RESEARCH

Open Access

Fixed point theorems for multivalued mappings in *G*-cone metric spaces

Akbar Azam^{*} and Nayyar Mehmood

*Correspondence: akbarazam@yahoo.com Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 44000, Pakistan

Abstract

We extend the idea of Hausdorff distance function in *G*-cone metric spaces and obtain fixed points of multivalued mappings in *G*-cone metric spaces. **MSC:** 47H10; 54H25

Keywords: *G*-cone metric space; non-normal cones; multivalued contraction; fixed points

1 Introduction

The main revolution in the existence theory of many linear and non-linear operators happened after the Banach contraction principle. After this principle many researchers put their efforts into studying the existence and solutions for nonlinear equations (algebraic, differential and integral), a system of linear (nonlinear) equations and convergence of many computational methods [1]. Banach contraction gave us many important theories like variational inequalities, optimization theory and many computational theories [1, 2]. Due to wide spreading importance of Banach contraction, many authors generalized it in several directions [3–9]. Nadler [10] was first to present it in a multivalued case, and then many authors extended Nadler's multivalued contraction. One of the real generalizations of Nadler's theorem was given by Mizoguchi and Takahashi in the following way.

Theorem 1.1 [11] Let (X, d) be a complete metric space, and let $T : X \to 2^X$ be a multivalued map such that Tx is a closed bounded subset of X for all $x \in X$. If there exists a function $\varphi : (0, \infty) \to [0, 1)$ such that $\limsup_{r \to t^+} \varphi(r) < 1$ for all $t \in [0, \infty)$ and if

 $H(Tx, Ty) \le \varphi(d(x, y))(d(x, y))$ for all $x, y(x \ne y) \in X$,

then T has a fixed point in X.

Suzuki [12] proved that Mizoguchi and Takahashi's theorem is a real generalization of Nadler's theorem. Recently Huang and Zhang [13] introduced a cone metric space with a normal cone with a constant K, which is generalization of a metric space. After that Rezapour and Hamlbarani [14] generalized a cone metric space with a non-normal cone. Afterwards many researchers [15–24] have studied fixed point results in cone metric spaces. In [25] Mustafa *et al.* generalized the metric space and introduced the notion of *G*-metric space which recovered the flaws of Dhage's generalization [26, 27] of a metric space. Many

© 2013 Azam and Mehmood; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. researchers proved many fixed point results using a *G*-metric space [28, 29]. Anchalee Kaewcharoen and Attapol Kaewkhao [28] and Nedal *et al.* [30] proved fixed point results for multivalued maps in *G*-metric spaces. In 2009, Beg *et al.* [31] introduced the notion of *G*-cone metric space and generalized some results. Chi-Ming Cheng [32] proved Nadler-type results in tvs *G*-cone metric spaces.

In 2011 Cho and Bae [33] generalized a Mizoguchi Takahashi-type theorem in a cone metric space. In the present paper, we introduce the notion of Hausdorff distance function on *G*-cone metric spaces and exploit it to study some fixed point results in *G*-cone metric spaces. Our result generalizes many results in literature.

2 Preliminaries

Let *E* be a real Banach space. A subset *P* of *E* is called a cone if and only if:

- (a) *P* is closed, nonempty and $P \neq \{\theta\}$,
- (b) $a, b \in R, a, b \ge 0, x, y \in P$ implies $ax + by \in P$, more generally, if $a, b, c \in R, a, b, c \ge 0$, $x, y, z \in P \Longrightarrow ax + by + cz \in P$,
- (c) $P \cap (-P) = \{\theta\}.$

Given a cone $P \subset E$, we define a partial ordering \preccurlyeq with respect to P by $x \preccurlyeq y$ if and only if $y - x \in P$.

A cone *P* is called normal if there is a number K > 0 such that for all $x, y \in E$

 $\theta \preccurlyeq x \preccurlyeq y \text{ implies } ||x|| \le K ||y||.$

The least positive number satisfying the above inequality is called the normal constant of *P*, while $x \ll y$ stands for $y - x \in int P$ (interior of *P*), while $x \prec y$ means $x \preccurlyeq y$ and $x \neq y$.

Rezapour [14] proved that there are no normal cones with normal constants K < 1 and for each k > 1, there are cones with normal constants K > 1.

Remark 2.1 [34] The results concerning fixed points and other results, in the case of cone spaces with non-normal solid cones, cannot be provided by reducing to metric spaces, because in this case neither of the conditions of Lemmas 1-4 in [13] hold. Further, the vector cone metric is not continuous in a general case, *i.e.*, from $x_n \rightarrow x$, $y_n \rightarrow y$ it need not follow that $d(x_n, y_n) \rightarrow d(x, y)$.

For the case of non-normal cones, we have the following properties.

- (PT1) If $u \preccurlyeq v$ and $v \ll w$, then $u \ll w$.
- (PT2) If $u \ll v$ and $v \preccurlyeq w$, then $u \ll w$.
- (PT3) If $u \ll v$ and $v \ll w$, then $u \ll w$.
- (PT4) If $\theta \preccurlyeq u \ll c$ for each $c \in int P$, then $u = \theta$.
- (PT5) If $a \preccurlyeq b + c$ for each $c \in int P$, then $a \preccurlyeq b$.
- (PT6) If *E* is a real Banach space with a cone *P*, and if $a \leq \lambda a$, where $a \in P$ and $0 \leq \lambda < 1$, then $a = \theta$.
- (PT7) If $c \in int P$, $a_n \in \mathbb{E}$ and $a_n \to \theta$, then there exists an n_0 such that, for all $n > n_0$, we have $a_n \ll c$.

In the following we shall always assume that the cone *P* is solid and non-normal.

Definition 2.1 [31] Let *X* be a nonempty set. Suppose that a mapping $G: X \times X \times X \rightarrow E$ satisfies:

- (G1) $G(x, y, z) = \theta$ if x = y = z,
- (G2) $\theta \prec G(x, x, y)$, whenever $x \neq y$, for all $x, y \in X$,
- (G3) $G(x, x, y) \preccurlyeq G(x, y, z)$, whenever $y \neq z$,
- (G4) $G(x, y, z) = G(x, z, y) = G(y, x, z) = \cdots$ (symmetric in all three variables),
- (G5) $G(x, y, z) \preccurlyeq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then *G* is called a generalized cone metric on *X*, and *X* is called a generalized cone metric space or, more specifically, a *G*-cone metric space.

The concept of a *G*-cone metric space is more general than that of *G*-metric spaces and cone metric spaces (see [31]).

Definition 2.2 [31] A *G*-cone metric space *X* is symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Example 2.1 [31] Let (X, d) be a cone metric space. Define $G : X \times X \times X \to E$ by G(x, y, z) = d(x, y) + d(y, z) + d(z, x). Then (X, G) is a *G*-cone metric space.

Proposition 2.1 [31] Let X be a G-cone metric space, define $d_G: X \times X \to E$ by

 $d_G(x, y) = G(x, y, y) + G(y, x, x).$

Then (X, d_G) is a cone metric space.

It can be noted that $G(x, y, y) \preccurlyeq \frac{2}{3}d_G(x, y)$. If *X* is a symmetric *G*-cone metric space, then $d_G(x, y) = 2G(x, y, y)$ for all $x, y \in X$.

Definition 2.3 [31] Let *X* be a *G*-cone metric space and let $\{x_n\}$ be a sequence in *X*. We say that $\{x_n\}$ is:

- (a) a Cauchy sequence if for every $c \in E$ with $\theta \ll c$, there is N such that for all n, m, l > N, $G(x_n, x_m, x_l) \ll c$.
- (b) a convergent sequence if for every *c* in *E* with $\theta \ll c$, there is *N* such that for all m, n > N, $G(x_m, x_n, x) \ll c$ for some fixed *x* in *X*. Here *x* is called the limit of a sequence $\{x_n\}$ and is denoted by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.

A *G*-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Proposition 2.2 [31] Let X be a G-cone metric space, then the following are equivalent.

- (i) $\{x_n\}$ converges to x.
- (ii) $G(x_n, x_n, x) \to \theta \text{ as } n \to \infty$.
- (iii) $G(x_n, x, x) \to \theta \text{ as } n \to \infty$.
- (iv) $G(x_m, x_n, x) \rightarrow \theta \text{ as } m, n \rightarrow \infty$.

Lemma 2.1 [31] Let $\{x_n\}$ be a sequence in a G-cone metric space X. If $\{x_n\}$ converges to $x \in X$, then $G(x_m, x_n, x) \to \theta$ as $m, n \to \infty$.

Lemma 2.2 [31] Let $\{x_n\}$ be a sequence in a G-cone metric space X and $x \in X$. If $\{x_n\}$ converges to $x \in X$, then $\{x_n\}$ is a Cauchy sequence.

Lemma 2.3 [31] Let $\{x_n\}$ be a sequence in a G-cone metric space X. If $\{x_n\}$ is a Cauchy sequence in X, then $G(x_m, x_n, x_l) \rightarrow \theta$, as $m, n, l \rightarrow \infty$.

3 Main result

Denote by N(X), B(X) and CB(X) the set of nonempty, bounded, sequentially closed bounded subsets of *G*-cone metric spaces, respectively.

Let (X, G) be a *G*-cone metric space. We define (see [33])

$$s(p) = \{q \in E : p \preccurlyeq q\} \text{ for } q \in E,$$

and

$$s(a,B) = \bigcup_{b\in B} s(d_G(a,b)) = \bigcup_{b\in B} \{x\in E: d_G(a,b) \preccurlyeq x\} \text{ for } a\in X \text{ and } B\in N(X).$$

For $A, B \in B(X)$, we define

$$\hat{s}(A,B) = \bigcup_{a \in A, b \in B} s(d_G(a,b)),$$

$$s(a,B,C) = s(a,B) + \hat{s}(B,C) + s(a,C) = \{u + v + w : u \in s(a,B), v \in \hat{s}(B,C), w \in s(a,C)\},$$

and

$$s(A,B,C) = \left(\bigcap_{a \in A} s(a,B,C)\right) \cap \left(\bigcap_{b \in B} s(b,A,C)\right) \cap \left(\bigcap_{c \in C} s(c,A,B)\right).$$

Lemma 3.1 Let (X, G) be a G-cone metric space, let P be a cone in a Banach space E.

- (i) Let $p, q \in E$. If $p \preccurlyeq q$, then $s(q) \subset s(p)$.
- (ii) Let $x \in X$ and $A \in N(X)$. If $0 \in s(x, A)$, then $x \in A$.
- (iii) Let $q \in P$ and let $A, B, C \in B(X)$ and $a \in A$. If $q \in s(A, B, C)$, then $q \in s(a, B, C)$.

Remark 3.1 Recently, Kaewcharoen and Kaewkhao [28] (see also [30]) introduced the following concepts. Let *X* be a *G*-metric space and let CB(X) be the family of all nonempty closed bounded subsets of *X*. Let $H_G(\cdot, \cdot, \cdot)$ be the Hausdorff *G*-distance on CB(X), *i.e.*,

$$H_G(A, B, C) = \max\left\{\sup_{a \in A} G(a, B, C), \sup_{b \in B} G(b, A, C), \sup_{c \in C} G(c, A, B)\right\},$$
$$H_{d_G}(A, B) = \max\left\{\sup_{a \in A} d_G(a, B), \sup_{b \in B} d_G(b, A)\right\},$$

where

$$G(x, B, C) = d_G(x, B) + d_G(B, C) + d_G(x, C),$$

$$d_G(x, B) = \inf \{ d_G(x, y), y \in B \},$$

The above expressions show a relation between H_G and H_{d_G} . Moreover, note that if (X,G) is a *G*-cone metric space, E = R, and $P = [0,\infty)$, then (X,G) is a *G*-metric space. Also, for $A, B, C \in CB(X), H_G(A, B, C) = \inf s(A, B, C)$.

Remark 3.2 Let (X, G) be a *G*-cone metric space. Then

(a) $\hat{s}(\{a\},\{b\}) = s(d_G(a,b))$ for $a, b \in X$.

(b) If $x \in s(a, B, B)$ then $x \in 2s(d_G(a, b))$.

Proof (a) By definition

$$\hat{s}(\{a\},\{b\}) = \bigcup_{a \in \{a\}, b \in \{b\}} s(d_G(a,b))$$

= $s(d_G(a,b)).$

(b) Now let

$$x \in s(a, B, B), \text{ then}$$

$$x \in s(a, B, B) = s(a, B) + \hat{s}(B, B) + s(a, B)$$

$$\Rightarrow \quad x \in 2s(a, B) + \hat{s}(B, B)$$

$$\Rightarrow \quad x \in 2s(d_G(a, b)) + s(\theta).$$

Let x = y + z for $y \in 2s(d_G(a, b))$ and $z \in s(\theta)$. Then by definition $\theta \preccurlyeq z$ and $2d_G(a, b) \preccurlyeq y$, which implies $\theta + 2d_G(a, b) \preccurlyeq y + z = x$. Hence $2d_G(a, b) \preccurlyeq x$, so $x \in 2s(d_G(a, b))$.

In the following theorem, we use the generalized Hausdorff distance on *G*-cone metric spaces to find fixed points of a multivalued mapping.

Remark 3.3 If (X, G) is a *G*-metric space, then (X, d_G) is a metric space, where

 $d_G(x, y) = G(x, y, y) + G(y, x, x).$

It is noticed in [35] that in the symmetric case ((X, G) is symmetric), many fixed point theorems on *G*-metric spaces are particular cases of existing fixed point theorems in metric spaces. In these deductions, the fact G(Tx, Ty, Ty) + G(Ty, Tx, Tx) = 2G(Tx, Ty, Ty) = $d_G(Tx, Ty)$ is exploited for a single-valued mapping *T* on *X*. Whereas in the case of multivalued mapping $T: X \to 2^X$ on a *G*-cone metric space,

$$\begin{split} s(Tx, Ty, Ty) &= \left(\bigcap_{a \in Tx} s(a, Ty, Ty)\right) \cap \left(\bigcap_{b \in Ty} s(b, Tx, Ty)\right) \cap \left(\bigcap_{b \in Ty} s(b, Tx, Ty)\right) \\ &= \left(\bigcap_{a \in Tx} s(a, Ty, Ty)\right) \cap \left(\bigcap_{b \in Ty} s(b, Tx, Ty)\right) \end{split}$$

$$= \left(\bigcap_{a \in Tx} 2s(a, Ty)\right) \cap \left(\bigcap_{b \in Ty} s(b, Tx) + \hat{s}(Tx, Ty) + s(b, Ty)\right)$$

$$\neq s(Ty, Tx, Tx).$$

Therefore,

$$\left(\bigcap_{a\in Tx} s(a,Ty)\right) \cap \left(\bigcap_{b\in Ty} s(b,Tx)\right) \neq s(Tx,Ty,Ty) + s(Ty,Tx,Tx)$$

and even in a symmetric case, we cannot follow a similar technique to deduce *G*-cone metric multivalued fixed point results from similar results of metric spaces.

In a non-symmetric case, the authors [35] deduce some *G*-metric fixed point theorems from similar results of metric spaces by using the fact that if (X, G) is a *G*-metric on *X*, then

$$\delta(x, y) = \max\left\{G(x, y, y), G(y, x, x)\right\}$$

is a metric on X. Whereas, in the case of a G-cone metric space, the expression $\max\{G(x, y, y), G(y, x, x)\}$ is meaningless as G(x, y, y), G(y, x, x) are vectors, not essentially comparable, and we cannot find maximum of these elements. That is, (X, δ) may not be a cone metric space if (X, G) is a G-cone metric space. In the explanation of this fact, we refer to Example 3.1 below, from [31]. Hence multivalued fixed point results on G-cone metric spaces cannot be deduced from similar fixed point theorems on metric spaces.

Example 3.1 [31] Let $X = \{a, b\}, E = R^3$,

$$P = \{(x, y, z) \in E : x, y, z \ge 0\}.$$

Define $G: X \times X \times X \rightarrow E$ by

$$G(a, a, a) = (0, 0, 0) = G(b, b, b),$$

$$G(a, b, b) = (0, 1, 1) = G(b, a, b) = G(b, b, a),$$

$$G(b, a, a) = (0, 1, 0) = G(a, b, a) = G(a, a, b).$$

Note that $\delta(a, b) = \max\{G(a, a, b), G(a, b, b)\} = \max\{(1, 0, 0), (0, 1, 1)\}$ has no meaning as discussed above.

Theorem 3.1 Let (X,G) be a complete cone metric space, and let $T: X \longrightarrow CB(X)$ be a multivalued mapping. If there exists a function $\varphi: P \rightarrow [0,1)$ such that

$$\lim_{n \to \infty} \sup_{q \to \infty} \varphi(r_n) < 1 \tag{a}$$

for any decreasing sequence $\{r_n\}$ in *P*, and if

$$\varphi(G(x, y, z))G(x, y, z) \in s(Tx, Ty, Tz)$$
(1)

for all $x, y, z \in X$, then T has a fixed point in X.

Proof Let x_0 be an arbitrary point in X and $x_1 \in Tx_0$. From (1), we have

 $\varphi(G(x_0, x_1, x_1))G(x_0, x_1, x_1) \in s(Tx_0, Tx_1, Tx_1).$

Thus, by Lemma 3.1(iii), we get

 $\varphi(G(x_0, x_1, x_1))G(x_0, x_1, x_1) \in s(x_1, Tx_1, Tx_1).$

By Remark 3.2, we can take $x_2 \in Tx_1$ such that

$$\varphi(G(x_0, x_1, x_1))G(x_0, x_1, x_1) \in 2s(d_G(x_1, x_2)).$$

Thus,

$$2d_G(x_1,x_2) \preccurlyeq \varphi \big(G(x_0,x_1,x_1) \big) G(x_0,x_1,x_1).$$

Again, by (1), we have

$$\varphi(G(x_1, x_2, x_2))G(x_1, x_2, x_2) \in s(Tx_1, Tx_2, Tx_2),$$

and by Lemma 3.1(iii)

$$\varphi(G(x_1, x_2, x_2))G(x_1, x_2, x_2) \in s(x_2, Tx_2, Tx_2).$$

By Remark 3.2, we can take $x_3 \in Tx_2$ such that

$$\varphi(G(x_1, x_2, x_2))G(x_1, x_2, x_2) \in 2s(d_G(x_2, x_3)).$$

Thus,

$$2d_G(x_2,x_3) \preccurlyeq \varphi \big(G(x_1,x_2,x_2) \big) G(x_1,x_2,x_2).$$

It implies that

$$\begin{aligned} 2d_G(x_2, x_3) &\preccurlyeq \varphi \big(G(x_1, x_2, x_2) \big) G(x_1, x_2, x_2) \\ &\preccurlyeq \varphi \big(G(x_1, x_2, x_2) \big) G(x_1, x_2, x_2) + \varphi \big(G(x_1, x_2, x_2) \big) G(x_2, x_1, x_1) \\ &\preccurlyeq \varphi \big(G(x_1, x_2, x_2) \big) \big[G(x_1, x_2, x_2) + G(x_2, x_1, x_1) \big] \\ &= \varphi \big(G(x_1, x_2, x_2) \big) d_G(x_1, x_2) \\ &\implies \quad d_G(x_2, x_3) \preccurlyeq \frac{1}{2} \varphi \big(G(x_1, x_2, x_2) \big) d_G(x_1, x_2). \end{aligned}$$

By induction we can construct a sequence $\{x_n\}$ in X such that

$$d_G(x_n, x_{n+1}) \preccurlyeq \frac{1}{2} \varphi \Big(G(x_{n-1}, x_n, x_n) \Big) d_G(x_{n-1}, x_n), \quad x_{n+1} \in Tx_n, \text{ for } n = 1, 2, 3 \dots$$
(2)

Assume that $x_{n+1} \neq x_n$ for all $n \in N$. From (2) the sequence $\{d_G(x_n, x_{n+1})\}_{n \in N}$ is a decreasing sequence in *P*. So, there exists $l \in (0, 1)$ such that

$$\lim \sup_{n\to\infty} \varphi \big(d_G(x_n, x_{n+1}) \big) = l.$$

Thus, there exists $n_0 \in N$ such that for all $n \ge n_0$, $\varphi(d_G(x_n, x_{n+1})) \prec l_0$ for some $l_0 \in (l, 1)$. Choose $n_0 = 1$, then we have

$$\begin{aligned} d_G(x_n, x_{n+1}) &\preccurlyeq \frac{1}{2} \varphi \big(d_G(x_{n-1}, x_n) \big) d_G(x_{n-1}, x_n) \\ &\prec l_0 d_G(x_{n-1}, x_n) \\ &\prec (l_0)^n d_G(x_0, x_1) \quad \text{for all } n \ge 1. \end{aligned}$$

Moreover, for $m > n \ge 1$, we have that

$$d_G(x_n, x_m) \preccurlyeq \frac{(l_0)^n}{1 - l_0} d_G(x_0, x_1).$$

According to (PT1) and (PT7), it follows that $\{x_n\}$ is a Cauchy sequence in *X*. By the completeness of *X*, there exists $v \in X$ such that $x_n \to v$. Assume $k_1 \in N$ such that $d_G(x_n, v) \ll \frac{c}{2}$ for all $n \ge k_1$.

We now show that $v \in Tv$. So, for $x_n, v \in X$ and by using (2), we have

$$\varphi(G(x_n, \nu, \nu))G(x_n, \nu, \nu) \in s(Tx_n, T\nu, T\nu).$$

By Lemma 3.1(iii) we have

$$\varphi(G(x_n,\nu,\nu))G(x_n,\nu,\nu)\in s(x_{n+1},T\nu,T\nu).$$

Thus there exists $u_n \in Tv$ such that

$$\varphi(G(x_n, \nu, \nu))G(x_n, \nu, \nu) \in 2s(d_G(x_{n+1}, u_n)).$$

It implies that

$$\begin{aligned} 2d_G(x_{n+1}, u_n) &\preccurlyeq \varphi \big(G(x_n, v, v) \big) G(x_n, v, v), \\ d_G(x_{n+1}, u_n) &\preccurlyeq \frac{1}{2} \varphi \big(G(x_n, v, v) \big) G(x_n, v, v) \\ & \preccurlyeq \varphi \big(G(x_n, v, v) \big) \big[G(x_n, v, v) + G(x_n, x_n, v) \big] \\ &= \varphi \big(G(x_n, v, v) \big) d_G(x_n, v). \end{aligned}$$

So

$$d_G(x_{n+1}, u_n) \preccurlyeq \varphi \big(G(x_n, \nu, \nu) \big) d_G(x_n, \nu). \tag{3}$$

Now consider

$$d_G(v, u_n) \preccurlyeq d_G(x_{n+1}, v) + d_G(x_{n+1}, u_n)$$

$$\preccurlyeq d_G(x_{n+1}, v) + \varphi(G(x_n, v, v))d_G(x_n, v) \quad \text{by using (3)}$$

$$\prec d_G(x_{n+1}, v) + d_G(x_n, v),$$

$$d_G(v, u_n) \ll \frac{c}{2} + \frac{c}{2} = c, \quad \text{for all } n \ge k_1.$$

Therefore $\lim_{n\to\infty} u_n = v$. Since Tv is closed, so $v \in Tv$.

The next corollary is Nadler's multivalued contraction theorem in a *G*-cone metric space.

Corollary 3.1 Let (X,G) be a complete *G*-cone metric space, and let $T : X \longrightarrow CB(X)$ be a multivalued mapping. If there exists a constant $k \in [0,1)$ such that

 $kG(x, y, z) \in s(Tx, Ty, Tz)$

for all $x, y, z \in X$, then T has a fixed point in X.

By Remark 3.1, we have the following results of [30].

Corollary 3.2 [30] *Let* (X, G) *be a complete G-metric space, and let* $T : X \longrightarrow CB(X)$ *be a multivalued mapping. If there exists a function* $\varphi : [0, +\infty) \rightarrow [0, 1)$ *such that*

 $\limsup_{r\to t^+}\varphi(r)<1$

for any $t \ge 0$, and if

 $H_G(Tx, Ty, Tz) \le \varphi(G(x, y, z))G(x, y, z)$

for all $x, y, z \in X$, then T has a fixed point in X.

Corollary 3.3 [30] *Let* (X, G) *be a complete G-metric space, and let* $T : X \rightarrow CB(X)$ *be a multivalued mapping. If there exists a constant* $k \in [0,1)$ *such that*

 $H_G(Tx, Ty, Tz) \leq kG(x, y, z)$

for all $x, y, z \in X$, then T has a fixed point in X.

In the following we formulate an illustrative example regarding our main theorem.

Example 3.2 Let X = [0,1], E = C[0,1] be endowed with the strongly locally convex topology $\tau(E, E^*)$, and let $P = \{x \in E : 0 \le x(t), t \in [0,1]\}$. Then the cone is $\tau(E, E^*)$ -solid, and non-normal with respect to the topology $\tau(E, E^*)$. Define $G : X \times X \times X \to E$ by

 $G(x, y, z)(t) = Max\{|x - y|, |y - z|, |x - z|\}e^{t}.$

Then *G* is a *G*-cone metric on *X*.

Consider a mapping $T: X \to CB(X)$ defined by

$$Tx = \left[0, \frac{1}{10}x\right].$$

Let $\varphi(t) = \frac{1}{5}$ for all $t \in P$. The contractive condition of the main theorem is trivial for the case when x = y = z = 0. Suppose, without any loss of generality, that all x, y and z are nonzero and x < y < z. Then

$$G(x, y, z) = |x - z|e^t,$$

and

$$d_G(x,y)=2|x-y|e^t.$$

Now

$$s(x, Ty) = \begin{cases} 0 & \text{if } x \le \frac{y}{10}, \\ |x - \frac{y}{10}|e^t & \text{if } x > \frac{y}{10}, \end{cases}$$
$$s(y, Tz) = \begin{cases} 0 & \text{if } y \le \frac{z}{10}, \\ |y - \frac{z}{10}|e^t & \text{if } y > \frac{z}{10}. \end{cases}$$

For s(x, Ty) = 0 = s(y, Tz), we have

$$s(x, Ty, Tz) = s(0),$$
$$\bigcap_{y \in Ty} s(y, Tx, Tz) = s\left(2\left|\frac{y}{10} - \frac{x}{10}\right|e^t\right),$$

and

$$\bigcap_{z \in Tz} s(z, Tx, Ty) = s\left(2\left|\frac{z}{10} - \frac{x}{10} - \frac{y}{10}\right|e^t\right).$$

Thus

$$s(Tx, Ty, Tz) = (s(0)) \cap \left(s\left(2 \left| \frac{y}{10} - \frac{x}{10} \right| e^t \right) \right) \cap \left(s\left(2 \left| \frac{z}{10} - \frac{x}{10} - \frac{y}{10} \right| e^t \right) \right).$$

Now

If
$$s(Tx, Ty, Tz) = s\left(2\left|\frac{z}{10} - \frac{x}{10} - \frac{y}{10}\right|e^t\right)$$
, then
 $2\left|\frac{z}{10} - \frac{x}{10} - \frac{y}{10}\right|e^t \le 2\left|\frac{z}{10} - \frac{x}{10}\right|e^t$, for $t \in [0, 1]$
 $= \frac{1}{5}|z - x|e^t = \frac{1}{5}\max\{|x - y|, |y - z|, |x - z|\}e^t$
 $= \frac{1}{5}G(x, y, z);$

If
$$s(Tx, Ty, Tz) = s\left(2\left|\frac{y}{10} - \frac{x}{10}\right|e^t\right)$$
, then
 $2\left|\frac{y}{10} - \frac{x}{10}\right|e^t \le 2\left|\frac{z}{10} - \frac{x}{10}\right|e^t$, for $t \in [0, 1]$
 $= \frac{1}{5}|z - x|e^t = \frac{1}{5}\operatorname{Max}\left\{|x - y|, |y - z|, |x - z|\right\}e^t$
 $= \frac{1}{5}G(x, y, z).$

Hence,

$$\frac{1}{5}G(x, y, z) \in s(Tx, Ty, Tz).$$

All the assumptions of Theorem 3.1 also hold for other possible values of s(x, Ty) and s(y, Tz) to obtain $0 \in T0$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors read and approved the final manuscript.

Acknowledgements

We are very grateful to the editor and anonymous referees for their valuable and constructive comments that helped us very much in improving the paper.

Received: 11 December 2012 Accepted: 15 July 2013 Published: 29 July 2013

References

- 1. Moore, RE, Cloud, MJ: Computational Functional Analysis, 2nd edn. Ellis Horwood Series in Mathematics and Its Applications. Woodhead Publishing, Cambridge (2007)
- 2. Noor, A: Principles of Variational Inequalities. Lambert Academic Publishing, Saarbrücken (2009)
- 3. Abbas, M, Hussain, N, Rhoades, BE: Coincidence point theorems for multivalued *f*-weak contraction mappings and applications. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. a Mat. **105**(2), 261-272 (2011)
- 4. Agarwal, RP, O'Regan, DO, Shahzad, N: Fixed point theorems for generalized contractive maps of Mei-Keeler type. Math. Nachr. 276, 3-12 (2004)
- 5. Agarwal, RP, Karapinar, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013, Article ID 10 (2013). doi:10.1186/1687-1812-2013-2
- Azam, A, Arshad, M, Beg, I: Existence of fixed points in complete cone metric spaces. Int. J. Mod. Math. 5(1), 91-99 (2010)
- Hussain, N, Abbas, M: Common fixed point results for two new classes of hybrid pairs in symmetric spaces. Appl. Math. Comput. 218, 542-547 (2011)
- 8. Hussain, N, Karapinar, E, Salimi, P, Vetro, P: Fixed point results for G^m-Meir-Keeler contractive and
- $G (\alpha, \psi)$ -Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, Article ID 34 (2013)
- 9. Wang, T: Fixed point theorems and fixed point stability for multivalued mappings on metric spaces. Nanjing Daxue Xuebao Shuxue Bannian Kan **6**, 16-23 (1989)
- 10. Nadler, SB Jr: Multi-valued contraction mappings. Pac. J. Math. 30, 475-478 (1969)
- 11. Mizoguchi, N, Takahashi, W: Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. **141**, 177-188 (1989)
- 12. Suzuki, T: Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 340(1), 752-755 (2008)
- Huang, LG, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1468-1476 (2007). doi:10.1016/j.jmaa.2005.03.087
- 14. Rezapour, S, Hamlbarani, R: Some notes on the paper 'Cone metric spaces and fixed point theorems of contractive mappings'. J. Math. Anal. Appl. **345**, 719-724 (2008)
- Abbas, M, Rhoades, BE: Fixed and periodic point results in cone metric spaces. Appl. Math. Lett. 22(4), 511-515 (2009)
 Azam, A, Arshad, M, Beg, I: Common fixed points of two maps in cone metric spaces. Rend. Circ. Mat. Palermo 57,
- 433-441 (2008)
- 17. Bari, CD, Vetro, P: *ф*-pairs and common fixed points in cone metric spaces. Rend. Circ. Mat. Palermo **57**, 279-285 (2008)
- Bari, CD, Vetro, P: Weakly *p*-pairs and common fixed points in cone metric spaces. Rend. Circ. Mat. Palermo 58, 125-132 (2009)
- 19. Branciari, A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. **29**, 531-536 (2002)

- 20. Cho, SH, Bae, JS: Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings in cone metric spaces. Fixed Point Theory Appl. **2012**, Article ID 133 (2012). doi:10.1186/1687-1812-2011-87
- 21. Du, WS: A note on cone metric fixed point theory and its equivalence. Nonlinear Anal., Theory Methods Appl. 72(5), 2259-2261 (2010)
- 22. Kadelburg, Z, Radenovič, S: Some results on set-valued contractions in abstract metric spaces. Comput. Math. Appl. 62, 342-350 (2011)
- Klim, D, Wardowski, D: Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces. Nonlinear Anal. 71, 5170-5175 (2009)
- 24. Shatanawi, W: Some common coupled fixed point results in cone metric spaces. Int. J. Math. Anal. 4, 2381-2388 (2010)
- 25. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
- 26. Dhage, BC: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 84, 329-336 (1992)
- 27. Dhage, BC: Generalized metric space and topological structure. I. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 46(1), 3-24 (2000)
- Kaewcharoen, A, Kaewkhao, A: Common fixed points for single-valued and multi-valued mappings in G-metric spaces. Int. J. Math. Anal. 5(36), 1775-1790 (2011)
- 29. Mustafa, Z, Sims, B: Some remarks concerning *D*-metric spaces. In: Proc. Int. Conf. on Fixed Point Theory and Appl. pp. 189-198. Valencia, Spain, July 2003 (2003)
- 30. Nedal, T, Hassen, A, Karapinar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. **2012**, Article ID 48 (2012)
- 31. Beg, I, Abbas, M, Nazir, T: Generalized cone metric spaces. J. Nonlinear Sci. Appl. **3**(1), 21-31 (2010)
- 32. Chen, CM: On set-valued contractions of Nadler type in tvs-G-cone metric spaces. Fixed Point Theory Appl. 2012, Article ID 52 (2012). doi:10.1186/1687-1812-2012-52
- Cho, SH, Bae, JS: Fixed point theorems for multi-valued maps in cone metric spaces. Fixed Point Theory Appl. 2011, Article ID 87 (2011). doi:10.1186/1687-1812-2011-87
- 34. Janković, S, Kadelburg, Z, Radenović, S: On cone metric spaces: a survey. Nonlinear Anal. 74, 2591-2601 (2011)
- 35. Jlelli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, Article ID 210 (2012)

doi:10.1186/1029-242X-2013-354

Cite this article as: Azam and Mehmood: **Fixed point theorems for multivalued mappings in** *G***-cone metric spaces.** *Journal of Inequalities and Applications* 2013 **2013**:354.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com