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Abstract
In this article, we try to obtain a more general form than (∈,∈ ∨ q)-intuitionistic fuzzy
bi-ideals in ordered semigroups. The notion of an (∈,∈ ∨ qk)-intuitionistic fuzzy
bi-ideal is introduced, and several properties are investigated. Characterizations of an
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal are established. A condition for an
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal to be an intuitionistic fuzzy bi-ideal is provided.
It is shown that every (∈,∈)-intuitionistic fuzzy bi-ideal is an (∈,∈ ∨ q)-intuitionistic
fuzzy bi-ideal, and every (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal is an
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal but the converse is not true. The important
achievement of the study with an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal is that the
notion of an (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal is a special case of an
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal, and, thus, several results in the paper (Jun et al.
in Bi-ideals of ordered semigroups based on the intuitionistic fuzzy points
(submitted)) are the corollaries of our results obtained in this paper.

Keywords: intuitionistic fuzzy bi-ideal; (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal;
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal

1 Introduction
In mathematics, an ordered semigroup is a semigroup together with a partial order that is
compatible with the semigroup operation. Ordered semigroups havemany applications in
the theory of sequential machines, formal languages, computer arithmetics, design of fast
adders and error-correcting codes. The concept of a fuzzy filter in ordered semigroups
was first introduced by Kehayopulu and Tsingelis in [], where some basic properties of
fuzzy filters and prime fuzzy ideals were discussed. A theory of fuzzy generalized sets on
ordered semigroups can be developed. Mordeson et al. in [] presented an up-to-date ac-
count of fuzzy sub-semigroups and fuzzy ideals of a semigroup. Murali [] proposed the
definition of a fuzzy point belonging to a fuzzy subset under a natural equivalence on fuzzy
subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy set played a vital role
in generating different types of fuzzy subgroups. Bhakat and Das [, ] gave the concepts
of (α,β)-fuzzy subgroups by using the ‘belong to’ (∈) relation and ‘quasi-coincident with’
(q) relation between a fuzzy point and a fuzzy subgroup, and introduced the concept of
(∈,∈ ∨ q)-fuzzy subgroup. In [], Davvaz started the generalized fuzzification in algebra.
In [], Jun et al. initiated the study of (α,β)-fuzzy bi-ideals of an ordered semigroup. In [],
Davvaz and Khan studied (∈,∈ ∨ q)-fuzzy generalized bi-ideals of an ordered semigroup.
Shabir et al. [] studied characterization of regular semigroups by (α,β)-fuzzy ideals. Jun
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et al. [] discussed a generalization of (∈,∈ ∨ q)-fuzzy ideals of a BCK/BCI-algebra. Us-
ing the idea of a quasi-coincidence of a fuzzy point with a fuzzy set, Jun et al. [] intro-
duced the concept of (α,β)-intuitionistic fuzzy bi-ideals in an ordered semigroup. They
introduced a new sort of intuitionistic fuzzy bi-ideals, called (α,β)-intuitionistic fuzzy bi-
ideals, and studied (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideals.
In this paper, we try to have more general form of an (∈,∈ ∨ q)-intuitionistic bi-ideal of

an ordered semigroup. We introduce the notion of an (∈,∈ ∨ qk)-intuitionistic bi-ideal
of an ordered semigroup, and give examples which are (∈,∈ ∨ qk)-intuitionistic fuzzy
bi-ideals but not (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideals. We discuss characterizations of
(∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideals in ordered semigroups. We provide a condition
for an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal to be an intuitionistic fuzzy bi-ideal. The
important achievement of the study with an (∈,∈∨ qk)-intuitionistic fuzzy bi-ideal is that
the notion of an (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal is a special case of an (∈,∈ ∨ qk)-
intuitionistic fuzzy bi-ideal, and, thus, several results in the paper [] are the corollaries
of our results obtained in this paper.

2 Basic definitions and preliminary results
By an ordered semigroup (or po-semigroup) we mean a structure (S, ·,≤), in which the
following are satisfied:
(OS) (S, ·) is a semigroup,
(OS) (S,≤) is a poset,
(OS) (∀x,a,b ∈ S) (a≤ b ⇒ a · x ≤ b · x, x · a≤ x · b).
In what follows, x · y is simply denoted by xy for all x, y ∈ S.
A nonempty subset A of an ordered semigroup S is called a subsemigroup of S if A ⊆ A.

A non-empty subset A of an ordered semigroup S is called a bi-ideal of S if it satisfies
(b) (∀b ∈ S) (∀b ∈ A) (a≤ b ⇒ b ∈ A),
(b) (∀a,b ∈ S) (a,b ∈ A⇒ ab ∈ A),
(b) ASA⊆ A.
An intuitionistic fuzzy set (briefly IFS) A in a non-empty set X is an object having the

formA = {〈x,μA(x),γA(x)〉|x ∈ X}, where the functionμA : X −→ [, ] and γA : X −→ [, ]
denote the degree of membership (namely, μA(x)) and the degree of non-membership
(namely, γA(x)) for each element x ∈ X to the set A, respectively, and  ≤ μA(x) +γA(x)≤ 
for all x ∈ X. For the sake of simplicity, we shall use the symbol A = 〈x,μA,γA〉 for the
intuitionistic fuzzy set A = {〈x,μA(x),γA(x)〉|x ∈ X}.
Let (S, ·,≤) be an ordered semigroup and A = 〈x,μA,γA〉 be an IFS of S. Then A =

〈x,μA,γA〉 is called an intuitionistic fuzzy subsemigroup of S [] if

(∀x, y ∈ S)
(
μA(xy)≥ min

{
μA(x),μA(y)

}
and γA(xy)≤ max

{
γA(x),γA(y)

})
.

Let (S, ·,≤) be an ordered semigroup and A = 〈x,μA,γA〉 be an intuitionistic fuzzy sub-
semigroup of S. Then A = 〈x,μA,γA〉 is called an intuitionistic fuzzy bi-ideal of S [] if
(b) (∀x, y ∈ S) (x≤ y �⇒ μA(x)≥ μA(y) and γA(x) ≤ γA(y)),
(b) (∀x, y ∈ S) (μA(xy) ≥ min{μA(x),μA(y)} and γA(xy)≤ max{γA(x),γA(y)}),
(b) (∀x, y, z ∈ S) (μA(xyz) ≥ min{μA(x),μA(z)} and γA(xyz) ≤ max{γA(x),γA(z)}).
Let A = 〈x,μA,γA〉 be an IFS of S and α ∈ (, ] and β ∈ [, ). Then the sets

U(μA;α) =
{
x ∈ S|μA(x)≥ α

}
and L(γA;β) =

{
x ∈ S|γA(x)≤ β

}
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are called μA-level and γA-level cuts of the intuitionistic fuzzy set A = 〈x,μA,γA〉, respec-
tively. For an IFS A = 〈x,μA,γA〉 and α ∈ (, ], β ∈ [, ), we define the (μA,γA)-level cut
as follows

C(α,β)(A) =
{
x ∈ S|μA(x) ≥ α and γA(x)≤ β

}
.

Clearly, C(α,β)(A) =U(μA;α)∩ L(γA;β).
Let x be a point of a non-empty set X. If α ∈ (, ] and β ∈ [, ) are two real numbers

such that  ≤ α + β ≤ , then the IFS of the form

〈
x; (α,β)

〉
= 〈x;xα ,  – x–β〉

is called an intuitionistic fuzzy point (IFP for short) in X, where α (resp. β) is the degree of
membership (resp. non-membership) of 〈x; (α,β)〉 and x ∈ X is the support of 〈x; (α,β)〉.
Consider an IFP 〈x; (α,β)〉 in S, an IFS A = 〈x,μA,γA〉 and α ∈ {∈, q,∈ ∨ q}, we define

〈x; (α,β)〉αA as follows
(b) 〈x; (α,β)〉 ∈ A (resp. 〈x; (α,β)〉qA) means that μA(x)≥ α and γA(x)≤ β (resp.

μA(x) + α >  and γA(x) + β < ), and in this case, we say that 〈x; (α,β)〉 belongs to
(resp. quasi-coincident with) an IFS A = 〈x,μA,γA〉.

(b) 〈x; (α,β)〉∈ ∨ qA (resp. 〈x; (α,β)〉 ∈ ∧qA) means that 〈x; (α,β)〉 ∈ A or 〈x; (α,β)〉qA
(resp. 〈x; (α,β)〉 ∈ A and 〈x; (α,β)〉qA).

By 〈x; (α,β)〉αA, we mean that 〈x; (α,β)〉αA does not hold.

3 (∈,∈ ∨ qk)-Intuitionistic fuzzy bi-ideals
Let k denote an arbitrary element of [, ) unless specified otherwise. For an IFP 〈x; (α,β)〉
and an IFS A = 〈x,μA,γA〉 of X, we say that
(c) 〈x; (α,β)〉qkA if μA(x) + k + α >  and γA(x) + k + β < .
(c) 〈x; (α,β)〉 ∈ ∨qkA if 〈x; (α,β)〉 ∈ A or 〈x; (α,β)〉qkA.
(c) 〈x; (α,β)〉αA if 〈x; (α,β)〉αA does not hold for α ∈ {qk ,∈ ∨ qk}.

Theorem . Let A = 〈x,μA,γA〉 be an IFS of an ordered semigroup S. Then the following
are equivalent
() (∀α ∈ ( –k , ]) (∀β ∈ [, –k )) (C(α,β)(A) �= ∅ �⇒ C(α,β)(A) is a bi-ideal of S).
() A = 〈x,μA,γA〉 satisfies the following assertions

(.)

(
x≤ y�⇒ μA(y) ≤ max{μA(x), –k }
and γA(y) ≥ min{γA(x), –k }

)
,

(.)

(
min{μA(x),μA(y)} ≤ max{μA(xy), –k }
and max{γA(x),γA(y)} ≥ min{γA(xy), –k }

)
,

(.)

(
min{μA(x),μA(z)} ≤ max{μA(xyz), –k } and
max{γA(x),γA(z)} ≥ min{γA(xyz), –k }

)
,

for all x, y, z ∈ S.

Proof Assume that C(α,β)(A) is a bi-ideal of S for all α ∈ ( –k , ] and β ∈ [, –k ) with
C(α,β)(A) �= ∅. If there exist a,b ∈ S such that condition (.) is not valid, that is, there ex-
ist a,b ∈ S with a ≤ b and μA(b) >max{μA(a), –k }, γA(b) <min{γA(a), –k }. Then μA(b) ∈
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( –k , ], γA(b) ∈ [, –k ) and b ∈ C(μA(b),γA(b))(A). But μA(a) < μA(b) and γA(a) > γA(b) imply
that a /∈ C(μA(b),γA(b))(A). This is not possible. Hence (.) is valid. Suppose that (.) is false,
that is,

s :=min
{
μA(a),μA(c)

}
>max

{
μA(ac),

 – k


}

and

t :=max
{
γA(a),γA(c)

}
<min

{
γA(ac),

 – k


}

for some a, c ∈ S. Then s ∈ ( –k , ], t ∈ [, –k ) and a, c ∈ C(s,t)(A). But ac /∈ C(s,t)(A), since
μA(ac) < s and γA(ac) > t. This is not possible, and so (.) is valid. If there exist a,b, c ∈ S
such that (.) is not valid, that is,

s :=min
{
μA(a),μA(b)

}
>max

{
μA(acb),

 – k


}

and

t :=max
{
γA(a),γA(b)

}
<min

{
γA(acb),

 – k


}
.

Then s ∈ ( –k , ], t ∈ [, –k ) and a,b ∈ C(s,t)(A). But acb /∈ C(s,t)(A), since μA(acb) <
s and γA(acb) > t. This is a contradiction, and hence (.) is valid.
Conversely, assume thatA = 〈x,μA,γA〉 satisfies the three conditions (.), (.) and (.).

Suppose thatC(α,β)(A) �= ∅ for all α ∈ ( –k , ], and β ∈ [, –k ). Let x, y ∈ S be such that x≤ y
and y ∈ C(α,β)(A). Then μA(y) ≥ α and γA(y) ≤ β . Using (.), we have max{μA(x), –k } ≥
μA(y) ≥ α > –k

 and min{γA(x), –k } ≤ γA(y) ≤ β < –k
 . Hence μA(x) ≥ α and γA(x) ≤ β ,

i.e., x ∈ C(α,β)(A). If x, y ∈ C(α,β)(A), then μA(x) ≥ α, γA(x) ≤ β and μA(y) ≥ α, γA(y) ≤ β .
By using (.), we have

max

{
μA(xy),

 – k


}
≥ min

{
μA(x),μA(y)

} ≥ α >
 – k


and

min

{
γA(xy),

 – k


}
≤ max

{
γA(x),γA(y)

} ≤ β <
 – k


,

so that μA(xy) ≥ α and γA(xy) ≤ β , i.e., xy ∈ C(α,β)(A). Finally, if x, z ∈ C(α,β)(A) and y ∈ S,
then μA(x)≥ α, γA(x)≤ β and μA(z) ≥ α, γA(z) ≤ β . By using (.), we have

max

{
μA(xyz),

 – k


}
≥ min

{
μA(x),μA(z)

} ≥ α >
 – k


and

min

{
γA(xyz),

 – k


}
≤ max

{
γA(x),γA(z)

} ≤ β <
 – k


,
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Table 1 ∗-multiplication table for S

∗ a b c d e
a a d a d d
b a b a d d
c a d c d e
d a d a d d
e a d c d e

so that μA(xyz) ≥ α and γA(xyz) ≤ β , i.e., xyz ∈ C(α,β)(A). Therefore, C(α,β)(A) is a bi-ideal
of S. �

If we take k =  in Theorem ., then we have the following corollary.

Corollary . [, Theorem .] Let A = 〈x,μA,γA〉 be an IFS of S. Then the following
assertions are equivalent
() (∀α ∈ (., ]) (∀β ∈ [, .)) (C(α,β)(A) �= ∅ �⇒ C(α,β)(A) is a bi-ideal of S).
() A = 〈x,μA,γA〉 satisfies the following conditions

(.)

(
x≤ y�⇒ μA(y) ≤ max{μA(x), .}
and γA(y) ≥ min{γA(x), .}

)
,

(.)

(
min{μA(x),μA(y)} ≤ max{μA(xy), .}
and max{γA(x),γA(y)} ≥ min{γA(xy), .}

)
,

(.)

(
min{μA(x),μA(z)} ≤ max{μA(xyz), .}
and max{γA(x),γA(z)} ≥ min{γA(xyz), .}

)
,

for all x, y, z ∈ S.

Definition . An IFS A = 〈x,μA,γA〉 in S is called an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-
ideal of S if for all x, y, z ∈ S, t, t, t ∈ (, ] and s, s, s ∈ [, ) it satisfies the following
conditions
(q) (x≤ y, 〈y; (t, s)〉 ∈ A �⇒ 〈x; (t, s)〉 ∈ ∨qkA),
(q) (〈x; (t, s)〉 ∈ A and 〈y; (t, s)〉 ∈ A �⇒ 〈xy;min{t, t},max{s, s}〉 ∈ ∨qkA),
(q) (〈x; (t, s)〉 ∈ A and 〈z; (t, s)〉 ∈ A�⇒ 〈xyz;min{t, t},max{s, s}〉 ∈ ∨qkA).
An (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S with k =  is an (∈,∈ ∨ q)-intuitionistic

fuzzy bi-ideal of S.

Example . Consider the set S = {a,b, c,d, e}with the order relation a≤ c≤ e, a≤ d ≤ e,
b ≤ d and b ≤ e and ∗-multiplication table (see Table  above).
() Define an IFS A = 〈x,μA,γA〉 by

μA : S → [, ] | μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b,

. if x = c,

. if x = d,

. if x = e

http://www.journalofinequalitiesandapplications.com/content/2013/1/397
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and

γA : S → [, ] | γA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b,

. if x = c,

. if x = d,

. if x = e.

Then A = 〈x,μA,γA〉 is an (∈,∈ ∨ q.)-intuitionistic fuzzy bi-ideal of S.
() Let A = 〈x,μA,γA〉 be an intuitionistic fuzzy set given by

μA : S → [, ] | μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b, e,

. if x = c,

. if x = d

and

γA : S → [, ] | γA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b, e,

. if x = c,

. if x = d.

Then A = 〈x,μA,γA〉 is an (∈,∈ ∨ q.)-intuitionistic fuzzy bi-ideal of S.

Theorem . An IFS A = 〈x,μA,γA〉 of S is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S
if and only if it satisfies the following conditions

()

(
x ≤ y�⇒ μA(x)≥ min{μA(y), –k }
and γA(x)≤ max{γA(y), –k }

)
,

()

(
μA(xy) ≥ min{μA(x),μA(y), –k }
and γA(xy) ≤ max{γA(x),γA(y), –k }

)
,

()

(
μA(xyz) ≥ min{μA(x),μA(z), –k }
and γA(xyz) ≤ max{γA(x),γA(z), –k }

)
.

Proof Suppose that A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S. Let
x, y ∈ S be such that x ≤ y. Assume that μA(y) ≤ –k

 and γA(y) ≥ –k
 . If μA(x) < μA(y)

and γA(x) > γA(y), then μA(x) < t ≤ μA(y) and γA(x) > s ≥ γA(y) for some t ∈ (, –k ) and
s ∈ ( –k , ). It follows 〈y; (t, s)〉 ∈ A, but 〈x; (t, s)〉 ∈ A. Since μA(x) + t < t <  – k and
γA(x) + s > s >  – k, we get 〈x; (t, s)〉qkA. Therefore, 〈x; (t, s)〉 ∈ ∨ qk A, which is a contra-
diction. Hence μA(x)≥ μA(y) and γA(x)≤ γA(y). Now, if μA(y) ≥ –k

 and γA(x) ≤ –k
 , then

〈y; ( –k , –k )〉 ∈ A, and so, 〈x; ( –k , –k )〉 ∈ ∨qkA, which implies that 〈x; ( –k , –k )〉 ∈ A or
〈x; ( –k , –k )〉qkA, that is,μA(x)≥ –k

 and γA(x)≤ –k
 orμA(x)+ –k

 >  and γA(x)+ –k
 < .

http://www.journalofinequalitiesandapplications.com/content/2013/1/397


Khan et al. Journal of Inequalities and Applications 2013, 2013:397 Page 7 of 25
http://www.journalofinequalitiesandapplications.com/content/2013/1/397

HenceμA(x)≥ –k
 and γA(x) ≤ –k

 . Otherwise,μA(x)+ –k
 < –k

 + –k
 =  and γA(x)+ –k

 >
–k
 + –k

 = , a contradiction. Consequently,

μA(x)≥ min

{
μA(y),

 – k


}

and

γA(x)≤ max

{
γA(y),

 – k


}

for all x, y ∈ S with x ≤ y. Let x, y ∈ S be such that min{μA(x),μA(y)} < –k
 and

max{γA(x),γA(y)} > –k
 . We claim that μA(xy) ≥ min{μA(x),μA(y)} and γA(xy) ≤

max{γA(x),γA(y)}. If not, then μA(xy) < t ≤ min{μA(x),μA(y)} and γA(xy) > s ≥ max{γA(x),
γA(y)} for some t ∈ (, –k ) and s ∈ ( –k , ). It follows that 〈x; (t, s)〉 ∈ A and 〈y; (t, s)〉 ∈ A, but
〈xy; (t, s)〉 ∈ A andμA(xy)+ t < t < –k and γA(xy)+ s > s > –k, i.e., 〈xy; (t, s)〉qkA. This is
a contradiction. Thus, μA(xy) ≥ min{μA(x),μA(y)} and γA(xy) ≤ max{γA(x),γA(y)} for all
x, y ∈ S with min{μA(x),μA(y)} < –k

 and max{γA(x),γA(y)} > –k
 . If min{μA(x),μA(y)} ≥

–k
 and max{γA(x),γA(y)} ≤ –k

 , then 〈x; ( –k , –k )〉 ∈ A and 〈y; ( –k , –k )〉 ∈ A. Using (q),
we have

〈
xy;

(
 – k


,
 – k


)〉

=
〈
xy;min

{
 – k


,
 – k


}
,max

{
 – k


,
 – k


}〉
∈ ∨qkA,

and so, μA(xy) ≥ –k
 and γA(xy) ≤ –k

 or μA(xy) + –k
 >  and γA(xy) + –k

 < . If μA(xy) <
–k
 and γA(xy) > –k

 , then

μA(xy) +
 – k


<
 – k


+
 – k


= 

and

γA(xy) +
 – k


>
 – k


+
 – k


= ,

which is impossible. Consequently, μA(xy) ≥ min{μA(x),μA(y), –k } and γA(xy) ≤
max{γA(x),γA(y), –k } for all x, y ∈ S. Let a,b, c ∈ S be such that min{μA(a),μA(c)} < –k


and max{γA(a),γA(c)} > –k

 . We claim that

μA(abc) ≥ min
{
μA(a),μA(c)

}
and γA(abc)≤ max

{
γA(a),γA(c)

}
.

If not, then μA(abc) < t ≤ min{μA(a),μA(c)} and γA(abc) > s ≥ max{γA(a),γA(c)} for
some t ∈ (, –k ) and s ∈ ( –k , ). It follows that 〈a; (t, s)〉 ∈ A and 〈c; (t, s)〉 ∈
A, but 〈abc; (t, s)〉 ∈ A and μA(abc) + t < t <  – k and γA(abc) + s > s >  –
k, i.e., 〈abc; (t, s)〉qkA. This is a contradiction. Thus, μA(abc) ≥ min{μA(a),μA(c)}
and γA(abc) ≤ max{γA(a),γA(c)} for all a,b, c ∈ S with min{μA(a),μA(c)} < –k

 and
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max{γA(a),γA(c)} > –k
 . If min{μA(a),μA(c)} ≥ –k

 and max{γA(a),γA(c)} ≤ –k
 , then

〈a; ( –k , –k )〉 ∈ A and 〈c; ( –k , –k )〉 ∈ A. Using (q), we have

〈
abc;

(
 – k


,
 – k


)〉

=
〈
abc;min

{
 – k


,
 – k


}
,max

{
 – k


,
 – k


}〉
∈ ∨qA,

and so μA(abc) ≥ –k
 and γA(abc) ≤ –k

 or μA(abc) + –k
 >  and γA(abc) + –k

 < . If
μA(abc) < –k

 and γA(abc) > –k
 , then

μA(abc) +
 – k


<
 – k


+
 – k


= 

and

γA(abc) +
 – k


>
 – k


+
 – k


= ,

which is impossible. Therefore, μA(xyz) ≥ min{μA(x),μA(z), –k } and γA(xyz) ≤
max{γA(x),γA(z), –k } for all x, y, z ∈ S.
Conversely, letA = 〈x,μA,γA〉 be an IFS of S that satisfies the three conditions (), () and

(). Let x, y ∈ S, t ∈ (, ] and s ∈ [, ) be such that x ≤ y and [y; (t, s)] ∈ A. Then μA(y) ≥ t
and γA(y) ≤ s, and so,

μA(x) ≥ min

{
μA(y),

 – k


}
≥min

{
t,
 – k


}

=

⎧⎨
⎩t if t ≤ –k

 ,
–k
 if t > –k



and

γA(x) ≤ max

{
γA(y),

 – k


}
≤ max

{
s,
 – k


}

=

⎧⎨
⎩s if s ≥ –k

 ,
–k
 if s < –k

 .

It follows thatμA(x) ≥ t and γA(x)≤ s orμA(x)+ t ≥ –k
 + t > –k and γA(x)+s≤ –k

 +s <
 – k, i.e., 〈x; (t, s)〉 ∈ A or 〈x; (t, s)〉qkA. Hence, 〈x; (t, s)〉 ∈ ∨qkA. Let x, y ∈ S, t, t ∈ (, ]
and s, s ∈ [, ) be such that 〈x; (t, s)〉 ∈ A and 〈y; (t, s)〉 ∈ A. ThenμA(x)≥ t, γA(x)≤ s
and μA(y) ≥ t, γA(y) ≤ s. It follows from () that

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}
≥ min

{
t, t,

 – k


}

=

⎧⎨
⎩min{t, t} if min{t, t} ≤ –k

 ,
–k
 if min{t, t} ≤ –k
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and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}
≤ max

{
s, s,

 – k


}

=

⎧⎨
⎩max{s, s} if max{s, s} ≥ –k

 ,
–k
 if max{s, s} < –k

 .

It follows that 〈xy;min{t, t},max{s, s}〉 ∈ A or μA(xy) +min{t, t} ≥ –k
 +min{t, t} >

–k
 + –k

 =  – k and γA(xy) + max{s, s} ≤ –k
 + max{s, s} < –k

 + –k
 =  – k, i.e.,

〈xy;min{t, t},max{s, s}〉qkA. Therefore, 〈xy;min{t, t},max{s, s}〉 ∈ ∨qkA. Let x, y, z ∈
S, t, t ∈ (, ] and s, s ∈ [, ) be such that 〈x; (t, s)〉 ∈ A and 〈z; (t, s)〉 ∈ A. Then
μA(x)≥ t, γA(x)≤ s and μA(z) ≥ t, γA(z) ≤ s. It follows from () that

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}
≥ min

{
t, t,

 – k


}

=

⎧⎨
⎩min{t, t} if min{t, t} ≤ –k

 ,
–k
 if min{t, t} ≤ –k



and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}
≤ max

{
s, s,

 – k


}

=

⎧⎨
⎩max{s, s} if max{s, s} ≥ –k

 ,
–k
 if max{s, s} < –k

 .

Thus, we have 〈xyz;min{t, t},max{s, s}〉 ∈ A or μA(xyz) + min{t, t} ≥ –k
 +

min{t, t} > –k
 + –k

 = – k and γA(xyz) +max{s, s} ≤ –k
 +max{s, s} < –k

 + –k
 = – k,

i.e., 〈xyz;min{t, t},max{s, s}〉qkA. Therefore, 〈xyz;min{t, t},max{s, s}〉 ∈ ∨qkA. Thus,
A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S. �

If we take k =  in Theorem ., then we have the following corollary.

Corollary . [, Theorem .] An IFS A = 〈x,μA,γA〉 of S is an (∈,∈ ∨ qk)-intuitionistic
fuzzy bi-ideal of S if and only if it satisfies the conditions

()

(
x ≤ y�⇒ μA(x)≥ min{μA(y), .}
and γA(x)≤ max{γA(y), .}

)
,

()

(
μA(xy) ≥ min{μA(x),μA(y), .}
and γA(xy) ≤ max{γA(x),γA(y), .}

)
,

()

(
μA(xyz) ≥ min{μA(x),μA(z), .}
and γA(xyz) ≤ max{γA(x),γA(z), .}

)
.

Obviously, every intuitionistic fuzzy bi-ideal is an (∈,∈)-intuitionistic fuzzy bi-ideal, and
we know that every (∈,∈)-intuitionistic fuzzy bi-ideal of S is an (∈,∈ ∨ q)-intuitionistic
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fuzzy bi-ideal of S, and every (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal is an (∈,∈ ∨ qk)-
intuitionistic fuzzy bi-ideal of S. But the converse may not be true. The following example
shows that every (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S may not be an (∈,∈ ∨ q)-
intuitionistic fuzzy bi-ideal nor an intuitionistic fuzzy bi-ideal of S.

Example . Consider the ordered semigroup of Example . and define an IFS A =
〈x,μA,γA〉 by

μA : S → [, ] | μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b,

. if x = c,

. if x = d, e

and

γA : S → [, ] | γA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. if x = a,

. if x = b,

. if x = c,

. if x = d, e.

Then A = 〈x,μA,γA〉 is an (∈,∈ ∨ q.)-intuitionistic fuzzy bi-ideal of S. But
() A = 〈x,μA,γA〉 is not an (∈,∈ ∨q)-intuitionistic fuzzy bi-ideal of S. Since

〈a; (., .)〉 ∈ A and 〈b; (., .)〉 ∈ A but 〈ab; (., .)〉 ∈ ∨ q A.
() A = 〈x,μA,γA〉 is not an intuitionistic fuzzy bi-ideal of S. Since

μA(ab) = μA(d) = . <m
{
μA(a) = .,μA(b) = .

}

and

γA(ab) = γA(d) = . >M
{
γA(a) = .,μA(b) = .

}
.

In the following, we give a condition for an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S
to be an ordinary intuitionistic fuzzy bi-ideal of S.

Theorem . Let A = 〈x,μA,γA〉 be an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S. If
μA(x) ≥ –k

 and γA(x) ≤ –k
 for all x ∈ S, then A = 〈x,μA,γA〉 is an (∈,∈)-intuitionistic

fuzzy bi-ideal of S.

Proof The proof is straightforward by Theorem .. �

Corollary . [, Theorem .] Let A = 〈x,μA,γA〉 be an (∈,∈ ∨ q)-intuitionistic fuzzy
bi-ideal of S. If μA(x) ≥ . and γA(x) ≤ . for all x ∈ S, then A = 〈x,μA,γA〉 is an (∈,∈)-
intuitionistic fuzzy bi-ideal of S.

Proof The proof follows from Theorem ., by taking k = . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/397
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Theorem . For an IFS A = 〈x,μA,γA〉 of S, the following are equivalent:
() A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S.
() (∀t ∈ (, –k ]) (∀s ∈ [ –k , )) (C(α,β)(A) �= ∅ �⇒ C(α,β)(A) is a bi-ideal of S) .

Proof Assume that A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S, let
t ∈ (, –k ] and s ∈ [ –k , ) be such that C(α,β)(A) �= ∅. Using Theorem .(), we have

μA(x)≥ min

{
μA(y),

 – k


}
and γA(x)≤ max

{
γA(y),

 – k


}

for any x, y ∈ S with x ≤ y and x ∈ C(t,s)(A). It follows that μA(x) ≥ min{t, .} = t and
γA(x) ≤ max{s, .} = s, so that y ∈ C(t,s)(A). Let x, y ∈ C(α,β)(A). Then μA(x) ≥ t, γA(x) ≤ s
and μA(y) ≥ t, γA(y) ≤ s. Theorem .() implies that

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}
≥ min

{
t,
 – k


}
= t

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}
≤ max

{
s,
 – k


}
= s.

Thus, xy ∈ C(α,β)(A). Now let x, z ∈ C(α,β)(A). Then μA(x) ≥ t, γA(x) ≤ s and μA(z) ≥ t,
γA(z) ≤ s. Theorem .() induces that

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}
≥ min

{
t,
 – k


}
= t

and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}
≤ max

{
s,
 – k


}
= s.

Thus, xyz ∈ C(α,β)(A), therefore, C(α,β)(A) is a bi-ideal of S.
Conversely, let A = 〈x,μA,γA〉 be an IFS of S such that C(α,β)(A) is non-empty and

is a bi-ideal of S for all t ∈ (, –k ] and s ∈ [ –k , ). If there exist a,b ∈ S with a ≤ b
and b ∈ C(α,β)(A) such that μA(a) < min{μA(b), –k } and γA(a) > max{γA(b), –k }, then
μA(a) < ta ≤ min{μA(b), –k } and γA(a) > sa ≥ max{γA(b), –k } for some ta ∈ (, –k ] and
sa ∈ [ –k , ). Then a /∈ C(ta ,sa)(A), a contradiction. Therefore, μA(x) ≥ min{μA(y), –k } and
γA(x) >max{γA(y), –k } for all x, y ∈ S with x ≤ y. Assume that there exist a,b ∈ S such that

μA(ab) <min

{
μA(a),μA(b),

 – k


}

and γA(ab) >max{γA(a),γA(b), –k }. Then

μA(ab) < t ≤ min

{
μA(a),μA(b),

 – k


}

and

γA(ab) > s ≥ max

{
γA(a),γA(b),

 – k


}
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for some t ∈ (, –k ] and s ∈ [ –k , ). It follows that a ∈ C(t,s)(A) and b ∈ C(t,s)(A), but
ab /∈ C(t,s)(A). This is a contradiction. Hence

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

for all x, y ∈ S. Suppose that

μA(abc) <min

{
μA(a),μA(c),

 – k


}

and

γA(abc) >max

{
γA(a),γA(c),

 – k


}

for some a,b, c ∈ S. Then there exist t ∈ (, –k ] and s ∈ [ –k , ) such that

μA(abc) < t ≤ min

{
μA(a),μA(c),

 – k


}

and

γA(abc) > s ≥ max

{
γA(a),γA(c),

 – k


}
.

Then a ∈ C(t,s)(A) and c ∈ C(t,s)(A), but abc /∈ C(t,s)(A). This is impossible, and hence
μA(xyz) <min{μA(x),μA(z), –k } and

γA(xyz) >max

{
γA(x),γA(z),

 – k


}

for all x, y, z ∈ S. Therefore, A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal
of S. �

By taking k =  in Theorem ., we get the following corollary.

Corollary . [, Theorem .] For an IFS A = 〈x,μA,γA〉 of an ordered semigroup
(S, ·,≤), the following are equivalent
() A = 〈x,μA,γA〉 is an (∈,∈ ∨ q)-intuitionistic fuzzy bi-ideal of S.
() (∀t ∈ (, .]) (∀s ∈ [., )) (C(α,β)(A) �= ∅ �⇒ C(α,β)(A) is a bi-ideal of S) .

For an IFP 〈x; (α,β)〉 of S and an IFS A = 〈x,μA,γA〉 of S, we say that
(c) 〈x; (α,β)〉qA if μA(x) + α ≥  and γA(x) + β ≤ ,
(c) 〈x; (α,β)〉qkA if μA(x) + α + k ≥  and γA(x) + β + k ≤ .
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We denote by Qk
(α,β)(A) (resp. Qk

(α,β)(A)) the set {x ∈ S|〈x; (α,β)〉qkA} (resp. {x ∈
S|〈x; (α,β)〉qkA}), and [A]k(t,s) := {x ∈ S|[x; (t, s)] ∈ ∨qkA}. It is obvious that [A]k(t,s) =
C(t,s)(A)∪Qk

(t,s)(A).

Proposition . If A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S, then

(
∀t ∈

(
 – k


, 
]) (

∀s ∈
[
,

 – k


)) (
Qk

(t,s)(A) �= ∅ �⇒ Qk
(t,s)(A) is a bi-ideal of S

)
.

Proof Assume that A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S. Let
t ∈ [ –k , ] and s ∈ [, –k ] be such that Qk

(t,s)(A) �= ∅. Let y ∈ Qk
(t,s)(A) and x ∈ S be such that

x ≤ y . Then μA(y) + t + k >  and γA(y) + s + k < . By means of Theorem .(), we have

μA(x) ≥ min

{
μA(y),

 – k


}

=

⎧⎨
⎩

–k
 if μA(y) ≥ –k

 ,

μA(y) if μA(y) < –k


>  – t – k

and

γA(x) ≤ max

{
γA(y),

 – k


}

=

⎧⎨
⎩

–k
 if γA(y) < –k

 ,

γA(y) if γA(y) ≥ –k


<  – s – k.

It follows that x ∈ Q(t,s)(A). Let x, y ∈ Q(t,s)(A). Then μA(x) + t > – k and γA(x) + s < – k,
μA(y) + t >  – k and γA(y) + s <  – k. Using () of Theorem ., we have that

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

=

⎧⎨
⎩

–k
 if min{μA(x),μA(y)} ≥ –k

 ,

min{μA(x),μA(y)} if min{μA(x),μA(y)} < –k


>  – t – k,

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

=

⎧⎨
⎩

–k
 if max{γA(x),γA(y)} < –k

 ,

max{γA(x),γA(y)} if max{γA(x),γA(y)} ≥ –k


<  – s – k.
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Thus, xy ∈ Q(t,s)(A). Let x, z ∈ Q(t,s)(A) and y ∈ S. Then μA(x) + t >  – k and γA(x) + s <
 – k, μA(z) + t >  – k and γA(z) + s <  – k. Using () of Theorem ., we have that

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}

=

⎧⎨
⎩

–k
 if min{μA(x),μA(z)} ≥ –k

 ,

min{μA(x),μA(z)} if min{μA(x),μA(z)} < –k


>  – t – k

and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

=

⎧⎨
⎩

–k
 if max{γA(x),γA(z)} < –k

 ,

max{γA(x),γA(z)} if max{γA(x),γA(z)} ≥ –k


<  – s.

Hence xyz ∈Qk
(t,s)(A). Therefore, Q

k
(t,s)(A) is a bi-ideal of S. �

Theorem . For any IFS A = 〈x,μA,γA〉 of S, the following are equivalent
() A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S.
() (∀t ∈ (, ]) (∀s ∈ [, )) ([A]k(t,s) �= ∅ �⇒ [A]k(t,s) is a bi-ideal of S).
We call [A]k(t,s) an (∈ ∨ q)-level bi-ideal of A = 〈x,μA,γA〉.

Proof Assume that A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S, and
let t ∈ (, ] and s ∈ [, ) be such that [A]k(t,s) �= ∅. Let y ∈ [A]k(t,s) and x ∈ S be such that
x ≤ y. Then y ∈ C(t,s)(A) or y ∈Qk

(t,s)(A), i.e., μA(y) ≥ t and γA(y) ≤ s or μA(y) + t > – k and
γA(y) + s <  – k. Using Theorem .(), we get

μA(x)≥ min

{
μA(y),

 – k


}
and γA(x)≤ max

{
γA(y),

 – k


}
. (.)

We consider two cases μA(y) ≤ –k
 , γA(y) ≥ –k

 and μA(y) > –k
 , γA(y) < –k

 . The first
case implies from (.) thatμA(x)≥ μA(y) and γA(x)≤ γA(y). Thus, ifμA(y) ≥ t and γA(y) ≤
s, then μA(x) ≥ t and γA(x)≤ s, and so, x ∈ C(t,s)(A) ⊆ [A]k(t,s). If μA(y) + t > – k and γA(y) +
s <  – k, then μA(x) + t ≥ μA(y) + t >  – k and γA(x) + s ≤ γA(y) + s <  – k, which implies
that [x; (t, s)]qkA, i.e., x ∈Qk

(t,s)(A) ⊆ [A]k(t,s). Combining the second case and (.), we have
μA(x)≥ –k

 and γA(x)≤ –k
 . If t ≤ –k

 and s≥ –k
 , thenμA(x)≥ t and γA(x)≤ s, and hence

x ∈ C(t,s)(A) ⊆ [A]k(t,s). If t >
–k
 and s < –k

 , then μA(x) + t > –k
 + –k

 =  – k and γA(x) +
s < –k

 + –k
 =  – k, which implies that x ∈ Qk

(t,s)(A) ⊆ [A]k(t,s). Therefore, [A]
k
(t,s) satisfies

the condition (b). Let x, y ∈ [A]k(t,s). Then x ∈ C(t,s)(A) or 〈x; (t, s)〉qkA and y ∈ C(t,s)(A) or
〈y; (t, s)〉qkA, that is, μA(x)≥ t, γA(x) ≤ s or μA(x) + t + k > , γA(x) + s+ k <  and μA(y) ≥ t,
γA(y) ≤ s or μA(y) + t + k > , γA(y) + s + k < . We consider the following four cases

(i) μA(x)≥ t, γA(x)≤ s and μA(y) ≥ t, γA(y) ≤ s,
(ii) μA(x)≥ t, γA(x)≤ s and μA(y) + t + k > , γA(y) + s + k < ,
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(iii) μA(x) + t + k > , γA(x) + s + k <  and μA(y) ≥ t, γA(y) ≤ s,
(iv) μA(x) + t + k > , γA(x) + s + k <  and μA(y) + t + k > , γA(y) + s + k < .
For the case (i), Theorem .() implies that

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}
≥ min

{
t,
 – k


}

=

⎧⎨
⎩

–k
 if t > –k

 ,

t if t ≤ –k


and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}
≤ max

{
s,
 – k


}

=

⎧⎨
⎩

–k
 if s < –k

 ,

s if s ≥ –k
 .

Then xy ∈ C(t,s)(A) orμA(xy)+ t+k > –k
 + –k

 +k =  and γA(xy)+ s+k < –k
 + –k

 +k = ,
that is, xy ∈ Qk

(t,s)(A). Hence xy ∈ C(t,s)(A)∪Qk
(t,s)(A) = [A]k(t,s). For the second case, assume

that t > –k
 and s < –k

 , then  – t – k ≤  – t < –k
 and  – s – k ≥  – s≥ –k

 . Hence

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

=

⎧⎨
⎩min{μA(y), –k } >  – t – k if min{μA(y), –k } ≤ μA(x),

μA(x)≥ t if min{μA(y), –k } > μA(x)

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

=

⎧⎨
⎩max{γA(y), –k } <  – s – k if max{γA(y), –k } ≥ γA(x),

γA(x)≤ s if max{γA(y), –k } < γA(x).

Thus xy ∈ C(t,s)(A)∪Qk
(t,s)(A) = [A]k(t,s). Suppose that t ≤ –k

 and s ≥ –k
 . Then

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

=

⎧⎨
⎩min{μA(x), –k } ≥ t if min{μA(x), –k } ≤ μA(y),

μA(y) >  – t – k if min{μA(x), –k } > μA(y),

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

=

⎧⎨
⎩max{γA(x), –k } ≤ s if max{γA(x), –k } ≥ γA(y),

γA(y) <  – s – k if max{γA(x), –k } < γA(y).
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Thus xy ∈ C(t,s)(A) ∪Qk
(t,s)(A) = [A]k(t,s). We have a similar result for the case (iii). For the

final case, if t > –k
 and s < –k

 , then  – t – k < –k
 and  – s – k > –k

 . Hence

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

=
 – k


>  – t – k whenever min
{
μA(x),μA(y)

} ≥  – k


and

μA(xy) ≤ min

{
μA(x),μA(y),

 – k


}

= min
{
μA(x),μA(y)

}
>  – s – k whenever min

{
μA(x),μA(y)

} ≥  – k


and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

=
 – k


<  – s – k whenever max
{
γA(x),γA(y)

} ≤  – k


and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

= max
{
γA(x),γA(y)

}
<  – s – k, whenever max

{
γA(x),γA(y)

} ≤  – k


.

Thus, xy ∈Qk
(t,s)(A) ⊆ [A]k(t,s). If t ≤ –k

 and s ≥ –k
 , then

μA(xy) ≥ min

{
μA(x),μA(y),

 – k


}

=

⎧⎨
⎩

–k
 ≥ t if min{μA(x),μA(y)} ≥ –k

 ,

min{μA(x),μA(y)} >  – t – k if min{μA(x),μA(y)} < –k
 ,

and

γA(xy) ≤ max

{
γA(x),γA(y),

 – k


}

=

⎧⎨
⎩

–k
 ≤ s if max{γA(x),γA(y)} ≤ –k

 ,

max{γA(x),γA(y)} <  – s – k if max{γA(x),γA(y)} > –k
 ,

which implies that xy ∈ Qk
(t,s)(A) ⊆ [A]k(t,s). Let x, z ∈ [A]k(t,s). Then x ∈ C(t,s)(A) or 〈x;

(t, s)〉qkA and z ∈ C(t,s)(A) or 〈z; (t, s)〉qkA, that is, μA(x) ≥ t, γA(x) ≤ s or μA(x) + t + k > ,
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γA(x) + s + k <  and μA(z) ≥ t, γA(z) ≤ s or μA(z) + t + k > , γA(z) + s + k < . We consider
the following four cases

(i) μA(x)≥ t, γA(x)≤ s and μA(z) ≥ t, γA(z) ≤ s,
(ii) μA(x)≥ t, γA(x)≤ s and μA(z) + t >  – k, γA(z) + s <  – k,
(iii) μA(x) + t >  – k, γA(x) + s <  – k and μA(z) ≥ t, γA(z) ≤ s,
(iv) μA(x) + t >  – k, γA(x) + s <  – k and μA(z) + t >  – k, γA(z) + s <  – k.
For the case (i), Theorem .() implies that

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}
≥ min

{
t,
 – k


}
=

⎧⎨
⎩

–k
 if t > –k

 ,

t if t ≤ –k


and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}
≤ max

{
s,
 – k


}
=

⎧⎨
⎩

–k
 if s < –k

 ,

s if s ≥ –k
 .

Then xyz ∈ C(t,s)(A) or μA(xyz) + t + k > –k
 + –k

 + k =  and γA(xyz) + s + k < –k
 + –k

 +
k = , that is, xyz ∈ Qk

(t,s)(A). Hence xyz ∈ C(t,s)(A)∪Qk
(t,s)(A) = [A]k(t,s). For the second case,

assume that t > –k
 and s < –k

 , then – t – k ≤ – t < –k
 and – s– k ≥ – s ≥ –k

 . Hence

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}

=

⎧⎨
⎩min{μA(x), –k } >  – t – k if min{μA(z), –k } ≤ μA(x),

μA(x)≥ t if min{μA(z), –k } > μA(x)

and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

=

⎧⎨
⎩max{γA(z), –k } <  – s – k if max{γA(z), –k } ≥ γA(x),

γA(x)≤ s if max{γA(z), –k } < γA(x).

Thus, xyz ∈ C(t,s)(A)∪Qk
(t,s)(A) = [A]k(t,s). Suppose that t ≤ –k

 and s ≥ –k
 . Then

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}

=

⎧⎨
⎩min{μA(x), –k } ≥ t if min{μA(x), –k } ≤ μA(z),

μA(z) >  – t – k if min{μA(x), –k } > μA(z),

and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

=

⎧⎨
⎩max{γA(x), –k } ≤ s if max{γA(x), –k } ≥ γA(z),

γA(y) <  – s – k if max{γA(x), –k } < γA(z).
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Thus, xyz ∈ C(t,s)(A)∪Qk
(t,s)(A) = [A]k(t,s). We have a similar result for the case (iii). For the

final case, if t > –k
 and s < –k

 , then  – t – k < –k
 and  – s – k > –k

 . Hence

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}

=
 – k


>  – t – k whenever min
{
μA(x),μA(z)

} ≥  – k


and

μA(xyz) ≤ min

{
μA(x),μA(z),

 – k


}

= min
{
μA(x),μA(z)

}
>  – s – k whenever min

{
μA(x),μA(z)

} ≥  – k


and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

=
 – k


<  – s – k whenever max
{
γA(x),γA(z)

} ≤  – k


and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

= max
{
γA(x),γA(z)

}
<  – s – k whenever max

{
γA(x),γA(z)

} ≤  – k


.

Thus, xyz ∈ Qk
(t,s)(A) ⊆ [A]k(t,s). If t ≤ –k

 and s ≥ –k
 , then

μA(xyz) ≥ min

{
μA(x),μA(z),

 – k


}

=

⎧⎨
⎩

–k
 ≥ t if min{μA(x),μA(z)} ≥ –k

 ,

min{μA(x),μA(z)} >  – t – k if min{μA(x),μA(z)} < –k
 ,

and

γA(xyz) ≤ max

{
γA(x),γA(z),

 – k


}

=

⎧⎨
⎩

–k
 ≤ s if max{γA(x),γA(z)} ≤ –k

 ,

max{γA(x),γA(z)} <  – s – k if max{γA(x),γA(z)} > –k
 ,

which implies that xyz ∈Qk
(t,s)(A)⊆ [A]k(t,s). Therefore, [A]

k
(t,s) is a bi-ideal of S.
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Conversely, suppose that () is valid. If there exist a,b ∈ S such that a ≤ b and

μA(a) <min

{
μA(b),

 – k


}
and γA(a) >max

{
γA(b),

 – k


}
.

Then μA(a) < ta ≤ min{μA(b), –k } and γA(a) > sa ≥ max{γA(b), –k } for some ta ∈ (, ]
and sa ∈ [, ). It follows that b ∈ C(ta ,sa)(A) ⊆ [A]k(ta ,sa) but a /∈ C(ta ,sa)(A). Also we have
μA(a) + ta < ta ≤  – k and γA(a) + sa > sa ≥  – k and so 〈a; (ta, sa)〉qkA, i.e., b /∈
Qk

(ta ,sa)(A). Therefore, a /∈ [A](ta ,sa), a contradiction. Hence μA(x) ≥ min{μA(y), –k } and
γA(x) ≤ max{γA(y), –k } for all x, y ∈ S with x ≤ y. Suppose that there exist a,b ∈ S such
that

μA(ab) <min

{
μA(a),μA(b),

 – k


}

and

γA(ab) >max

{
γA(a),γA(b),

 – k


}
.

Then

μA(ab) < t ≤ min

{
μA(a),μA(b),

 – k


}

and

γA(ab) > s ≥max

{
γA(a),γA(b),

 – k


}

for t ∈ (, ] and s ∈ [, ). It follows that a ∈ C(t,s)(A) ⊆ [A]k(t,s) and b ∈ C(t,s)(A) ⊆
[A]k(t,s), so from (b) ab ∈ [A]k(t,s). Thus, μA(ab) ≥ t, γA(ab) ≤ s or μA(ab) + t + k > ,
γA(ab)+ s+k < , a contradiction. Therefore,μA(xy) ≥ min{μA(x),μA(y), –k } and γA(xy) ≤
max{γA(x),γA(y), –k } for all x, y ∈ S. Assume that there exist a,b, c ∈ S such that

μA(abc) <min

{
μA(a),μA(c),

 – k


}

and

γA(abc) >max

{
γA(a),γA(c),

 – k


}
.

Then μA(abc) < t ≤ min{μA(a),μA(c), –k } and γA(abc) > s ≥ max{γA(a),γA(c), –k } for
t ∈ (, ] and s ∈ [, ). It follows that a ∈ C(t,s)(A) ⊆ [A]k(t,s) and c ∈ C(t,s)(A) ⊆
[A]k(t,s) so from (b) abc ∈ [A](t,s). Thus, μA(ab) ≥ t, γA(ab) ≤ s or μA(ab) + t + k >
, γA(ab) + s + k < , a contradiction. Therefore, μA(xyz) ≥ min{μA(x),μA(z), –k } and
γA(xyz) ≤ max{γA(x),γA(z), –k } for all x, y, z ∈ S. Thus, A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-
intuitionistic fuzzy bi-ideal of S. �
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Theorem . Let {Ai|i ∈ �} be a family of (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideals of S.
Then A =

⋂
i∈� Ai is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S, where

⋂
i∈� Ai =

〈x,∧i∈� μAi ,
∨

i∈� γAi〉 and
∧
i∈�

μAi (x) = inf
{
μAi (x)|i ∈ � and x ∈ S

}
,

∨
i∈�

γAi (x) = sup
{
γAi (x)|i ∈ � and x ∈ S

}
.

Proof Let x, y ∈ S with x≤ y, t ∈ (, ] and s ∈ [, ) be such that 〈y; (t, s)〉 ∈ A. Assume that
〈x; (t, s)〉 ∈ ∨ qk A. Then μA(x) < t, γA(x) > s and μA(x) + t + k ≤ , γA(x) + s + k ≥ , which
imply that

μA(x) <
 – k


and γA(x) >
 – k


.

Let � := {i ∈ �|μAi (x) ≥ t,γAi (x) ≤ s} and � := {i ∈ �|〈x; (t, s)〉qkAi and μAi (x) <
t,γAi (x) > s}.
Then� = � ∪� and� ∩� = ∅. If� = ∅, thenμAi (x)≥ t, γAi (x)≤ s for all i ∈ �, and

so, μA(x) ≥ t, γA(x) ≤ s, which is a contradiction. Hence � �= ∅, and so, μAi (x) + t + k > ,
γAi (x) + s+ k <  and μAi (x) < t, γAi (x) > s for every i ∈ �. It follows that t > –k

 and s < –k
 ,

so that μAi (x) ≥ μA(x) ≥ t > –k
 and γAi (x) ≤ γA(x) ≤ s < –k

 for all i ∈ �. Now, suppose
that tx := μAi (x) <

–k
 and sx := γAi (x) >

–k
 for some i ∈ �. Let t′x ∈ (, –k ) and s′x ∈ ( –k , )

be such that tx < t′x and s′x < sx. Then μAi (y) >
–k
 > t′x and γAi (y) <

–k
 < s′x, i.e., 〈y; (t′x, s′x)〉 ∈

Ai. But μAi (x) = tx < t′x, γAi (x) = sx > s′x and μAi (x) + t′x + k < , γAi (x) + s′x + k > , that is,
〈x; (t′x, s′x)〉 ∈ ∨ qk Ai. This is a contradiction, and so, μAi (x) ≥ –k

 and γAi (x) ≤ –k
 for all

i ∈ �. Thus,μA(x)≥ –k
 and γA(x)≤ –k

 , which is impossible. Therefore, 〈y; (t, s)〉 ∈ ∨qkA.
Let x, y ∈ S, t, t ∈ (, ] and s, s ∈ [, ) be such that 〈x; (t, s)〉 ∈ A and 〈y; (t, s)〉 ∈ A.

Assume that 〈xy;min{t, t},max{s, s}〉 ∈ ∨ qk A. Then

μA(xy) <min{t, t}, γA(xy) >max{s, s}

and

μA(xy) +min{t, t} <  – k, γA(xy) +max{s, s} >  – k.

It follows that μA(xy) < –k
 and γA(xy) > –k

 . Let � := {i ∈ �|μAi (xy) ≥ min{t, t} and
γAi (xy) ≤ max{s, s}} and � := {i ∈ �|〈xy;min{t, t},max{s, s}〉qkAi and μAi (xy) <
min{t, t} and γAi (xy) >max{s, s}}. Then � ∪ � = � and � ∩ � = ∅. If � = ∅, then
μAi (xy) ≥ min{t, t} and γAi (xy) ≤ max{s, s} for all i ∈ �, and so, μA(xy) ≥ min{t, t} and
γA(xy) ≤ max{s, s}, which is a contradiction. Hence � �= ∅ and 〈xy;min{t, t},max{s,
s}〉qkAi, i.e., μAi (xy) + min{t, t} >  – k, γAi (xy) + max{s, s} <  – k. It follows that
min{t, t} > –k

 and max{s, s} < –k
 , so that μAi (x) ≥ μA(x) ≥ t ≥ min{t, t} > –k

 and
γAi (x) ≤ γA(x) ≤ s ≤ max{s, s} for all i ∈ �. By a similar way, we have μAi (y) ≥ μA(y) ≥
t ≥ min{t, t} > –k

 and γAi (y) ≤ γA(y) ≤ s ≤ max{s, s} for all i ∈ �. Now, suppose that
t := μAi (xy) <

–k
 and s := γAi (xy) >

–k
 for some i ∈ �. Let t′ ∈ (, –k ) and s′ ∈ ( –k , )

be such that t < t′ and s > s′. Then μAi (x) >
–k
 > t′, γAi (x) <

–k
 < s′ and μAi (y) >

–k
 > t′,
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γAi (y) <
–k
 < s′, i.e., 〈x; (t′, s′)〉 ∈ A and 〈y; (t′, s′)〉 ∈ A. But μAi (xy) = t < t′, γAi (xy) = s > s′

and μAi (xy) + t′ + k < , γAi (xy) + s′ + k > , that is, 〈xy; (t′, s′)〉 ∈ ∨ qk Ai. This is a con-
tradiction. Thus, μAi (xy) ≥ –k

 and γAi (xy) ≤ –k
 for all i ∈ �. Therefore, μA(xy) ≥ –k


and γA(xy) ≤ –k

 , which is invalid. Consequently, 〈xy;min{t, t},max{s, s}〉 ∈ ∨qkA. Fi-
nally, suppose that x, y, z ∈ S, t, t ∈ (, ] and s, s ∈ [, ) be such that 〈x; (t, s)〉 ∈ A and
〈z; (t, s)〉 ∈ A. Assume that 〈xyz;min{t, t},max{s, s}〉 ∈ ∨ qk A. Then

μA(xyz) <min{t, t}, γA(xyz) >max{s, s}

and

μA(xyz) +min{t, t} <  – k, γA(xyz) +max{s, s} >  – k.

It follows that μA(xyz) < –k
 and γA(xyz) > –k

 . Let

� :=
{
i ∈ �|μAi (xyz) ≥ min{t, t} and γAi (xyz) ≤ max{s, s}

}
and

� :=
{
i ∈ �|〈xyz;min{t, t},max{s, s}

〉
qkAi

and μAi (xyz) <min{t, t} and γAi (xyz) >max{s, s}
}
.

Then � ∪ � = � and � ∩ � = ∅. If � = ∅, then μAi (xyz) ≥ min{t, t} and γAi (xyz) ≤
max{s, s} for all i ∈ �, and so μA(xyz) ≥ min{t, t} and γA(xyz) ≤ max{s, s} which is a
contradiction. Hence � �= ∅ and

〈
xyz;min{t, t},max{s, s}

〉
qkAi,

i.e.,

μAi (xyz) +min{t, t} >  – k, γAi (xyz) +max{s, s} <  – k.

It follows that min{t, t} > –k
 and max{s, s} < –k

 , so that

μAi (x)≥ μA(x)≥ t ≥ min{t, t} >  – k


and

γAi (x)≤ γA(x)≤ s ≤ max{s, s}

for all i ∈ �. Similarly, we have

μAi (z) ≥ μA(z) ≥ t ≥ min{t, t} >  – k


and

γAi (z) ≤ γA(z) ≤ s ≤ max{s, s}
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for all i ∈ �. Now, suppose that t := μAi (xyz) <
–k
 and s := γAi (xyz) >

–k
 for some i ∈ �.

Let t′ ∈ (, –k ) and s′ ∈ ( –k , ) be such that t < t′ and s > s′. Then μAi (x) >
–k
 > t′, γAi (x) <

–k
 < s′ and μAi (y) >

–k
 > t′, γAi (y) <

–k
 < s′, i.e., 〈x; (t′, s′)〉 ∈ A and 〈y; (t′, s′)〉 ∈ A. But

μAi (xyz) = t < t′, γAi (xyz) = s > s′

and

μAi (xyz) + t′ < , γAi (xyz) + s′ > ,

that is, 〈xyz; (t′, s′)〉 ∈ ∨ qk Ai. This is a contradiction. Thus, μAi (xyz) ≥ –k
 and γAi (xyz) ≤

–k
 for all i ∈ �. Therefore, μA(xyz) ≥ –k

 and γA(xyz) ≤ –k
 , which is invalid. Thus,

〈xyz;min{t, t},max{s, s}〉 ∈ ∨qkA. Therefore, ⋂
i∈� Ai is an (∈,∈ ∨ qk)-intuitionistic

fuzzy bi-ideal of S. �

The following example shows that the union of two (∈,∈ ∨ qk)-intuitionistic fuzzy bi-
ideals of S may not be an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S.

Example . Consider the ordered semigroup of Example . with the ∗-multiplication
Table  and the IFS of Examples . and ., then 〈a; (., .)〉 ∈ A∪B and 〈b; (., .)〉 ∈
A∪ B, but 〈abmin{., .},max{., .}〉 = 〈d; (., .)〉 ∈ ∨ qk A∪ B.

Definition . An IFS A = 〈x,μA,γA〉 of S is called an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-
ideal of S if for all x, y, z ∈ S, t, t, t ∈ (, ] and s, s, s ∈ [, ), it satisfies the following
conditions
(q) (〈x; (t, s)〉 ∈ A�⇒ 〈y; (t, s)〉 ∈ ∨ qk A with x≤ y),
(q) (〈xy;min{t, t},max{s, s}〉 ∈ A �⇒ 〈x; (t, s)〉 ∈ ∨ qk A or 〈y; (t, s)〉 ∈ ∨ qk A),
(q) (〈xyz;min{t, t},max{s, s}〉 ∈ A�⇒ 〈x; (t, s)〉 ∈ ∨ qk A or 〈z; (t, s)〉 ∈ ∨ qk A).

Let A = 〈x,μA,γA〉 be an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of an ordered semi-
group S. Suppose that there exist a,b ∈ S with a ≤ b such that

μA(b) >max

{
μA(a),

 – k


}
and γA(b) <min

{
γA(a),

 – k


}
.

Then μA(b) ≥ t > max{μA(a), –k } and γA(b) ≤ s < min{γA(a), –k } for some t ∈ ( –k , ]
and s ∈ [, –k ). It follows that 〈a; (t, s)〉 ∈ A, 〈b; (t, s)〉 ∈ A and μA(b) + t ≥ t > – k, γA(b) +
s ≤ s <  – k, i.e., 〈b; (t, s)〉qkA. This is a contradiction, and so the following inequalities
hold.

(e)
(
x≤ y�⇒ μA(b) ≤ max

{
μA(a),

 – k


}
and γA(b)≥ min

{
γA(a),

 – k


})
.

Suppose that max{μA(ab), –k } < min{μA(a),μA(b)} and min{γA(ab), –k } > max{γA(a),
γA(b)} for some a,b ∈ S. Then max{μA(ab), –k } < t ≤ min{μA(a),μA(b)} and min{γA(ab),
–k
 } > s ≥ max{γA(a),γA(b)}. Thus, 〈a; (t, s)〉 ∈ A, 〈b; (t, s)〉 ∈ A, μA(a) + t ≥ t >  – k,

γA(a) + s ≤ s <  – k, i.e., 〈a; (t, s)〉qkA and μA(b) + t ≥ t >  – k, γA(b) + s ≤ s <  – k,
i.e., 〈b; (t, s)〉qkA. This is impossible, and hence A = 〈x,μA,γA〉 satisfies the following asser-
tion
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(e) max{μA(xy), –k } <min{μA(x),μA(y)} and min{γA(xy), –k } >max{γA(x),γA(y)} for
all x, y ∈ S.

Now, assume that

max

{
μA(abc),

 – k


}
<min

{
μA(a),μA(c)

}

and

min

{
γA(abc),

 – k


}
>max

{
γA(a),γA(c)

}

for some a,b, c ∈ S. Then

max

{
μA(abc),

 – k


}
< t ≤ min

{
μA(a),μA(c)

}

and

min

{
γA(abc),

 – k


}
> s ≥ max

{
γA(a),γA(c)

}
.

Thus, 〈a; (t, s)〉 ∈ A, 〈c; (t, s)〉 ∈ A, μA(a) + t ≥ t >  – k, γA(a) + s ≤ s <  – k, i.e.,
〈a; (t, s)〉qkA and μA(c) + t ≥ t >  – k, γA(c) + s ≤ s <  – k, i.e., 〈c; (t, s)〉qkA. This is a
contradiction, and hence we have the following assertion
(e) max{μA(xyz), –k } <min{μA(x),μA(z)} and min{γA(xyz), –k } >max{γA(x),γA(z)}

for all x, y, z ∈ S.
Let A = 〈x,μA,γA〉 be an IFS of S satisfying the three conditions (e), (e) and (e). Let

t ∈ ( –k , ] and s ∈ [, –k ) be such that C(t,s)(A) �= ∅. Then there exist b ∈ C(t,s)(A) and S �
a ≤ b, by using (e), we get

 – k


< t ≤ μA(b)≤ max

{
μA(a),

 – k


}
= μA(a)

and

 – k


> s ≥ γA(b)≥ min

{
γA(a),

 – k


}
= γA(a).

Hence a ∈ C(t,s)(A). Let a,b ∈ S be such that a ∈ C(t,s)(A) and b ∈ C(t,s)(A). ThenμA(a) ≥ t,
γA(a)≤ s and μA(b)≥ t, γA(b) ≤ s. Using (e), we get

max

{
μA(ab),

 – k


}
≥ min

{
μA(a),μA(b)

} ≥ t >
 – k


and

min

{
γA(ab),

 – k


}
≤ max

{
γA(a),γA(b)

} ≤ s <
 – k


,

which implies thatμA(ab) =max{μA(ab), –k } ≥ t and γA(ab) =min{γA(ab), –k } ≤ s. Thus,
ab ∈ C(t,s)(A). Now, suppose that a, c ∈ C(t,s)(A) and b ∈ S. Then μA(a) ≥ t, γA(a) ≤ s and
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μA(c) ≥ t, γA(c) ≤ s. Using (e), we get

max

{
μA(abc),

 – k


}
≥ min

{
μA(a),μA(c)

} ≥ t >
 – k


and

min

{
γA(abc),

 – k


}
≤ max

{
γA(a),γA(c)

} ≤ s <
 – k


,

which implies that μA(abc) = max{μA(abc), –k } ≥ t and γA(abc) = min{γA(abc), –k } ≤ s.
Thus, abc ∈ C(t,s)(A). Consequently, C(t,s)(A) is a bi-ideal of S. Therefore, we conclude that
if an IFS A = 〈x,μA,γA〉 of S satisfies the three conditions (e), (e) and (e), then the fol-
lowing assertion is valid
(e) (∀t ∈ (., ]) (∀s ∈ [, –k )) (C(t,s)(A) �= ∅ �⇒ C(t,s)(A) is a bi-ideal of S).
Now, let A = 〈x,μA,γA〉 be an IFS of S satisfying (e). Let a,b ∈ S with a ≤ b and

t ∈ (, ] and s ∈ [, ) be such that 〈b; (t, s)〉 ∈ ∨ qk A. Then 〈b; (t, s)〉 ∈ A and 〈b; (t, s)〉qkA.
Hence b ∈ C(t,s)(A) and C(t,s)(A) �= ∅. Thus, by (e), a ∈ C(t,s)(A) and so μA(a)≥ t, γA(a)≤ s,
i.e., 〈a; (t, s)〉 ∈ A. This shows that (q) is valid. Let a,b ∈ S, t, t ∈ (, ] and s, s ∈ [, ) be
such that 〈a; (t, s)〉 ∈ ∨ qk A and 〈b; (t, s)〉 ∈ ∨ qk A. Then 〈a; (t, s)〉 ∈ A, 〈a; (t, s)〉qkA
and 〈b; (t, s)〉 ∈ A, 〈b; (t, s)〉qkA, which implies that a ∈ C(t,s)(A) ⊆ C(min{t,t},max{s,s})(A)
and b ∈ C(t,s)(A) ⊆ C(min{t,t},max{s,s})(A). SinceC(min{t,t},max{s,s})(A) is bi-ideal of S by (e),
it follows by (b) that ab ∈ C(min{t,t},max{s,s})(A), that is,μA(ab)≥ min{t, t}, and γA(ab)≤
max{s, s}, so that 〈ab;min{t, t},max{s, s}〉 ∈ A. Hence (q) is valid. Finally, let a,b, c ∈ S,
t, t ∈ (, ] and s, s ∈ [, ) be such that 〈a; (t, s)〉 ∈ ∨ qk A and 〈c; (t, s)〉 ∈ ∨ qk A.
Then 〈a; (t, s)〉 ∈ A, 〈a; (t, s)〉qkA and 〈c; (t, s)〉 ∈ A, 〈c; (t, s)〉qkA, which implies
that a ∈ C(t,s)(A) ⊆ C(min{t,t},max{s,s})(A) and c ∈ C(t,s)(A) ⊆ C(min{t,t},max{s,s})(A).
Since C(min{t,t},max{s,s})(A) is bi-ideal of S by (e), it follows by (b) that abc ∈
C(min{t,t},max{s,s})(A), that is, μA(abc) ≥ min{t, t}, and γA(abc) ≤ max{s, s}, so that
〈abc;min{t, t},max{s, s}〉 ∈ A. Hence (q) is valid.
Therefore, as a concluding remark, we have the following theorem.

Theorem . For an IFS A = 〈x,μA,γA〉 of S, the following are equivalent
() A = 〈x,μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic fuzzy bi-ideal of S.
() A = 〈x,μA,γA〉 satisfies the condition (e).
() A = 〈x,μA,γA〉 satisfies the three conditions (e), (e) and (e).

For an IFS A = 〈x;μA,γA〉 of S, we consider the following sets

� :=
{
t ∈ (, ]|U(μA; t) �= ∅ �⇒ U(μA; t) is a bi-ideal of S

}
,

� :=
{
s ∈ [, )|L(μA; t) �= ∅ �⇒ L(μA; t) is a bi-ideal of S

}
.

Then
() If � = (, ] and � = [, ), then A = 〈x;μA,γA〉 is an intuitionistic fuzzy bi-ideal

of S.
() If � = (, .] and � = [., ), then A = 〈x;μA,γA〉 is an (∈,∈ ∨ q)-intuitionistic

fuzzy bi-ideal of S.
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() If � = (, –k ] and � = [ –k , ), then A = 〈x;μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic
fuzzy bi-ideal of S.

() If � = ( –k , ] and � = [, –k ), then A = 〈x;μA,γA〉 is an (∈,∈ ∨ qk)-intuitionistic
fuzzy bi-ideal of S.
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