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Abstract
In this paper, we present two fixed point theorems on mappings, defined on
GP-complete GP-metric spaces, which satisfy a generalized contraction property
determined by certain upper semi-continuous functions. Furthermore, we illustrate
applications of our theorems with a number of examples. Inspired by the work of
Jachymski, we also establish equivalences of certain auxiliary maps in the context of
GP-complete GP-metric spaces.
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1 Introduction and preliminaries
In , Stefan Banach [] stated his celebrated theorem on the existence and uniqueness
of a fixed point of certain self-maps defined on certain metric spaces for the first time.
Specifically, this elegant theorem, also known as the Banach contraction mapping prin-
ciple, can be formulated as follows: any mapping T : (X,d) → (X,d) has a unique point
x ∈ X such that Tx = x provided that there exists a constant k ∈ (, ) satisfying the in-
equality d(Tx,Ty) ≤ kd(x, y) for every x, y ∈ X, where (X,d) is a complete metric space.
A mapping T for which the inequality mentioned above holds is called a contraction.
Since its first appearance, the Banach contraction mapping principle has become the

main tool to study contractions as they appear abundantly in a wide array of quantita-
tive sciences. Its most well-known application is in ordinary differential equations, par-
ticularly, in the proof of the Picard-Lindelöf theorem which guarantees the existence and
uniqueness of solutions of first-order initial value problems. It is worth emphasizing that
the remarkable strength of the Banach principle originates from the constructive process
it provides to identify the fixed point. This notable strength further attracted the atten-
tion of not only many prominent mathematicians studying in many branches of mathe-
matics related to nonlinear analysis, but also many researchers who are interested in it-
erative methods to examine the quantitative problems involving certain mappings and
space structures required in their work in various areas such as social sciences, biology,
economics, and computer sciences.
Indeed, in , Matthews, a computer scientist who is an expert on semantics, an-

nounced in [] an analog of Banach’s principle in a new space he called a partial metric
space. Matthews’s innovative approach was quickly adopted and improved by fixed point
theorists (see, e.g., [–]) with the aim of discovering analogs of Banach’s principle in
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the context of partial metric spaces to broaden its applications and enrich the fixed point
theory as a result.
A closer look to thework of these distinguishedmathematicians afterMatthews’s studies

reveals that their discoveries can be categorized in terms of the techniques implemented to
produce the analogs of Banach’s principle. The first technique is to introduce new space
structures with certain properties which guarantee the existence and/or uniqueness of
fixed points of contractions. In addition to Matthews’s investigations, cone metric spaces,
D-metric spaces, andG-metric spaces (see, e.g., [–]) constitute a few of the examples
to the first approach. The second technique is to introduce mappings defined on metric
spaces satisfying certain new contractive conditions. For example, cyclic contractions and
weak φ contractions can be listed as a few.
As another example to the first approach mentioned above, Zand and Nezhad [] re-

cently introduced GP-metric spaces which are a combination of the notions of partial
metric spaces and G-metric spaces. Then they proved a number of fixed point theorems
on these new spaces for certain type of contractions. In this paper, we exercise the second
approach by using the space structure they initiated to prove certain fixed point theorems
for generalized contractions. First, we review the necessary notation, definitions, and fun-
damental results produced on GP-metric spaces that we will need in this work.

Definition . [] Let X be a non-empty set. A function Gp : X × X × X –→ [, +∞) is
called a GP-metric if the following conditions are satisfied:
(GP) x = y = z if Gp(x, y, z) =Gp(z, z, z) =Gp(y, y, y) =Gp(x,x,x);
(GP) ≤ Gp(x,x,x)≤ Gp(x,x, y)≤ Gp(x, y, z) for all x, y, z ∈ X ;
(GP) Gp(x, y, z) =Gp(x, z, y) =Gp(y, z,x) = · · · , symmetry in all three variables;
(GP) Gp(x, y, z) ≤ Gp(x,a,a) +Gp(a, y, z) –Gp(a,a,a) for any x, y, z,a ∈ X .

Then the pair (X,G) is called a GP-metric space.

Example . [] LetX = [,∞) and defineGp(x, y, z) =max{x, y, z} for all x, y, z ∈ X. Then
(X,Gp) is a GP-metric space.

Proposition . [] Let (X,Gp) be a GP-metric space, then for any x, y, z and a ∈ X, it
follows that

(i) Gp(x, y, z) ≤ Gp(x,x, y) +Gp(x,x, z) –Gp(x,x,x);
(ii) Gp(x, y, y) ≤ Gp(x,x, y) –Gp(x,x,x);
(iii) Gp(x, y, z) ≤ Gp(x,a,a) +Gp(y,a,a) +Gp(z,a,a) – Gp(a,a,a);
(iv) Gp(x, y, z) ≤ Gp(x,a, z) +Gp(a, y, z) –Gp(a,a,a).

Proposition . [] Every GP-metric space (X,Gp) defines a metric space (X,DGp ) where

DGp (x, y) =Gp(x, y, y) +Gp(y,x,x) –Gp(x,x,x) –Gp(y, y, y) for all x, y ∈ X.

Definition . [] Let (X,Gp) be a GP-metric space and let {xn} be a sequence of points
of X. A point x ∈ X is said to be the limit of the sequence {xn} or xn → x if

lim
n,m→∞Gp(x,xm,xn) =Gp(x,x,x).
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Proposition . [] Let (X,Gp) be a GP-metric space. Then, for any sequence {xn} in X
and a point x ∈ X, the following are equivalent:
(A) {xn} is GP-convergent to x;
(B) Gp(xn,xn,x)→Gp(x,x,x) as n→ ∞;
(C) Gp(xn,x,x)→Gp(x,x,x) as n → ∞.

Definition . [] Let (X,Gp) be a GP-metric space.
(S) A sequence {xn} is called a GP-Cauchy if and only if limm,n→∞ Gp(xn,xm,xm) exists

(and is finite);
(S) A GP-partial metric space (X,Gp) is said to be GP-complete if and only if every

GP-Cauchy sequence in X is GP-convergent to x ∈ X such that
Gp(x,x,x) = limm,n→∞ Gp(xn,xm,xm).

Now, we introduce the following.

Definition . Let (X,Gp) be a GP-metric space.
(M) A sequence {xn} is called -GP-Cauchy if and only if limm,n→∞ Gp(xn,xm,xm) = ;
(M) A GP-metric space (X,Gp) is said to be -GP-complete if and only if every

-GP-Cauchy sequence in X GP-converges to a point x ∈ X such that
Gp(x,x,x) = .

Example . Let X = [,+∞) and define Gp(x, y, z) = max{x, y, z} for all x, y, z ∈ X. Then
(X,Gp) is aGP-completeGP-metric space.Moreover, ifX =Q∩ [, +∞) (whereQ denotes
a set of rational numbers), then (X,Gp) is a -GP-complete GP-metric space.

Lemma . (See []) Let (X,Gp) be a GP-metric space. Then
(A) If Gp(x, y, z) = , then x = y = z;
(B) If x �= y, then Gp(x, y, y) > .

In the rest of this paper, we will denote the positive natural numbers by N∗ and the
natural numbers by N.

2 Main results
In this section, we present our findings on fixed point theorems on -GP-complete GP-
metric spaces. We first start with the following definition.

Definition . Let (X,Gp) be a GP-metric space and T : (X,Gp) → (X,Gp) be a map. Let
M(x, y, y) denote the value

max

{
Gp(x, y, y),Gp(x,Tx,Tx),Gp(y,Ty,Ty),



[
Gp(x,Ty,Ty) +Gp(y,Tx,Tx)

]}
()

for all x, y ∈ X.

Lemma . If (X,Gp) is a GP-metric space and T : X → X is a map, then, for each x ∈ X,
we have

M(x,Tx,Tx) =max
{
Gp(x,Tx,Tx),Gp

(
Tx,Tx,Tx

)}
. ()
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Proof Let x ∈ X. Then

max
{
Gp(x,Tx,Tx),Gp

(
Tx,Tx,Tx

)}
≤ M(x,Tx,Tx)

=max

{
Gp(x,Tx,Tx),Gp(x,Tx,Tx),Gp

(
Tx,Tx,Tx

)
,



[
Gp

(
x,Tx,Tx

)
+Gp(Tx,Tx,Tx)

]}

≤ max

{
Gp(x,Tx,Tx),Gp(x,Tx,Tx),Gp

(
Tx,Tx,Tx

)
,



[
Gp(x,Tx,Tx) +Gp

(
Tx,Tx,Tx

)]}

=max
{
Gp(x,Tx,Tx),Gp

(
Tx,Tx,Tx

)}
. ()

The proof is complete. �

Lemma . Let (X,Gp) be a GP-metric space and let T : X → X be a map such that

Gp(Tx,Ty,Ty) ≤ φ
(
M(x, y, y)

)
()

for all x, y ∈ X, where φ : [,∞) → [,∞) is a function such that φ(t) < t for all t > . If
x ∈ X satisfies Tnx �= Tn+x for all n ∈N, then the following hold:
(a) M(Tnx,Tn+x,Tn+x) =Gp(Tnx,Tn+x,Tn+x) for all n ∈N;
(b) Gp(Tnx,Tn+x,Tn+x)≤ φ(Gp(Tn–x,Tnx,Tnx)) <Gp(Tn–x,Tnx,Tnx) for all

n ∈N∗.

Proof (a) From Lemma ., we have

M
(
Tnx,Tn+x,Tn+x

)
=max

{
Gp

(
Tnx,Tn+x,Tn+x

)
,Gp

(
Tn+x,Tn+x,Tn+x

)}
.

Since Tnx �= Tn+x for all n ∈ N, then by Lemma .(B), we get Gp(Tnx,Tn+x,Tn+x) > 
for all n ∈ N. Consequently, M(Tnx,Tn+x,Tn+x) > . Now by condition (), we deduce
that

Gp
(
Tn+x,Tn+x,Tn+x

) ≤ φ
(
M

(
Tnx,Tn+x,Tn+x

))
<M

(
Tnx,Tn+x,Tn+x

)
, ()

that is, Gp(Tn+x,Tn+x,Tn+x) <Gp(Tnx,Tn+x,Tn+x). Hence, (a) holds.
Clearly, (b) follows from (), (a), and the fact that Gp(Tn–x,Tnx,Tnx) >  for all n ∈ N.

�

Definition . A function φ : [,∞) → [,∞) is called upper semi-continuous from the
right if for each t ≥  and each sequence (tn)n∈N∗ such that tn ≥ t and limn→∞ tn = t, the
equality holds lim supn→∞ φ(tn) ≤ φ(t).
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Theorem . Let (X,Gp) be a GP-complete GP-metric space and let T : X → X be a map
such that

Gp(Tx,Ty,Ty) ≤ φ
(
M(x, y, y)

)
, ()

for all x, y ∈ X, where φ : [,∞) → [,∞) is an upper semi-continuous function from the
right such that φ(t) < t for all t > . Then T has a unique fixed point z ∈ X. Moreover,
Gp(z, z, z) = .

Proof Let x ∈ X. If there is n ∈N such that Tnx = Tn+x, then Tnx is a fixed point of T and
the uniqueness of Tnx follows as in the last part of the proof below. Hence, we assume that
Tnx �= Tn+x for all n ∈N. Put x = x and construct the sequence (xn)n∈N, where xn = Tnx
for all n ∈ N. Thus, xn+ = Txn and Gp(xn,xn+,xn+) >  for all n ∈ N. Define the sequence
{sn} by sn =Gp(xn,xn+,xn+) for all n ∈N. From Lemma .(b) we know that {sn} is a non-
increasing sequence. Hence, there exists c ∈R+ such that sn → c as n→ ∞. We will show
that c must be equal to . Let c > . By taking limitsup as n → ∞ in condition (b) of
Lemma ., we get that

c = lim sup
n→∞

Gp(xn,xn+,xn+) = lim sup
n→∞

φ
(
Gp(xn,xn+,xn+)

)
()

and so, by upper semi-continuity from the right of the function φ, we deduce

c = lim sup
n→∞

φ
(
Gp(xn,xn+,xn+)

) ≤ φ(c) < c, ()

which is a contradiction. Hence, c = . Consequently, limn→∞ Gp(xn,xn+,xn+) = . Next
we show that limn,m→∞ Gp(xn,xm,xm) = . Assume the contrary. Then there exist ε >  and
sequences (nk)k∈N∗ , (mk)k∈N∗ in N∗ with mk ≥ nk ≥ k and such that Gp(xnk ,xmk ,xmk ) ≥ ε

for all k ∈ N∗. From the fact that limn→∞ Gp(xn,xn+,xn+) = , we can suppose, without
loss of generality, that Gp(xnk ,xmk–,xmk–) < ε. For each k ∈N∗, we have

ε ≤ Gp(xnk ,xmk ,xmk ) ≤ Gp(xnk ,xmk–,xmk–) +Gp(xmk–,xmk ,xmk )

< ε +Gp(xmk–,xmk ,xmk ), ()

and hence limk→∞ Gp(xnk ,xmk ,xmk ) = ε. Now, let k ∈N∗ be such thatGp(xnk ,xnk+,xnk+) <
ε and Gp(xmk ,xmk+,xmk+) < ε for all k ≥ k. Then

Gp(xnk ,xmk ,xmk ) ≤ M(xnk ,xmk ,xmk )

= max

{
Gp(xnk ,xmk ,xmk ),Gp(xnk ,xnk+,xnk+),

Gp(xmk ,xmk+,xmk+),



[
Gp(xnk ,xmk+,xmk+) +Gp(xmk ,xnk+,xnk+)

]}

≤ max

{
Gp(xnk ,xmk ,xmk ),Gp(xnk ,xnk+,xnk+),

Gp(xmk ,xmk+,xmk+),
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[
Gp(xnk ,xnk+,xnk+) +Gp(xnk+,xnk+,xnk+) + · · ·

+Gp(xmk ,xmk+,xmk+) +Gp(xmk ,xmk–,xmk–)

+Gp(xmk–,xmk–,xmk–) + · · · +Gp(xnk+,xnk+,xnk+)
]}

()

for all k ≥ k. So, limk→∞ M(xnk ,xmk ,xmk ) = ε. Since M(xnk ,xmk ,xmk ) ≥ ε for all k ∈ N∗

and φ is upper semi-continuous from the right, we deduce that lim supk→∞ φ(M(xnk ,
xmk ,xmk )) ≤ φ(ε). On the other hand, for each k ∈N∗, we have

ε ≤ Gp(xnk ,xmk ,xmk )≤ Gp(xnk ,xnk+,xnk+) +Gp(xnk+,xmk+,xmk+)

+Gp(xmk+,xmk ,xmk )

≤ Gp(xnk ,xnk+,xnk+) + φ
(
M(xnk ,xmk ,xmk )

)
+Gp(xmk+,xmk ,xmk ), ()

so ε ≤ lim supk→∞ φ(M(xnk ,xmk ,xmk )) ≤ φ(ε), a contradiction because φ(ε) < ε. Conse-
quently, limn,m→∞ Gp(xn,xm,xm) =  and thus (xn)n∈N is a Cauchy sequence in the GP-
complete GP-metric space (X,Gp). Hence, there is z ∈ X such that

lim
n,m→∞Gp(xn,xm,xm) = lim

n→∞Gp(z,xn,xn) =Gp(z, z, z) = . ()

We show that z is a fixed point of T . To this end, we first note that Gp(z,Tz,Tz) =
limn→∞ M(z,xn,xn), so lim supn→∞ φ(M(z,xn,xn)) ≤ φ(Gp(z,Tz,Tz)). On the other hand,
since for each n ∈ N, Gp(z,Tz,Tz) ≤ Gp(z,xn,xn) +Gp(xn,Tz,Tz), it follows that

Gp(z,Tz,Tz) ≤ lim sup
n→∞

(
Gp(z,xn,xn) +Gp(xn,Tz,Tz)

)

= lim sup
n→∞

Gp(xn,Tz,Tz)

≤ lim sup
n→∞

φ
(
M(xn–, z, z)

)

≤ φ
(
Gp(z,Tz,Tz)

)
. ()

Therefore, Gp(z,Tz,Tz) =  and thus z = Tz. Finally, let u ∈ X be such that Tu = u. Then

Gp(u, z, z) =Gp(Tu,Tz,Tz) ≤ φ
(
M(u, z, z)

)
= φ

(
Gp(u, z, z)

)
. ()

Hence, Gp(u, z, z) = , i.e., u = z. This concludes the proof. �

Definition . Letψ(·, ·) : X×X → [,∞) be a given function. ThenQ(x, y, z) will denote
the value

max

{
Gp(x, y, z),Gp(x,Tx,Tx),Gp(y,Ty,Ty),Gp(z,Tz,Tz),



[
Gp(x,Ty,Ty) +Gp(y,Tx,Tx)

]
,


[
Gp(x,Tz,Tz) +Gp(z,Tx,Tx)

]}
. ()
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Then we obtain the following statement.

Corollary . Let (X,Gp) be a GP-complete GP-metric space and let T : X → X be a map
such that

 ≤ [
ψ(z, z) –ψ(y, y)

]
max

{
Gp(x,x,x),Gp(y, y, y),Gp(z, z, z)

}
+ψ(x, y)ψ(x, z)

[
φ
(
Q(x, y, z)

)
–Gp(Tx,Ty,Tz)

]

for all x, y, z ∈ X, where φ : [,∞) → [,∞) is an upper semi-continuous from the right
function such that φ(t) < t for all t > . Then T has a unique fixed point z ∈ X. Moreover,
Gp(z, z, z) = .

Proof Clearly, by taking y = z in the hypothesis, we have

Gp(Tx,Ty,Ty) ≤ φ
(
Q(x, y, y)

)
= φ

(
M(x, y, y)

)

for all x, y ∈ X. Then the conditions of Theorem . hold. This concludes the proof. �

Example . Let X = [,∞), Gp : X × X × X → R be defined by Gp(x, y, z) =max{x, y, z}.
Then (X,Gp) is a GP-complete GP-metric space. Let f : X → X be defined by Tx = x

(x+)
and ψ(t) = t

+t for all t ∈ [, +∞).

Proof Without loss of generality, we assume that x≥ y. Then

Gp(Tx,Ty,Ty) =
x

(x + )
≤ x

x + 
= ψ(x) =ψ

(
Gp(x, y, y)

)
.

Then the condition of Theorem . holds and T has a unique fixed point  in [,∞).
Moreover, Gp(, , ) = . �

Example . Let X = [,∞), Gp : X × X × X → R be defined by Gp(x, y, z) =max{x, y, z}.
Then (X,Gp) is a GP-complete GP-metric space. Let T : X → X be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩


x

 if  ≤ x < /,

( – x)/ if / ≤ x ≤ ,

x if x > 

and ψ(t) = 
 t for all t ∈ [, +∞).

Proof To prove this example, we need to consider the following cases:
• Let  ≤ x, y < /. Then

Gp(Tx,Ty,Ty) =


max

{
x, y

} ≤ 

max{x, y} = ψ

(
Gp(x, y, y)

)
.

• Let /≤ x, y≤ . Then

Gp(Tx,Ty,Ty) =


max{ – x,  – y} ≤ 


max{x, y} = ψ

(
Gp(x, y, y)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/39
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• Let x, y > . Then

Gp(Tx,Ty,Ty) =


max{x, y} ≤ 


max{x, y} = ψ

(
Gp(x, y, y)

)
.

• Let  ≤ x < / and /≤ y≤ . Then

Gp(Tx,Ty,Ty) =max

{


x, ( – y)/

}
≤ 


max{x, y} = ψ

(
Gp(x, y, y)

)
.

• Let  ≤ x < / and y > . Then

Gp(Tx,Ty,Ty) =max

{


x,



y
}

≤ 

max{x, y} = ψ

(
Gp(x, y, y)

)
.

• Let /≤ x≤  and y > . Then

Gp(Tx,Ty,Ty) =max

{
( – x)/,



y
}

≤ 

max{x, y} = ψ

(
Gp(x, y, y)

)
.

Then the condition of Theorem . holds and T has a unique fixed point  in [,∞).
Moreover, Gp(, , ) = . �

Lemma . Let φ : [,∞) → [,∞) be nondecreasing and let t > . If limn→∞ φn(t) = ,
then φ(t) < t.

Theorem . Let (X,Gp) be a GP-complete GP-metric space and T : X → X be a map
such that

Gp(Tx,Ty,Ty) ≤ φ
(
N(x, y, y)

)
, ()

where N(x, y, y) = max{Gp(x, y, y),Gp(x,Tx,Tx),Gp(y,Ty,Ty)} for all x, y ∈ X, and φ :
[,∞)→ [,∞) is a nondecreasing function such that limn→∞ φn(t) =  for all t > . Then
T has a unique fixed point z ∈ X.Moreover, Gp(z, z, z) = .

Proof Let x ∈ X. If there is n ∈ N such that Tnx = Tn+x, then Tnx is a fixed point of T
and the uniqueness of Tnx follows as in the last part of the proof below. Hence, we will
assume that Tnx �= Tn+x for all n ∈ N. Put x = x and construct the sequence (xn)n∈N,
where xn = Tnx for all n ∈ N. Thus, xn+ = Txn and Gp(xn,xn+,xn+) >  for all n ∈ N. By
Lemma .(b),

Gp(xn,xn+,xn+) ≤ φ
(
Gp(xn–,xn,xn)

)
()

for all n ∈N. Then, since φ is nondecreasing, we deduce that

Gp(xn,xn+,xn+) ≤ φn(Gp(x,x,x)
)

()

for all n ∈ N. Hence, limn→∞ Gp(xn,xn+,xn+) = . Now, choose an arbitrary ε > . Since
limn→∞ φn(ε) = , it follows from Lemma . that φ(ε) < ε, so there is nε ∈N∗ such that

Gp(xn,xn+,xn+) < ε – φ(ε) ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/39
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for all n ≥ nε . Therefore,

Gp(xn,xn+,xn+) ≤ Gp(xn,xn+,xn+) +Gp(xn+,xn+,xn+)

< ε – φ(ε) + φ
(
Gp(xn,xn+,xn+)

)
≤ ε – φ(ε) + φ(ε) = ε ()

for all n ≥ nε . So,

Gp(xn,xn+,xn+) ≤ Gp(xn,xn+,xn+) +Gp(xn+,xn+,xn+)

< ε – φ(ε) + φ
(
N(xn,xn+,xn+)

)
≤ ε – φ(ε) + φ(ε) = ε, ()

and following this process,

Gp(xn,xn+k ,xn+k) < ε ()

for all n ≥ nε and k ∈ N∗. Consequently,

lim
n,m→∞Gp(xn,xm,xm) = , ()

and thus {xn}n∈N is a Cauchy sequence in theGp-completeGp-metric space (X,Gp). Hence,
there is z ∈ X such that

 = lim
n,m→∞Gp(xn,xm,xm) = lim

n→∞Gp(z,xn,xn) =Gp(z, z, z). ()

We show that z is a fixed point of T . Assume the contrary. Then Gp(z,Tz,Tz) > . For
each n ∈N∗, we have

Gp(z,Tz,Tz) ≤ Gp(z,xn,xn) +Gp(xn,Tz,Tz)

≤ Gp(z,xn,xn) + φ
(
N(z, z,xn–)

)
. ()

From our assumption that Gp(z,Tz,Tz) > , it easily follows that there is n ∈ N such that
N(z, z,xn–) =Gp(z,Tz,Tz) for all n≥ n. So,

Gp(z,Tz,Tz) ≤ Gp(z,xn,xn) + φ
(
Gp(z,Tz,Tz)

)
()

for all n ≥ n. Taking limits as n → ∞, we obtain that

Gp(z,Tz,Tz) ≤ φ
(
Gp(z,Tz,Tz)

)
<Gp(z,Tz,Tz), ()

a contradiction. Consequently, z = Tz. Finally, the uniqueness of z follows as in Theo-
rem .. �
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Example . Let X = [, ], Gp : X × X × X → R be defined by Gp(x, y, z) = max{x, y, z}.
Then (X,Gp) is a GP-complete GP-metric space. Let T : X → X be defined by

Tx =
(
x – x

)
/

and ψ(t) = 
 t

 for all t ∈ [, +∞).

Proof Without loss of generality, we assume that x≥ y. Then

N(x, y, y) =max
{
Gp(x, y, y),Gp(x,Tx,Tx),Gp(y,Ty,Ty)

}
= x.

And so

Gp(Tx,Ty,Ty) = max
{(
x – x

)
/,

(
y – y

)
/

}

= max

{
(x – x)(x + x)


,
(y – y)(y + y)



}

≤ max

{
x(x – x)


,
y(y – y)



}

≤ 

max

{
x, y

}
=


x = ψ

(
N(x, y, y)

)
.

Then the condition of Theorem . holds and T has a unique fixed point  in [, ]. More-
over, Gp(, , ) = . �

Example . Let X = [,∞), Gp : X × X × X → R be defined by Gp(x, y, z) =max{x, y, z}.
Then (X,Gp) is a GP-complete GP-metric space. Let T : X → X be defined by

Tx =

⎧⎨
⎩


 (x

 + x) if  ≤ x < ,

x if x ≥ 

and ψ(t) = 
 t for all t ∈ [, +∞).

Proof To prove this example, we need to examine the following cases:
• Let  ≤ x, y < . Then N(x, y, y) =max{x, y} and

Gp(Tx,Ty,Ty) =max

{



(
x + x

)
,



(
y + y

)} ≤ 

max{x, y} = ψ

(
N(x, y, y)

)
.

• Let x, y≥ . Then N(x, y, y) =max{x, y} and

Gp(Tx,Ty,Ty) =


max{x, y} ≤ 


max{x, y} = ψ

(
N(x, y, y)

)
.

• Let  ≤ x <  and y≥ . Then N(x, y, y) = y and

Gp(Tx,Ty,Ty) =max

{



(
x + x

)
,


y
}

≤ 

max{x, y} = 


y = ψ

(
N(x, y, y)

)
.
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Then the condition of Theorem . holds and T has a unique fixed point  in [, ]. More-
over, Gp(, , ) = . �

Corollary . Let (X,Gp) be a GP-complete GP-metric space and T : X → X be a map
such that

Gp(Tx,Ty,Tz) ≤ φ
(
N(x, y, z)

)
, ()

where N(x, y, y) = max{Gp(x, y, z),Gp(x,Tx,Tx),Gp(y,Ty,Ty),Gp(z,Tz,Tz)} for all x, y ∈ X,
and φ : [,∞) → [,∞) is a nondecreasing function such that limn→∞ φn(t) =  for all
t > . Then T has a unique fixed point z ∈ X.Moreover, Gp(z, z, z) = .

Similarly, we have the corollary below.

Corollary . Let (X,Gp) be a GP-complete GP-metric space and T : X → X be a map
such that

 ≤ [
ψ(z, z) –ψ(y, y)

]
max

{
Gp(x,x,x),Gp(y, y, y),Gp(z, z, z)

}
+ψ(x, y)ψ(x, z)

[
φ
(
R(x, y, z)

)
–Gp(Tx,Ty,Tz)

]
,

where R(x, y, z) =max{Gp(x, y, z),Gp(x,Tx,Tx),Gp(y,Ty,Ty),Gp(z,Tz,Tz)} for all x, y, z ∈ X,
and φ : [,∞) → [,∞) is a nondecreasing function such that limn→∞ φn(t) =  for all
t > . Then T has a unique fixed point z ∈ X.Moreover, Gp(z, z, z) = .

In [], Jachymski proved the equivalence of auxiliary functions (see Lemma ). Inspired
by the results from this remarkable paper of Jachymski, we finish this paper by stating the
following theorem.

Theorem . (See []) Let (X,Gp) be a GP-complete GP-metric space and T : X → X be
a self-mapping. Assume that

M(x, y, y) = max

{
Gp(x, y, y),Gp(x,Tx,Tx),Gp(y,Ty,Ty),



[
Gp(x,Ty,Ty) +Gp(y,Tx,Tx)

]}
.

Then the following statements are equivalent:
(i) there exist functions ψ ,η ∈ � such that

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
M(x, y, y)

)
– η

(
M(x, y, y)

)

for any x, y ∈ X ;
(ii) there exists a function β : [,∞) → [, ] such that for any bounded sequence {tn} of

positive reals, β(tn) →  implies tn →  and

G(Tx,Ty,Ty) ≤ β
(
M(x, y, y)

)
ψ

(
M(x, y, y)

)

for any x, y ∈ X ;

http://www.journalofinequalitiesandapplications.com/content/2013/1/39
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(iii) there exists a continuous function η : [,∞) → [,∞) such that η–({}) =  and

G(Tx,Ty,Ty) ≤ M(x, y, y) – η
(
M(x, y, y)

)

for any x, y ∈ X ;
(iv) there exist a function ψ ∈ � and a nondecreasing, right-continuous function

ϕ : [,∞)→ [,∞) with ϕ(t) < t and for all t >  with

ψ
(
G(Tx,Ty,Ty)

) ≤ ϕ
(
ψ

(
M(x, y, y)

))

for any x, y ∈ X ;
(v) there exists a continuous and nondecreasing function ϕ : [,∞)→ [,∞) such that

ϕ(t) < t and for all t >  with

ψ
(
G(Tx,Ty,Ty)

) ≤ ϕ
(
M(x, y, y)

)

for any x, y ∈ X.
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