫ u(tj)


Ij(s)ds

=


d +

m∑
j=

∫ d


Ij(s)ds

≤ d, (.)

and

�(u) ≥ d


. (.)
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Combining c <
√
d < d < c, (.), (.) and (.), we have

r < �(u) < r.

Clearly, we have �(u) =
∫ 
 F(t,u(t))dt =

∫ 
 F(t,d)dt. From Lemma ., the estimate

�(u) < r, u ∈ X, implies that

∣∣u(t)∣∣ ≤ ‖u‖X ≤ × �(u) < r = c, t ∈ [, ],

and
∫ 


F
(
t,u(t)

)
dt ≤

∫ 


max

|u(t)|≤c
F(t,u)dt.

Therefore

sup
u∈�–((r,r))

�(u) ≤ sup
u∈�–((–∞,r))

�(u) ≤
∫ 


max

|u(t)|≤c
F
(
t,u(t)

)
dt.

For u ∈ X with �(u) < r, one can similarly obtain

sup
u∈�–((–∞,r))

�(u) ≤
∫ 


max

|u(t)|≤c
F
(
t,u(t)

)
dt.

Therefore, we have

β(r, r) ≤ supu∈�–((–∞,r)) �(u) –�(u)
r –�(u)

≤ 
∫ 
 max|u(t)|≤c F(t,u(t))dt –

∫ 
 F(t,d)dt

c – d

= a(c,d).

On the other hand, we have

α(r, r) ≥ �(u) – supu∈�–((–∞,r)) �(u)
�(u) – r

≥ 
∫ 
 F(t,d)dt –

∫ 
 max|u(t)|≤c F(t,u(t))dt
d – c

= b(c,d).

So, by (.), we induce

β(r, r) < α(r, r).

Therefore, by Theorem ., for each λ ∈ (/b(c,d), /a(c,d)), we have that � – λ� ad-
mits at least one critical point u such that r < �(u) < r. Combining (.), we get

c


<


‖u‖X +

m∑
j=

∫ u(tj)


Ij(s)ds≤ 


‖u‖X ,
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and



‖u‖X ≤ 


‖u‖X +

m∑
j=

∫ u(tj)


Ij(s)ds <

c

.

So, problem (.) admits at least one weak solution u(t), t ∈ [, ], such that
√

 c < ‖u‖X <√


 c. �

Theorem. Assume that (H), (H) hold and there exist two positive constants c, d,with
d < c, such that

(∫ 


max

|u(t)|≤c
F
(
t,u(t)

)
dt

)/
c <

(∫ 


F(t,d)dt

)/
d. (.)

Then, for each λ ∈ (d/
∫ 
 F(t,d)dt, c

/
∫ 
 max|u(t)|≤c F(t,u(t))dt), problem (.) admits at

least one nontrivial weak solution u(t), t ∈ [, ], such that ‖u‖X <
√

 c.

Proof Let c =  and c = c, then by (.) and (.) we get

a(c,d) = 
∫ 
 max|u(t)|≤c F(t,u(t))dt –

∫ 
 F(t,d)

c – d

≤ 
∫ 
 max|u(t)|≤c F(t,u(t))dt – d

c
∫ 
 max|u(t)|≤c F(t,u(t))

c – d

= 
∫ 
 max|u(t)|≤c F(t,u(t))dt

c
,

and

b(c,d) = 
∫ 
 F(t,d)dt

d .

Therefore, owing to (.) we have a(c,d) < b(,d). Moreover, by Theorem ., we have that
for each λ ∈ (d/

∫ 
 F(t,d)dt, c

/
∫ 
 max|u(t)|≤c F(t,u(t))dt), problem (.) admits at least

one nontrivial weak solution u such that ‖u‖X <
√

 c. �

Now, when the nonlinear term of problem (.) is with separable variables, we have the
following results. To be precise, let α ∈ L([, ]) be such that α(t)≥  a.e. t ∈ [, ], α �≡ ,
and let g : R → R be a nonnegative continuous function. Consider the boundary value
problem

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = λα(t)g(u(t)), t �= tj, t ∈ [, ],

�u′(tj) = Ij(u(tj)), j = , , . . . ,m,

u() – u() = u′() – u′() = .

(.)

Put

G(u) =
∫ u(t)


g(s)ds for u ∈ X.
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Corollary . Assume that (H) is satisfied and there exist three nonnegative constants
c, c, d, with c <

√
d < d < c, such that

G(c) –G(d)
c – d <

G(d) –G(c)
d – c

. (.)

Then, for each λ ∈ ((d – c )/‖α‖(G(d) –G(c)), (c – d)/‖α‖(G(c) –G(d))), where
‖α‖ =

∫ 
 |α(t)|dt, problem (.) admits at least one weak solution u(t), t ∈ [, ], such that√


 c < ‖u‖X <

√

 c.

Proof Let f (t,u) = α(t)g(u) for all (t,u) ∈ [, ]×R. It is clear that F(t,u) = α(t)G(u) for all
(t,u) ∈ [, ]×X. Moreover, G is a nondecreasing function about u. So, we have

a(c,d) = ‖α‖G(c) –G(d)
c – d < ‖α‖G(d) –G(c)

d – c
= b(c,d).

So, for each λ ∈ ((d – c )/‖α‖(G(d) –G(c)), (c – d)/‖α‖(G(c) –G(d))), problem
(.) admits at least one weak solution u(t), t ∈ [, ], such that

√

 c < ‖u‖X <

√

 c. �

Corollary . Assume that (H) is satisfied and there exist two positive constants c, d,
with c > d, such that

G(c)
c

<
G(d)
d . (.)

Then, for each λ ∈ (d/G(d)‖α‖, c/G(c)‖α‖), problem (.) admits at least one weak
solution u(t) such that |u(t)| < c for all t ∈ [, ].

Proof Let f (t,u) = α(t)g(u) for all (t,u) ∈ [, ]×R. It is clear that F(t,u) = α(t)G(u) for all
(t,u) ∈ [, ]×X. Moreover, G is a nondecreasing function about u. So, we have

∫ 
 max|u(t)|≤c F(t,u(t))dt

c
=

‖α‖G(c)
c

<
‖α‖G(d)

d =
∫ 
 F(t,d)dt

d ,

d∫ 
 F(t,d)dt

=
d

G(d)‖α‖ ,
c


∫ 
 max|u(t)|≤c F(t,u(t))dt

=
c

G(c)‖α‖ .

Therefore, by Theorem ., for each λ ∈ (d/G(d)‖α‖, c/G(c)‖α‖), problem (.) ad-
mits at least one weak solution u(t) such that |u(t)| < c for all t ∈ [, ]. �

4 An example
In this section, we give an example to illustrate our main results.

Example . Consider the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u = λte–u, t �= t, t ∈ [, ],

�u′(t) = 
u(t), t = 

 ,

u() – u() = u′() – u′() = .

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/406
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Compared to problem (.), α(t) = t, g(u) = e–u, Ij(u) = 
u. Clearly, (H) is satisfied and

α ∈ L([, ]) such that α(t) ≥  a.e. t ∈ [, ], α �≡ , and g : R → R is a nonnegative con-
tinuous function. Choose d = ., c = . By simple calculations, we obtain

G(c)
c

≈ . <
G(d)
d ≈ .,

d

G(d)‖α‖ ≈ .,
c

G(c)‖α‖ ≈ ..

Applying Corollary ., when λ ∈ (., .), system (.) has at least one weak
solution u such that |u(t)| <  for all t ∈ [, ].
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