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Abstract
In this paper, we show how an A-harmonic operator arises from Dirac systems under
controllable growth condition. By the method of removable singularities for solutions
to the A-Dirac system with controllable growth conditions, we establish the fact that
an A-harmonic operator is a real part of the corresponding A-Dirac systems.

Keywords: A-harmonic operator; A-Dirac system; Caccioppoli estimate; controllable
growth condition

1 Introduction
In this paper, we study the relation between an A-harmonic operator and A-Dirac systems
under controllable growth conditions. The equations defined by the A-harmonic operator
are

–divA(x,∇u) = f (x,∇u), (.)

where

A(x, ξ ) : � ×R
n → R

n, (.)

x → A(x, ξ ) is measurable for all ξ , and ξ → A(x, ξ ) is continuous for a.e. x ∈ �. Further
assume that A(x, ξ ) satisfies the following structure conditions with p > :

〈
A(x, ξ ), ξ

〉 ≥ |ξ |p,
∣∣A(x, ξ )∣∣ ≤ a|ξ |p–

(.)

for some constant a > , and p represents an exponent throughout the paper. The inho-
mogeneity f (x, ξ ) satisfies the following controllable growth condition:

f (x,∇u) ≤ |∇u|p(– 
s ) + , (.)

where s = np
n–p for n > p; s is any exponent for n = p.
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Definition . We call a function u ∈W ,p
loc (�) a weak solution to (.) under the structure

conditions (.) and (.) if the equality

∫
�

〈
A(x,∇u),∇φ

〉
dx =

∫
�

f (x,∇u)φ dx (.)

holds for all φ ∈W ,p(�) with compact support.

The A-Dirac systems in current paper are of the form

–DÃ(x,Du) = f (x,Du). (.)

The main purpose of this paper is to show that under controllable growth condition, an
equation defined by the A-harmonic operator is a real part of the corresponding A-Dirac
system. In order to obtain the desired result, we use themethod of removability theorems,
which proved that under suitable condition, a result concerning removable singularities
for equations defined by the A-harmonic operator satisfying the Lipschitz condition or of
boundedmean oscillation extends to Clifford-valued solutions to the correspondingDirac
equation. Further discussion on nonlinear Dirac equations can be found in [–] and their
references.
Themethod of removability theoremswas introduced byAbreu-Blaya et al. in [], where

they showed that rnω(r)-Hausdorff measure sets of monogenic functions with modulus
of continuity ω(r) can be removed. The results were extended to Hölder continuous an-
alytic functions [] by Kaufman and Wu immediately. And then, Koskela and Martio
[] established that in Hölder and bounded mean oscillation classes, the sets satisfying
a certain geometric condition related to Minkowski dimension of an A-harmonic func-
tion can be removed. In terms of Hausdorff dimension, a precise condition for removable
sets of A-harmonic functions in the case of Hölder continuity exists []. The results were
generalized [] to the A-Dirac equation satisfying a certain oscillation condition. In the
current paper, we further extend the results in [] to discover the relation between the
inhomogeneity A-harmonic equations and the inhomogeneity A-Dirac equations under
controllable growth condition and obtain the main result as follows. It implies that under
suitable condition, the solutions to the A-harmonic equation under controllable growth
condition in fact is a real part of weak solutions to the corresponding A-Dirac systems.

Theorem . Let E be a relatively closed subset of �. Suppose that u ∈ Lploc(�) has distri-
butional first derivatives in �, u is a solution to the scalar part of A-Dirac equation (.)
under controllable growth condition in �\E, and u is of p,k-oscillation in �\E. If for each
compact subset K of E

∫
K ()\K

d(x,K)p(k–)–k < ∞, (.)

then u extends to a solution of the A-Dirac equation in �.

2 A-Dirac operator
In this section,we introduce anA-Dirac operator. In order to definite theA-Dirac operator,
we should present the definition and notations about Clifford algebra at first [].
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We write Un for the real universal Clifford algebra over Rn. The Clifford algebra is gen-
erated over R by the basis of reduced products

{e, e, . . . , en, ee, . . . , e · · · en}, (.)

where {e, e, . . . , en} is an orthogonal basis of Rn with the relation eiej + ejei = –δij. We
write e for the identity. The dimension of Un is Rn , which implies an increasing tower
R ⊂ C ⊂ H ⊂ Un ⊂ · · · . The Clifford algebra Un is a graded algebra as Un =

⊕
l U l

n, where
U l
n are those elements whose reduced Clifford products have length l.
For A ⊂ Un, Sc(A) denotes the scalar part of A, that is, the coefficient of the element e,

where � ⊂ Rn is a connected and open set with boundary ∂�. A Clifford-valued func-
tion u : � → Un can be written as u =

∑
α uαeα , where each uα is real-valued and eα are

reduced products. The norm used here is given by |∑α uαeα| = (
∑

α uα)/. This norm is
sub-multiplicative, |AB| ≤ C|AB|.
The Dirac operator used here is

D =
n∑
j=

ej
∂

∂xj
. (.)

Also,D = –	. Here	 is the Laplace operator which operates only on coefficients. A func-
tion is monogenic when Du = .
Q is a cube in � with volume |Q| throughout the paper. We write σQ for the cube with

the same center as Q and with sidelength σ times that of Q. For q > , we write Lq(�,Un)
for the space of Clifford-valued functions in�whose coefficients belong to the usual Lq(�)
space. Also, W ,q(�,Un) is the space of Clifford-valued functions in � whose coefficients
as well as their first distributional derivatives are in Lq(�). We also write Lqloc(�,Un) for
∩Lq(�′,Un), where the intersection is over all �′ compactly contained in �. We similarly
writeW ,q

loc (�,Un). Moreover, we writeM� = {u : � → Un|Du = } for the space of mono-
genic functions in �.
Furthermore, we define the Dirac Sobolev space

WD,p(�) =
{
u ∈ Un

∣∣∣
∫

�

|u|p +
∫

�

|Du|p < ∞
}
. (.)

The local spaceWD,p
loc is similarly defined. Notice that if u is monogenic, then u ∈ Lp(�)

if and only if u ∈WD,p(�). Also, it is immediate thatW ,p(�)⊂ WD,p(�).
Under such definitions and notations, we can introduce the operator of A-Dirac. Define

linear isomorphism θ : Rn → U 
n by

θ (w, . . . ,wn) =
n∑
i=

wiei. (.)

For x, y ∈R
n, we have

–Re
(
θ (x)θ (y)

)
= 〈x, y〉, (.)

∣∣θ (x)∣∣ = |x|. (.)
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Here Ã(x, ξ ) :� × U → U is defined by

Ã(x, ξ ) = θA
(
x, θ–ξ

)
, (.)

which means that (.) is equivalent to
∫

�

Re
(
θA(x,∇u)θ (∇φ)

)
dx =

∫
�

Re
(
Ã(x,Du)Dφ

)
dx =

∫
�

f (x,∇u)φ dx. (.)

For the Clifford conjugation (ej · · · ejl) = (–)lejl · · · ej, we define a Clifford-valued inner
product as ᾱβ . Moreover, the scalar part of this Clifford inner product Re(ᾱβ) is the usual
inner product in R

n , 〈α,β〉, when α and β are identified as vectors.
For convenience, we replace Ã with A, recast the structure equations above and define

the operator

A(x, ξ ) :� × Un → Un, (.)

where A preserves the grading of the Clifford algebra, x → A(x, ξ ) is measurable for all ξ ,
and ξ → A(x, ξ ) is continuous for a.e. x ∈ �. Furthermore, here A(x, ξ ) satisfies the struc-
ture conditions with p > ,

Re
(
A(x, ξ )ξ

) ≥ |ξ |p, (.)∣∣A(x, ξ )∣∣ ≤ a|ξ |p–, (.)

for some constant a > . We can definite the weak solution of equation (.) as follows.

Definition . A Clifford-valued function u ∈WD,p
loc (�,U k

n ), for k = , , , . . . ,n, is a weak
solution to (.) under structure conditions (.) and (.), and further assume that the
inhomogeneity term f (x,Du) satisfies the following controllable growth condition:

f (x,Du)≤ |Du|p(– 
s ) + , (.)

where s = np
n–p for n > p; s is any exponent for n = p.

For all φ ∈ W ,p(�,U k
n ) with compact support we have

∫
�

A(x,Du)Dφ dx =
∫

�

f (x,Du)φ dx. (.)

Notice that when A is identity, then the homogeneity part of (.)

∫
�

A(x,Du)Dφ dx =  (.)

is the Clifford Laplacian. Moreover, these equations generalize the important case of the
p-Dirac equation

D
(|Du|n–Du)

= . (.)

Here A(x, ξ ) = |ξ |p–ξ .
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These equations were introduced and their conformal invariance was studied in [].
Furthermore, when u is a real-valued function, (.) implies thatA(x,∇u) is a harmonic

field, and locally there exists a harmonic function H such that A(x,∇u) = ∇H . If A(x, ξ ) is
invertible, then ∇u = A–(x,∇H). Hence, the regularity of A implies the regularity of the
solution u.
In general, A-harmonic functions do not have such regularity. This suggests the study

of the scalar part of system (.) in general. Thus a Caccioppoli estimate for solutions to
the scalar part of (.) is necessary.

3 The proof of main results
In this section, we establish the main results. Thus, a suitable Caccioppoli estimate for
solutions to (.) is necessary.

Theorem . Let u be a solution to the scalar part of (.) defined by (.), and let Q be
a cube with σQ⊂ �, where σ > . Then

∫
Q

|Du|p ≤ C(ε)|Q|–p/n
∫

σQ
|u – uσQ|p +C(ε)

(∫
Q

(|Du|p + 
)
dx

)p(s–)/s(p–)

. (.)

Proof Let η ∈ C∞(�) be a standard cut-off function, η > , η ≡  in Q. Choose φ =
(u – uσQ)ηp as a test function in (.). Then Dφ = pηp–(Dη)(u – uσQ) + ηpDu. Using the
structure conditions (.) and (.),

∫
�

f (x,Du)(u – uσQ)ηp dx

=
∫

�

Re
(
A(x,Du)

(
pηp–(Dη)(u – uσQ) + ηpDu

))
dx,

which means that

∫
�

|Du|pηp dx≤ ap
∫

�

|Du|p–|u – uσQ||Dη||η|p– dx

+
∫

�

f (x,Du)(u – uσQ)ηp dx. (.)

Using Hölder’s inequality and (.), we have

∫
�

|Du|pηp ≤ C(p,a)
(∫

�

|u – uσQ|p|Dη|p
)/p(∫

�

|Du|pηp
)(p–)/p

+
∫

�

∣∣f (x,Du)∣∣|u – uσQ||η|p

= I + I. (.)

Using Young’s inequality, we get

I ≤ ε

∫
�

|Du|p|η|p +C(ε,a,p)
∫

�

|u – uσQ|p|Dη|p. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/362
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Using (.) and then the Sobolev embedding theorem yields

I ≤
∫

�

|u – uσQ|η(|Du|p(–/s) + 
)
ηp– dx

≤
(∫

�

|u – uσQ|sηs
)/s(∫

�

(|Du|p(–/s) + 
)s/(s–)

ηs(p–)/(s–)
)–/s

≤
(∫

�

|Du|pηp
)/p(∫

�

(|Du|p + 
)
ηs(p–)/(s–)

)–/s

≤ ε

∫
�

|Du|pηp +C(ε)
(∫

�

(|Du|p + 
)
ηs(p–)/(s–)

)p(s–)/s(p–)

. (.)

Hence, combining inequalities (.) and (.) and choosing ε >  small enough, we have

∫
�

|Du|pηp ≤ C(ε)
∫

�

|u – uσQ|p|∇η|p +C(ε)
(∫

�

(
(Du)p + 

)
ηs/(s–)

)p(s–)/s(p–)

. (.)

Noticing that Dη ≤ C|Q|–/n, we obtain
∫
Q

|Du|p ≤ C(ε)|Q|–p/n
∫

σQ
|u – uσQ|p +C(ε)

(∫
Q

(|Du|p + |u|s + 
))p(s–)/s(p–)

.

This completes the proof of Theorem .. �

In order to discover the relation between A-harmonic equations and A-Dirac systems,
we should remove singularity of solutions to A-Dirac systems at first. Thus, various regu-
larity properties of real-valued functions, such as the following definition [], are needed.

Definition . Assume that u ∈ Lloc(�,Un), q >  and that –∞ < k ≤ . We say that u is of
q,k-oscillation in � when

sup
Q⊂�

|Q|–(qk+n)/qn inf
uQ∈M

(∫
Q

|u – uQ|q
)/q

<∞. (.)

The infimum over monogenic functions is natural since they are trivial solutions to an
A-Dirac equation just as constants are solutions to an A-harmonic equation. If u is a func-
tion and q = , then (.) is equivalent to the usual definition of the boundedmean oscilla-
tionwhen k =  and (.) is equivalent to the usual local Lipschitz conditionwhen  < k ≤ 
[]. Moreover, at least when u is a solution to an A-harmonic equation, (.) is equivalent
to a local order of growth condition when –∞ < k <  [, ]. In these cases, the supre-
mum is finite if we choose uQ to be the average value of the function u over the cube Q. It
is easy to see that in condition (.) the expansion factor ‘’ can be replaced by any factor
greater than .
If the coefficients of an A-Dirac solution u are of boundedmean oscillation, local Hölder

continuous, or of a certain local order of growth, then u is in an appropriate oscillation
class [].
Notice that monogenic functions satisfy (.) just as the space of constants is a subspace

of the boundedmean oscillation and Lipschitz spaces of real-valued functions.We remark

http://www.journalofinequalitiesandapplications.com/content/2013/1/362
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that it follows from Hölder’s inequality that if s ≤ q and if u is of q,k-oscillation, then u
is of s,k-oscillation. The following lemma shows that Definition . is independent of the
expansion factor of the cube [].

Lemma . Suppose that F ∈ Lloc(�,R), F >  a.e., γ ∈R, and σ,σ > . If

sup
σQ⊂�

|Q|γ
∫
Q
F <∞, (.)

then

sup
σQ⊂�

|Q|γ
∫
Q
F < ∞. (.)

Then we can prove the main result.

Proof of Theorem . Let Q be a cube in the Whitney decomposition of � \ E.
We use the Whitney decomposition W = {Q} of �. The Whitney decomposition con-

sists of closed dyadic cubes with disjoint interiors which satisfy
(a) � \ E =

⋃
Q∈W Q,

(b) |Q|/n ≤ d(Q, ∂�) ≤ |Q|/n,
(c) (/)|Q|/n ≤ |Q|/n ≤ |Q|/n when Q ∩Q is not empty.
Here d(Q, ∂�) is the Euclidean distance between Q and the boundary of � [].
Thus, if A⊂R and r > , we can define the r-inflation of A as

A(r) =
⋃
x∈A

B(x, r). (.)

From Theorem ., we have

(∫
Q

(|Du|p + 
))p(s–)/s(p–)

≤ C
[(∫

Q
|Du|p

)p(s–)/s(p–)

+
(∫

Q

)p(s–)/s(p–)]

= C[B + B]. (.)

Note that u ∈WD,p(�) yields

B =
(

|Q|
∫
–
Q
|Du|p

)p(s–)/s(p–)

= |Q|p(s–)/s(p–)
(∫
–
Q
|Du|p

)p(s–)/s(p–)

= C
(‖u‖W ,p

)|Q|p(s–)/s(p–) (.)

and

B = |Q|p(s–)/s(p–). (.)

Using the Caccioppoli estimate (.) and the p,k-oscillation condition (.), we have
∫
Q

|Du|p ≤ C inf
uQ∈MσQ

|Q|– p
n

∫
σQ

|u – uσQ|p +C
(
ε,‖u‖W ,p

)|Q|p(s–)/s(p–)

≤ C|Q|a, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/362
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where a = (n+ pk – p)/n and note that –∞ < k ≤ . Since the problem is local (use a parti-
tion of unity), we show that (.) holds whenever φ ∈W ,p

 (B(x, r)) with x ∈ E and r > 
sufficiently small. Choose r = (/

√
n)min{,d(x, ∂�)} and let K = E ∩ B̄(x, r). Then K

is a compact subset of E. Also, let W be those cubes in the Whitney decomposition of
� \E. Notice that each cubeQ ∈W lies in K() \K . Let γ = p(k –)– k. First, since γ ≥ ,
it follows thatm(K) =m(E) =  []. Also, since a– n≥ γ using (.) and (.), we obtain

∫
B(x,r)

|Du|p ≤ C
∑
Q∈W

|Q|a/n ≤ C
∑
Q∈W

d(Q,K)a ≤ C
∑
Q∈W

∫
Q
d(x,K)a–n dx

≤ C
∫
K ()\K

d(x,K)a–n dx ≤ C
∫
K ()\K

d(x,K)γ dx <∞. (.)

Hence, u ∈WD,p
loc .

Next, let B = B(x, r) and assume that ψ ∈ C∞
 (B). Also, letWj, j = , , . . . be those cubes

Q ∈W with l(Q)≤ –j.
Consider the scalar functions

φj =max
{(
–j – d(x,K)

)
j, 

}
. (.)

Thus, each φj, j = , , . . . , is Lipschitz, equal to  on K and such that ψ( –φj) ∈ W ,p(B \
E) with compact support. Hence,

∫
B

[
A(x,Du)Dψ – f (x,Du)ψ

]
dx

=
∫
B\E

[
A(x,Du)D

(
ψ( – φj)

)
– f (x,Du)ψ( – φj)

]
dx

+
∫
B

[
A(x,Du)D(ψφj) – f (x,Du)ψφj

]
dx, (.)

where

I ′ =
∫
B\E

[
A(x,Du)D

(
ψ( – φj)

)
– f (x,Du)ψ( – φj)

]
dx,

I ′′ =
∫
B
A(x,Du)D(ψφj)dx,

I ′′′ =
∫
B
–f (x,Du)ψφj dx

since u is a solution in B \ E, I ′ = .
Also, we have

I ′′ =
∫
B
A(x,Du)ψDφj dx +

∫
B
φjA(x,Du)Dψ dx = I + I. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/362
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Now there exists a constant c such that |ψ | ≤ c < ∞. Hence, using Hölder’s inequality,
we have

|I| ≤ C
∑
Q∈Wj

∫
Q

∣∣A(x,Du)∣∣|Dφj|dx ≤ C
∑
Q∈Wj

∫
Q

|Du|p–|Dφj|dx

≤ C
∑
Q∈Wj

(∫
Q

|Du|dx
)(p–)/p(∫

Q
|Dφj|p dx

)/p

. (.)

Next, using (.), we get

|I| ≤ C
∑
Q∈Wj

|Q|(p(k–)+n)(p–)/npj|Q|/p. (.)

Now, for x ∈ Q ∈ Wj, d(x,K) is bounded above and below by a multiple of |Q|/n and for
Q ∈Wj, |Q|/n ≤ –j. Hence,

|I| ≤ C
∑
Q∈Wj

|Q|–/n+/p+(p(k–)+n)(p–)/np ≤ C
∫

∪Wj

d(x,K)p(k–)–k . (.)

Since ∪Wj ⊂ K() \K and |∪Wj| →  as j → ∞, it follows that I →  as j → ∞.
Again, using Hölder’s inequality,

|I| ≤ C sup
B

|Dψ |
(∫

∪Wj

|Du|p dx
)(p–)/p

|∪Wj|/p

≤ C
(∫

K\K ()
|Du|p dx

)(p–)/p

|∪Wj|/p. (.)

Since u ∈ W ,D
loc (�) and |∪Wj| →  as j → ∞, we have that I →  as j → ∞. Hence,

I ′′ → .

∣∣I ′′′∣∣ ≤ (|Du|p + |u|s– + 
)

≤ C
∑
Q∈Wj

[
|Q|a +

∫
Q
C′ dx

]

≤ C
∑
Q∈Wj

[|Q|a + |Q|]

≤ C
∑
Q∈Wj

|Q|a ≤ C
∫

∪Wj

d(x,K)p(k–)–k , (.)

where we have used the fact that a = (n + pk – p)/n for –∞ < k ≤ .
Since ∪Wj ⊂ K() \K and |Wj| →  as j → ∞, it follows that I ′′′ →  as j → ∞. �
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