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1 Introduction
The main revolution in the existence theory of many linear and non-linear operators
happened after the Banach contraction principle. After this principle many researchers
put their efforts into studying the existence and solutions for nonlinear equations (alge-
braic, differential and integral), a system of linear (nonlinear) equations and convergence
of many computational methods []. Banach contraction gave usmany important theories
like variational inequalities, optimization theory and many computational theories [, ].
Due to wide spreading importance of Banach contraction, many authors generalized it in
several directions [–]. Nadler [] was first to present it in a multivalued case, and then
many authors extended Nadler’s multivalued contraction. One of the real generalizations
of Nadler’s theorem was given by Mizoguchi and Takahashi in the following way.

Theorem . [] Let (X,d) be a complete metric space, and let T : X → X be a multival-
ued map such that Tx is a closed bounded subset of X for all x ∈ X. If there exists a function
ϕ : (,∞) → [, ) such that lim supr→t+ ϕ(r) <  for all t ∈ [,∞) and if

H(Tx,Ty) ≤ ϕ
(
d(x, y)

)(
d(x, y)

)
for all x, y(x �= y) ∈ X,

then T has a fixed point in X.

Suzuki [] proved that Mizoguchi and Takahashi’s theorem is a real generalization of
Nadler’s theorem. Recently Huang and Zhang [] introduced a cone metric space with a
normal cone with a constant K , which is generalization of a metric space. After that Reza-
pour and Hamlbarani [] generalized a cone metric space with a non-normal cone. Af-
terwards many researchers [–] have studied fixed point results in conemetric spaces.
In [] Mustafa et al. generalized the metric space and introduced the notion of G-metric
space which recovered the flaws of Dhage’s generalization [, ] of ametric space.Many
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researchers proved many fixed point results using a G-metric space [, ]. Anchalee
Kaewcharoen and Attapol Kaewkhao [] and Nedal et al. [] proved fixed point results
for multivalued maps inG-metric spaces. In , Beg et al. [] introduced the notion of
G-cone metric space and generalized some results. Chi-Ming Cheng [] proved Nadler-
type results in tvs G-cone metric spaces.
In  Cho and Bae [] generalized a Mizoguchi Takahashi-type theorem in a cone

metric space. In the present paper, we introduce the notion of Hausdorff distance function
on G-cone metric spaces and exploit it to study some fixed point results in G-cone metric
spaces. Our result generalizes many results in literature.

2 Preliminaries
Let E be a real Banach space. A subset P of E is called a cone if and only if:
(a) P is closed, nonempty and P �= {θ},
(b) a,b ∈ R, a,b≥ , x, y ∈ P implies ax + by ∈ P, more generally, if a,b, c ∈ R, a,b, c≥ ,

x, y, z ∈ P �⇒ ax + by + cz ∈ P,
(c) P ∩ (–P) = {θ}.
Given a cone P ⊂ E, we define a partial ordering� with respect to P by x� y if and only

if y – x ∈ P.
A cone P is called normal if there is a number K >  such that for all x, y ∈ E

θ � x� y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above inequality is called the normal constant
of P, while x y stands for y – x ∈ intP (interior of P), while x ≺ ymeans x� y and x �= y.
Rezapour [] proved that there are no normal cones with normal constants K <  and

for each k > , there are cones with normal constants K > .

Remark . [] The results concerning fixed points and other results, in the case of cone
spaces with non-normal solid cones, cannot be provided by reducing to metric spaces,
because in this case neither of the conditions of Lemmas - in [] hold. Further, the
vector cone metric is not continuous in a general case, i.e., from xn → x, yn → y it need
not follow that d(xn, yn)→ d(x, y).
For the case of non-normal cones, we have the following properties.
(PT) If u� v and v w, then u w.
(PT) If u v and v� w, then u  w.
(PT) If u v and v  w, then u w.
(PT) If θ � u c for each c ∈ intP, then u = θ .
(PT) If a� b + c for each c ∈ intP, then a� b.
(PT) If E is a real Banach space with a cone P, and if a� λa, where a ∈ P and

 ≤ λ < , then a = θ .
(PT) If c ∈ intP, an ∈ E and an → θ , then there exists an n such that, for all n > n, we

have an  c.

In the following we shall always assume that the cone P is solid and non-normal.
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Definition . [] Let X be a nonempty set. Suppose that a mappingG : X ×X ×X → E
satisfies:
(G) G(x, y, z) = θ if x = y = z,
(G) θ ≺ G(x,x, y), whenever x �= y, for all x, y ∈ X ,
(G) G(x,x, y)�G(x, y, z), whenever y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y,x, z) = · · · (symmetric in all three variables),
(G) G(x, y, z)�G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X .
Then G is called a generalized cone metric on X, and X is called a generalized cone

metric space or, more specifically, a G-cone metric space.

The concept of a G-cone metric space is more general than that of G-metric spaces and
cone metric spaces (see []).

Definition . [] A G-cone metric space X is symmetric if G(x, y, y) = G(y,x,x) for all
x, y ∈ X.

Example . [] Let (X,d) be a cone metric space. Define G : X × X × X → E by
G(x, y, z) = d(x, y) + d(y, z) + d(z,x). Then (X,G) is a G-cone metric space.

Proposition . [] Let X be a G-cone metric space, define dG : X ×X → E by

dG(x, y) =G(x, y, y) +G(y,x,x).

Then (X,dG) is a cone metric space.

It can be noted that G(x, y, y)� 
dG(x, y). If X is a symmetric G-cone metric space, then

dG(x, y) = G(x, y, y) for all x, y ∈ X.

Definition . [] Let X be a G-cone metric space and let {xn} be a sequence in X.
We say that {xn} is:
(a) a Cauchy sequence if for every c ∈ E with θ  c, there is N such that for all

n,m, l >N , G(xn,xm,xl)  c.
(b) a convergent sequence if for every c in E with θ  c, there is N such that for all

m,n >N , G(xm,xn,x)  c for some fixed x in X . Here x is called the limit of a
sequence {xn} and is denoted by limn→∞ xn = x or xn → x as n→ ∞.

A G-cone metric space X is said to be complete if every Cauchy sequence in X is con-
vergent in X.

Proposition . [] Let X be a G-cone metric space, then the following are equivalent.
(i) {xn} converges to x.
(ii) G(xn,xn,x)→ θ as n→ ∞.
(iii) G(xn,x,x)→ θ as n→ ∞.
(iv) G(xm,xn,x) → θ as m,n→ ∞.

Lemma . [] Let {xn} be a sequence in a G-cone metric space X. If {xn} converges to
x ∈ X, then G(xm,xn,x) → θ as m,n→ ∞.
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Lemma . [] Let {xn} be a sequence in a G-cone metric space X and x ∈ X. If {xn}
converges to x ∈ X, then {xn} is a Cauchy sequence.

Lemma . [] Let {xn} be a sequence in a G-cone metric space X. If {xn} is a Cauchy
sequence in X, then G(xm,xn,xl)→ θ , as m,n, l → ∞.

3 Main result
Denote by N(X), B(X) and CB(X) the set of nonempty, bounded, sequentially closed
bounded subsets of G-cone metric spaces, respectively.
Let (X,G) be a G-cone metric space. We define (see [])

s(p) = {q ∈ E : p� q} for q ∈ E,

and

s(a,B) =
⋃
b∈B

s
(
dG(a,b)

)
=

⋃
b∈B

{
x ∈ E : dG(a,b)� x

}
for a ∈ X and B ∈N(X).

For A,B ∈ B(X), we define

ŝ(A,B) =
⋃

a∈A,b∈B
s
(
dG(a,b)

)
,

s(a,B,C) = s(a,B) + ŝ(B,C) + s(a,C) =
{
u + v +w : u ∈ s(a,B), v ∈ ŝ(B,C),w ∈ s(a,C)

}
,

and

s(A,B,C) =
(⋂
a∈A

s(a,B,C)
)

∩
(⋂
b∈B

s(b,A,C)
)

∩
(⋂
c∈C

s(c,A,B)
)
.

Lemma . Let (X,G) be a G-cone metric space, let P be a cone in a Banach space E.
(i) Let p,q ∈ E. If p� q, then s(q) ⊂ s(p).
(ii) Let x ∈ X and A ∈N(X). If  ∈ s(x,A), then x ∈ A.
(iii) Let q ∈ P and let A,B,C ∈ B(X) and a ∈ A. If q ∈ s(A,B,C), then q ∈ s(a,B,C).

Remark . Recently, Kaewcharoen and Kaewkhao [] (see also []) introduced the
following concepts. Let X be aG-metric space and let CB(X) be the family of all nonempty
closed bounded subsets of X. Let HG(·, ·, ·) be the Hausdorff G-distance on CB(X), i.e.,

HG(A,B,C) =max
{
sup
a∈A

G(a,B,C), sup
b∈B

G(b,A,C), sup
c∈C

G(c,A,B)
}
,

HdG (A,B) =max
{
sup
a∈A

dG(a,B), sup
b∈B

dG(b,A)
}
,

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),

dG(x,B) = inf
{
dG(x, y), y ∈ B

}
,
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dG(A,B) = inf
{
dG(a,b),a ∈ A,b ∈ B

}
,

G(a,b,C) = inf
{
G(a,b, c), c ∈ C

}
.

The above expressions show a relation between HG and HdG . Moreover, note that if
(X,G) is a G-cone metric space, E = R, and P = [,∞), then (X,G) is a G-metric space.
Also, for A,B,C ∈ CB(X), HG(A,B,C) = inf s(A,B,C).

Remark . Let (X,G) be a G-cone metric space. Then
(a) ŝ({a}, {b}) = s(dG(a,b)) for a,b ∈ X .
(b) If x ∈ s(a,B,B) then x ∈ s(dG(a,b)).

Proof (a) By definition

ŝ
({a}, {b}) = ⋃

a∈{a},b∈{b}
s
(
dG(a,b)

)

= s
(
dG(a,b)

)
.

(b) Now let

x ∈ s(a,B,B), then

x ∈ s(a,B,B) = s(a,B) + ŝ(B,B) + s(a,B)

⇒ x ∈ s(a,B) + ŝ(B,B)

⇒ x ∈ s
(
dG(a,b)

)
+ s(θ ).

Let x = y + z for y ∈ s(dG(a,b)) and z ∈ s(θ ). Then by definition θ � z and dG(a,b)� y,
which implies θ + dG(a,b)� y + z = x. Hence dG(a,b)� x, so x ∈ s(dG(a,b)). �

In the following theorem, we use the generalized Hausdorff distance on G-cone metric
spaces to find fixed points of a multivalued mapping.

Remark . If (X,G) is a G-metric space, then (X,dG) is a metric space, where

dG(x, y) =G(x, y, y) +G(y,x,x).

It is noticed in [] that in the symmetric case ((X,G) is symmetric), many fixed point
theorems onG-metric spaces are particular cases of existing fixed point theorems in met-
ric spaces. In these deductions, the fact G(Tx,Ty,Ty) + G(Ty,Tx,Tx) = G(Tx,Ty,Ty) =
dG(Tx,Ty) is exploited for a single-valued mapping T on X. Whereas in the case of multi-
valued mapping T : X → X on a G-cone metric space,

s(Tx,Ty,Ty) =
( ⋂
a∈Tx

s(a,Ty,Ty)
)

∩
(⋂
b∈Ty

s(b,Tx,Ty)
)

∩
(⋂
b∈Ty

s(b,Tx,Ty)
)

=
( ⋂
a∈Tx

s(a,Ty,Ty)
)

∩
(⋂
b∈Ty

s(b,Tx,Ty)
)
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=
( ⋂
a∈Tx

s(a,Ty)
)

∩
(⋂
b∈Ty

s(b,Tx) + ŝ(Tx,Ty) + s(b,Ty)
)

�= s(Ty,Tx,Tx).

Therefore,
( ⋂
a∈Tx

s(a,Ty)
)

∩
(⋂
b∈Ty

s(b,Tx)
)

�= s(Tx,Ty,Ty) + s(Ty,Tx,Tx)

and even in a symmetric case, we cannot follow a similar technique to deduce G-cone
metric multivalued fixed point results from similar results of metric spaces.
In a non-symmetric case, the authors [] deduce some G-metric fixed point theorems

from similar results of metric spaces by using the fact that if (X,G) is a G-metric on X,
then

δ(x, y) =max
{
G(x, y, y),G(y,x,x)

}

is a metric on X. Whereas, in the case of a G-cone metric space, the expression
max{G(x, y, y),G(y,x,x)} is meaningless as G(x, y, y), G(y,x,x) are vectors, not essentially
comparable, and we cannot find maximum of these elements. That is, (X, δ) may not be
a cone metric space if (X,G) is a G-cone metric space. In the explanation of this fact, we
refer to Example . below, from []. Hence multivalued fixed point results on G-cone
metric spaces cannot be deduced from similar fixed point theorems on metric spaces.

Example . [] Let X = {a,b}, E = R,

P =
{
(x, y, z) ∈ E : x, y, z ≥ 

}
.

Define G : X ×X ×X → E by

G(a,a,a) = (, , ) =G(b,b,b),

G(a,b,b) = (, , ) =G(b,a,b) =G(b,b,a),

G(b,a,a) = (, , ) =G(a,b,a) =G(a,a,b).

Note that δ(a,b) = max{G(a,a,b),G(a,b,b)} = max{(, , ), (, , )} has no meaning as
discussed above.

Theorem . Let (X,G) be a complete cone metric space, and let T : X −→ CB(X) be a
multivalued mapping. If there exists a function ϕ : P → [, ) such that

lim sup
n→∞

ϕ(rn) <  (a)

for any decreasing sequence {rn} in P, and if

ϕ
(
G(x, y, z)

)
G(x, y, z) ∈ s(Tx,Ty,Tz) ()

for all x, y, z ∈ X, then T has a fixed point in X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/354
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Proof Let x be an arbitrary point in X and x ∈ Tx. From (), we have

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s(Tx,Tx,Tx).

Thus, by Lemma .(iii), we get

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s(x,Tx,Tx).

By Remark ., we can take x ∈ Tx such that

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s

(
dG(x,x)

)
.

Thus,

dG(x,x)� ϕ
(
G(x,x,x)

)
G(x,x,x).

Again, by (), we have

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s(Tx,Tx,Tx),

and by Lemma .(iii)

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s(x,Tx,Tx).

By Remark ., we can take x ∈ Tx such that

ϕ
(
G(x,x,x)

)
G(x,x,x) ∈ s

(
dG(x,x)

)
.

Thus,

dG(x,x)� ϕ
(
G(x,x,x)

)
G(x,x,x).

It implies that

dG(x,x)� ϕ
(
G(x,x,x)

)
G(x,x,x)

� ϕ
(
G(x,x,x)

)
G(x,x,x) + ϕ

(
G(x,x,x)

)
G(x,x,x)

� ϕ
(
G(x,x,x)

)[
G(x,x,x) +G(x,x,x)

]
= ϕ

(
G(x,x,x)

)
dG(x,x)

⇒ dG(x,x)�


ϕ
(
G(x,x,x)

)
dG(x,x).

By induction we can construct a sequence {xn} in X such that

dG(xn,xn+)�


ϕ
(
G(xn–,xn,xn)

)
dG(xn–,xn), xn+ ∈ Txn, for n = , ,  . . . . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/354
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Assume that xn+ �= xn for all n ∈N . From () the sequence {dG(xn,xn+)}n∈N is a decreasing
sequence in P. So, there exists l ∈ (, ) such that

lim sup
n→∞

ϕ
(
dG(xn,xn+)

)
= l.

Thus, there exists n ∈ N such that for all n ≥ n, ϕ(dG(xn,xn+)) ≺ l for some l ∈ (l, ).
Choose n = , then we have

dG(xn,xn+) �


ϕ
(
dG(xn–,xn)

)
dG(xn–,xn)

≺ ldG(xn–,xn)

≺ (l)ndG(x,x) for all n≥ .

Moreover, form > n≥ , we have that

dG(xn,xm)�
(l)n

 – l
dG(x,x).

According to (PT) and (PT), it follows that {xn} is a Cauchy sequence in X. By the com-
pleteness of X, there exists v ∈ X such that xn → v. Assume k ∈N such that dG(xn, v)  c


for all n ≥ k.
We now show that v ∈ Tv. So, for xn, v ∈ X and by using (), we have

ϕ
(
G(xn, v, v)

)
G(xn, v, v) ∈ s(Txn,Tv,Tv).

By Lemma .(iii) we have

ϕ
(
G(xn, v, v)

)
G(xn, v, v) ∈ s(xn+,Tv,Tv).

Thus there exists un ∈ Tv such that

ϕ
(
G(xn, v, v)

)
G(xn, v, v) ∈ s

(
dG(xn+,un)

)
.

It implies that

dG(xn+,un)� ϕ
(
G(xn, v, v)

)
G(xn, v, v),

dG(xn+,un)�


ϕ
(
G(xn, v, v)

)
G(xn, v, v)

� ϕ
(
G(xn, v, v)

)[
G(xn, v, v) +G(xn,xn, v)

]
= ϕ

(
G(xn, v, v)

)
dG(xn, v).

So

dG(xn+,un)� ϕ
(
G(xn, v, v)

)
dG(xn, v). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/354
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Now consider

dG(v,un)� dG(xn+, v) + dG(xn+,un)

� dG(xn+, v) + ϕ
(
G(xn, v, v)

)
dG(xn, v) by using ()

≺ dG(xn+, v) + dG(xn, v),

dG(v,un)  c

+
c

= c, for all n≥ k.

Therefore limn→∞ un = v. Since Tv is closed, so v ∈ Tv. �

The next corollary is Nadler’s multivalued contraction theorem in a G-cone metric
space.

Corollary . Let (X,G) be a complete G-cone metric space, and let T : X −→ CB(X) be a
multivalued mapping. If there exists a constant k ∈ [, ) such that

kG(x, y, z) ∈ s(Tx,Ty,Tz)

for all x, y, z ∈ X, then T has a fixed point in X.

By Remark ., we have the following results of [].

Corollary . [] Let (X,G) be a complete G-metric space, and let T : X −→ CB(X) be a
multivalued mapping. If there exists a function ϕ : [, +∞)→ [, ) such that

lim sup
r→t+

ϕ(r) < 

for any t ≥ , and if

HG(Tx,Ty,Tz) ≤ ϕ
(
G(x, y, z)

)
G(x, y, z)

for all x, y, z ∈ X, then T has a fixed point in X.

Corollary . [] Let (X,G) be a complete G-metric space, and let T : X −→ CB(X) be a
multivalued mapping. If there exists a constant k ∈ [, ) such that

HG(Tx,Ty,Tz) ≤ kG(x, y, z)

for all x, y, z ∈ X, then T has a fixed point in X.

In the following we formulate an illustrative example regarding our main theorem.

Example . LetX = [, ], E = C[, ] be endowedwith the strongly locally convex topol-
ogy τ (E,E∗), and let P = {x ∈ E :  ≤ x(t), t ∈ [, ]}. Then the cone is τ (E,E∗)-solid, and
non-normal with respect to the topology τ (E,E∗). Define G : X ×X ×X → E by

G(x, y, z)(t) =Max
{|x – y|, |y – z|, |x – z|}et .

Then G is a G-cone metric on X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/354
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Consider a mapping T : X → CB(X) defined by

Tx =
[
,




x
]
.

Let ϕ(t) = 
 for all t ∈ P. The contractive condition of the main theorem is trivial for the

case when x = y = z = . Suppose, without any loss of generality, that all x, y and z are
nonzero and x < y < z. Then

G(x, y, z) = |x – z|et ,

and

dG(x, y) = |x – y|et .

Now

s(x,Ty) =

⎧⎨
⎩
 if x≤ y

 ,

|x – y
 |et if x > y

 ,

s(y,Tz) =

⎧⎨
⎩
 if y≤ z

 ,

|y – z
 |et if y > z

 .

For s(x,Ty) =  = s(y,Tz), we have

s(x,Ty,Tz) = s(),
⋂
y∈Ty

s(y,Tx,Tz) = s
(

∣∣∣∣ y –

x


∣∣∣∣et
)
,

and

⋂
z∈Tz

s(z,Tx,Ty) = s
(

∣∣∣∣ z –

x


–
y


∣∣∣∣et
)
.

Thus

s(Tx,Ty,Tz) =
(
s()

) ∩
(
s
(

∣∣∣∣ y –

x


∣∣∣∣et
))

∩
(
s
(

∣∣∣∣ z –

x


–
y


∣∣∣∣et
))

.

Now

If s(Tx,Ty,Tz) = s
(

∣∣∣∣ z –

x


–
y


∣∣∣∣et
)
, then


∣∣∣∣ z –

x


–
y


∣∣∣∣et ≤ 
∣∣∣∣ z –

x


∣∣∣∣et , for t ∈ [, ]

=


|z – x|et = 


Max

{|x – y|, |y – z|, |x – z|}et

=


G(x, y, z);

http://www.journalofinequalitiesandapplications.com/content/2013/1/354
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If s(Tx,Ty,Tz) = s
(

∣∣∣∣ y –

x


∣∣∣∣et
)
, then


∣∣∣∣ y –

x


∣∣∣∣et ≤ 
∣∣∣∣ z –

x


∣∣∣∣et , for t ∈ [, ]

=


|z – x|et = 


Max

{|x – y|, |y – z|, |x – z|}et

=


G(x, y, z).

Hence,



G(x, y, z) ∈ s(Tx,Ty,Tz).

All the assumptions of Theorem . also hold for other possible values of s(x,Ty) and
s(y,Tz) to obtain  ∈ T.
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22. Kadelburg, Z, Radenovič, S: Some results on set-valued contractions in abstract metric spaces. Comput. Math. Appl.
62, 342-350 (2011)

23. Klim, D, Wardowski, D: Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric
spaces. Nonlinear Anal. 71, 5170-5175 (2009)

24. Shatanawi, W: Some common coupled fixed point results in cone metric spaces. Int. J. Math. Anal. 4, 2381-2388
(2010)

25. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
26. Dhage, BC: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84, 329-336 (1992)
27. Dhage, BC: Generalized metric space and topological structure. I. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 46(1), 3-24

(2000)
28. Kaewcharoen, A, Kaewkhao, A: Common fixed points for single-valued and multi-valued mappings in G-metric

spaces. Int. J. Math. Anal. 5(36), 1775-1790 (2011)
29. Mustafa, Z, Sims, B: Some remarks concerning D-metric spaces. In: Proc. Int. Conf. on Fixed Point Theory and Appl.

pp. 189-198. Valencia, Spain, July 2003 (2003)
30. Nedal, T, Hassen, A, Karapinar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps

satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, Article ID 48 (2012)
31. Beg, I, Abbas, M, Nazir, T: Generalized cone metric spaces. J. Nonlinear Sci. Appl. 3(1), 21-31 (2010)
32. Chen, CM: On set-valued contractions of Nadler type in tvs-G-cone metric spaces. Fixed Point Theory Appl. 2012,

Article ID 52 (2012). doi:10.1186/1687-1812-2012-52
33. Cho, SH, Bae, JS: Fixed point theorems for multi-valued maps in cone metric spaces. Fixed Point Theory Appl. 2011,

Article ID 87 (2011). doi:10.1186/1687-1812-2011-87
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