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Abstract
In this paper, we discuss the strong convergence rates and strong representation of
the Kaplan-Meier estimator and the hazard estimator based on censored data when
the survival and the censoring times form negatively associated (NA) sequences.
Under certain regularity conditions, strong convergence rates are established for the
Kaplan-Meier estimator and the hazard estimator, and the Kaplan-Meier estimator
and the hazard estimator can be expressed as the mean of random variables, with the
remainder of order n–1/2 ln1/2 n a.s.
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1 Introduction andmain results
Let {Ti; i ≥ } be a sequence of true survival times. Random variables (r.v.s) are not as-
sumed to be mutually independent; it is assumed, however, that they have a common un-
known continuousmarginal distribution function (d.f.) F(x) = P(Ti ≤ x) such that F() = .
Let the r.v.s Ti be censored on the right by the censoring r.v.s Yi, so that one observes only
(Zi, δi), where

Zi =min(Ti,Yi) := Ti ∧ Yi and δi = I(Ti ≤ Yi), i = , . . . ,n.

Here and in the sequel, I(A) is the indicator random variable of the eventA. In this random
censorship model, the censoring times Yi, i = , . . . ,n, are assumed to have the common
distribution functionG(y) = P(Yi ≤ y) such thatG() = ; they are also assumed to be inde-
pendent of the r.v.s Ti’s. The problem at hand is that of drawing nonparametric inference
about F based on the censored observations (Zi, δi), i = , . . . ,n. For this purpose, define
two stochastic processes on [,∞) as follows:

Nn(t) =
n∑
k=

I(Zk ≤ t, δk = ) =
n∑
k=

I(Tk ≤ t ∧ Yk),
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the number of uncensored observations less than or equal to t, and

Yn(t) =
n∑
k=

I(Zk ≥ t),

the number of censored or uncensored observations greater than or equal to t. The fol-
lowing nonparametric estimation F̂n of F due to Kaplan and Meier [] is widely used to
estimate F on the basis of the data (Zi, δi):

F̂n(x) =  –
∏
s≤x

(
 –

dNn(s)
Yn(s)

)
,

where dNn(s) =Nn(s) –Nn(s–).
Let L be the distribution of theZi’s, L̄ := –L. Since the sequences {Tn;n ≥ } and {Yn;n ≥

} are independent, it follows that L =  – F̄Ḡ =  – ( – F)( –G). The empirical d.f. Ln(t)
of L is defined by

Ln(t) :=

n

n∑
k=

I(Zk < t) =  –
Yn(t)
n

:=
Ȳn(t)
n

,

where Ȳn(t) =
∑n

k= I(Zk < t).
Define (possibly infinite) times τF , τG and τL by

τF = inf
{
y;F(y) = 

}
, τG = inf

{
y;G(y) = 

}
, τL = inf

{
y;L(y) = 

}
.

Then τL = τF ∧ τG. By setting

F∗(t) = P(Z ≤ t, δ = ) = P(T ≤ t ∧ Y),

and the empirical d.f. of F∗ is defined by

F∗n(t) :=

n

n∑
k=

I(Zk ≤ t, δk = ) =
Nn(t)
n

.

We have then

F∗(t) =
∫ ∞


F(t ∧ z) dG(z) =

∫ t


Ḡ(z) dF(z),

and

dF∗(t) = Ḡ(t) dF(t).

Another question of interest in survival analysis is the estimation of the hazard function
h defined as follows when it is further assumed that F has a density f :

h(x) :=
d
dx

(
– log F̄(x)

)
= f (x)/F̄(x) for F(x) < ,
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with F̄ =  – F . The quantity

H(x) = – log F̄(x) =
∫ x



dF(s)
F̄(s)

=
∫ x



dF∗(s)
L̄(s)

(.)

is called the cumulative hazard function. The empirical cumulative hazard function Ĥn(x)
is given by

Ĥn(x) :=
∫ x



dNn(s)
Yn(s)

=
∫ x



dF∗n(s)
L̄n(s)

, (.)

where L̄n(s) =  – Ln(s).
SinceNn(t) is a step function, and dNn(Z(k)) = δ(k), k = , , . . . ,n, it can be easily seen that

Ĥn(x) =
n∑
k=

I(Z(k) ≤ x, δ(k) = )
n – k + 

, (.)

and

F̂n(x) =  –
n∏
k=

(
 –

δ(k)

n – k + 

)I(Z(k)≤x)

=  –
n∏
k=

(
n – k

n – k + 

)I(δ(k)=,Z(k)≤x)

, (.)

where Z() ≤ Z() ≤ · · · ≤ Z(n) denote the order statistics of Z,Z, . . . ,Zn, and δ(i) is the
concomitant of Z(i).
There is extensive literature on the Kaplan-Meier and the hazard estimator F̂n(x) and

Ĥn(x) for censored independent observations. We refer to papers by Breslow and Crowley
[], Foldes and Rejto [] and Gu and Lai []. Martingale methods for analyzing properties
of F̂n(x) are described in the monograph by Gill []. However, the censored dependent
data appear in a number of applications. For example, repeated measurements in survival
analysis follow this pattern, see Kang and Koehler [] or Wei et al. []. In the context of
censored time series analysis, Shumway et al. [] considered (hourly or daily) measure-
ments of the concentration of a given substance subject to some detection limits, thus
being potentially censored from the right. Ying andWei [], Lecoutre and Ould-Saïd [],
Cai [] and Liang andUña-Álvarez [] studied the convergence of F̂n(x) for the stationary
α-mixing data.
The main purpose of this paper is to study the strong convergence rates and strong

representation of the Kaplan-Meier estimator and the hazard estimator based on censored
data when the survival and the censoring times form the NA (see the following definition)
sequences. Under certain regularity conditions, we find strong convergence rates of the
Kaplan-Meier and hazard estimator, and the expression of the Kaplan-Meier estimator
and the hazard estimator as the mean of random variables, with the remainder of order
n–/ ln/ n a.s.

Definition Random variables X,X, . . . ,Xn, n ≥  are said to be negatively associated
(NA) if for every pair of disjoint subsets A and A of {, , . . . ,n},

cov
(
f(Xi; i ∈ A), f(Xj; j ∈ A)

) ≤ ,
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where f and f are increasing for every variable (or decreasing for every variable) so that
this covariance exists. A sequence of random variables {Xi; i ≥ } is said to be NA if every
finite subfamily is NA.
Obviously, if {Xi; i ≥ } is a sequence of NA random variables, and {fi; i ≥ } is a sequence

of nondecreasing (or non-increasing) functions, then {fi(Xi); i≥ } is also a sequence ofNA
random variables.

This definition was introduced by Joag-Dev and Proschan []. A statistical test depends
greatly on sampling. The random sampling without replacement from a finite population
is NA, but is not independent. NA sampling has wide applications such as in multivariate
statistical analysis and reliability theory. Because of the wide applications of NA sampling,
the limit behaviors of NA random variables have received more and more attention re-
cently. One can refer to Joag-Dev and Proschan [] for fundamental properties, Matula
[] for the three series theorem, and Wu and Jiang [, ] for the strong convergence.
We give two lemmas, which are helpful in proving our theorems.

Lemma . (Yang [], Lemma ) Let {Xi; i ≥ } be a sequence of negatively associated
random variables with zero means and |Xi| ≤ bi, a.s. (i = , , . . .). Let t >  be such that
tmax≤i≤n bi ≤ . Then, for all ε > ,

P

(∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣ ≥ ε

)
≤  exp

(
–tε + t

n∑
i=

EX
i

)
.

Lemma . Let {Xi; i ≥ } be a sequence of NA r.v.s with continuous d.f. F , and let Fn(x) :=

n
∑n

i= I(Xi < x) be the empirical d.f. based on the segments X, . . . ,Xn. Then

sup
x∈R

∣∣Fn(x) – F(x)
∣∣ =O

(
n–/ ln/ n

)
a.s.

Proof Similar to the proof of Lemma  in Yang [], we can prove Lemma .. �

Theorem . Let {Tn;n ≥ } and {Yn;n ≥ } be two sequences of NA random variables.
Suppose that the sequences {Tn;n ≥ } and {Yn;n ≥ } are independent. Then, for any  <
τ < τL,

sup
≤t≤τ

∣∣Ĥn(t) –H(t)
∣∣ =O(an) a.s. (.)

and

sup
≤t≤τ

∣∣F̂n(t) – F(t)
∣∣ =O(an) a.s., (.)

here and in the sequel, an = n–/(lnn)/.

For positive reals z and t, and δ taking value  or , let

ξ (z, δ, t) = g(z∧ t) – I(z ≤ t, δ = )/L̄(z), (.)

where g(x) =
∫ x


dF∗(s)
L̄(s) .
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Theorem . Assume that the conditions of Theorem . hold. Then

Ĥn(t) –H(t) = –

n

n∑
i=

ξ (Zi, δi, t) + rn(t) (.)

and

F̂n(t) – F(t) = –
F̄(t)
n

n∑
i=

ξ (Zi, δi, t) + rn(t), (.)

where sup≤t≤τ |rin(t)| =O(an) a.s. i = , ,  < τ < τL.

2 Proofs

Proof of Theorem . It is easy to see from Property P of Joag-Dev and Proschan [] that
{Zn;n≥ } and {(Zn, δn);n≥ } are also two sequences of NA r.v.s. Therefore

sup
t≥

∣∣Ln(t) – L(t)
∣∣ =O(an) a.s. (.)

and

sup
t≥

∣∣F∗n(t) – F∗(t)
∣∣ =O(an) a.s. (.)

follow from Lemma . and the fact that both Ln and F∗n are empirical distribution func-
tions of L and F∗.
Now, by (.) and (.), let us write

Ĥn(t) –H(t) =
∫ t



dF∗n(s)
L̄n(s)

–
∫ t



dF∗(s)
L̄(s)

=
∫ t



(


L̄n(s)
–


L̄(s)

)
dF∗(s) +

∫ t



d(F∗n(s) – F∗(s))
L̄n(s)

=
∫ t



L̄(s) – L̄n(s)
L̄n(s)L̄(s)

dF∗(s) +
F∗n(t) – F∗(t)

L̄n(t)

–
∫ t



(
F∗n(s) – F∗(s)

)
d
(
L̄n(s)

)–. (.)

Therefore, by the combination of equations (.) and (.), and L̄n(τ ) → L̄(τ ) > , for  <
τ < τL, we obtain

sup
≤t≤τ

∣∣Ĥn(t) –H(t)
∣∣ ≤ supt≥ |L̄n(t) – L̄(t)|

L̄n(τ )L̄(τ )
(
F∗(τ ) – F∗()

)

+
supt≥ |F∗n(t) – F∗(t)|

L̄n(τ )

+ sup
t≥

∣∣F∗n(t) – F∗(t)
∣∣( 

L̄n(τ )
–


L̄n()

)
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≤ supt≥ |L̄n(t) – L̄(t)|
L̄n(τ )L̄(τ )

+
 supt≥ |F∗n(t) – F∗(t)|

L̄n(τ )
= O(an).

Thus, (.) holds.
Now we prove (.). By (.) and (.),

–Ĥn(t) – ln
(
 – F̂n(t)

)
= –

n∑
i=

I(δ(i) = ,Z(i) ≤ t)
n – i + 

–
n∑
i=

I(δ(i) = ,Z(i) ≤ t) ln
n – i

n – i + 

=
n∑
i=

I(δ(i) = ,Z(i) ≤ t)
(
ln

n – i + 
n – i

–


n – i + 

)
.

Therefore, by combining the inequality  < ln x+
x – 

x+ <


x(x+) , x > , and (.), for  < τ <
τL,  ≤ t ≤ τ , we get that

 < –Ĥn(t) – ln
(
 – F̂n(t)

) ≤
n∑
i=

I(δ(i) = ,Z(i) ≤ t)


(n – i)(n – i + )

≤
∑

i;Z(i)≤t


(n – i)(n – i + )

=
n–Yn(t)∑

i=

(


n – i
–


n – i + 

)

=


Yn(t)
–

n

≤ 
n


Yn(t)
n

=

n


L̄n(t)

= O
(

n

)
. (.)

By (.),(.) and (.), using the Taylor expansion, ex =  + x + o(x), we obtain

F̂n(t) – F(t) =  – F(t) –
(
 – F̂n(t)

)
=

(
e–H(t) – e–Ĥn(t)

)
+

(
e–Ĥn(t) – eln(–F̂n(t))

)
= e–H(t)( – e–Ĥn(t)+H(t)) + eln(–F̂n(t))

(
e–Ĥn(t)–ln(–F̂n(t)) – 

)
= e–H(t)(Ĥn(t) –H(t) + o

(
Ĥn(t) –H(t)

))
+

(
 – F̂n(t)

)(
–Ĥn(t) – ln

(
 – F̂n(t)

)
+ o

(
–Ĥn(t) – ln

(
 – F̂n(t)

)))
= e–H(t)(Ĥn(t) –H(t)

)
+ o(an) +O

(

n

)

= F̄(t)
(
Ĥn(t) –H(t)

)
+ o(an). (.)

Thence, the combination (.), (.) holds. This completes the proof of Theorem .. �

Proof of Theorem . By (.),


L̄n(s)

–


L̄(s)
=
L̄(s) – L̄n(s)

L̄(s)
–


L̄(s)

+
L̄n(s)
L̄(s)

+


L̄n(s)

=
L̄(s) – L̄n(s)

L̄(s)
+
(L̄n(s) – L̄(s))

L̄(s)L̄n(s)
=


L̄(s)

–
L̄n(s)
L̄(s)

+O
(
an

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/340


Wu and Chen Journal of Inequalities and Applications 2013, 2013:340 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/340

Thus, by the combination of (.),

Ĥn(t) –H(t) =
∫ t



(


L̄n(s)
–


L̄(s)

)
dF∗(s) +

∫ t



d(F∗n(s) – F∗(s))
L̄(s)

+
∫ t



(


L̄n(s)
–


L̄(s)

)
d
(
F∗n(s) – F∗(s)

)

=
(∫ t



dF∗n(s)
L̄(s)

–
∫ t



L̄n(s)
L̄(s)

dF∗(s)
)

+
∫ t



(


L̄n(s)
–


L̄(s)

)
d
(
F∗n(s) – F∗(s)

)
+O

(
an

)
:= I(t) + I(t) +O

(
an

)
. (.)

Noting that F∗n(s) = Nn(s)
n and Nn(s) is a step function, we get

I(t) =

n

∑
i;Z(i)≤t

Nn(Zi) –Nn(Z–
i )

L̄(Z(i))
–

n

∫ t



∑n
i= I(Zi ≥ s)
L̄(s)

dF∗(s)

=

n

∑
i;Z(i)≤t

δ(i)

L̄(Z(i))
–

n

n∑
i=

∫ t∧Zi



dF∗(s)
L̄(s)

=

n

n∑
i=

I(Z(i) ≤ t, δ(i) = )
L̄(Z(i))

–

n

n∑
i=

g(t ∧ Zi)

=

n

n∑
i=

I(Zi ≤ t, δi = )
L̄(Zi)

–

n

n∑
i=

g(t ∧ Zi)

= –

n

n∑
i=

ξ (Zi, δi, t). (.)

Therefore, to prove (.), it suffices to prove that sup≤t≤τ |I(t)| = O(an) for τ < τH . Let
us divide the interval [, τ ] into subintervals [xi,xi+], i = , . . . ,kn, where kn = O(a–n ), and
 = x < x < · · · < xkn+ = τ are such thatH(xi+) –H(xi) =O(an). For  ≤ t ≤ τ , it is easy to
check that

I(t) =
∫ t



(


L̄n(s)
–


L̄(s)

)
d
(
F∗n(s) – F∗(s)

)
≤  max

≤i≤kn
sup

y∈[xi ,xi+]

∣∣L̄–n (y) – L̄–n (xi) – L̄–(y) + L̄–(xi)
∣∣

+ sup
≤x≤τ

∣∣L̄–n (x) – L̄–(x)
∣∣ max
≤i≤kn

∣∣F–
∗n (xi+) – F–

∗n (xi) – F∗(xi+) + F∗(xi)
∣∣

≤ c max
≤i≤kn

sup
y∈[xi ,xi+]

∣∣L̄n(y) – L̄n(xi) – L̄(y) + L̄(xi)
∣∣

+ c max
≤i≤kn

∣∣F∗n(xi+) – F∗n(xi) – F∗(xi+) + F∗(xi)
∣∣ +O

(
an

)
:= I + I +O

(
an

)
. (.)

To estimate I, we further subdivide each [xi,xi+] into subintervals [xij,xi(j+)], j = , . . . ,bn,
where bn = O(k/n ) = O(a–/n ) such that |L̄(xi(j+)) – L̄(xij)| =O(a/n ) uniformly in i, j. Now,
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by (.) and |L̄n(y) – L̄n(xij)| ≤ /n≤ O(a/n ), for y ∈ [xij,xi(j+)], it follows that

I = max
≤i≤kn

sup
y∈[xi ,xi+]

∣∣L̄n(y) – L̄n(xi) – L̄(y) + L̄(xi)
∣∣

≤ max
≤i≤kn

max
≤j≤bn

sup
y∈[xij ,xi(j+)]

∣∣L̄n(xij) – L̄n(xi) – L̄(xij) + L̄(xi)
∣∣

+ max
≤i≤kn

max
≤j≤bn

sup
y∈[xij ,xi(j+)]

(∣∣L̄n(y) – L̄n(xij)
∣∣ + ∣∣–L̄(y) + L̄(xij)

∣∣)
≤ max

≤i≤kn
max
≤j≤bn

∣∣L̄n(xij) – L̄n(xi) – L̄(xij) + L̄(xi)
∣∣ +O

(
a/n

)
. (.)

For  ≤ i ≤ kn,  ≤ j ≤ bn,  ≤ k ≤ n, let ηk = I(Zk ≥ xi) – EI(Zk ≥ xi), ζk = I(Zk ≥ xij) –
EI(Zk ≥ xij). Then L̄n(xij) – L̄n(xi) – L̄(xij) + L̄(xi) = 

n
∑n

k=(ηk + ζk), {ηk} and {ζk} are NA
sequences with |ηk| ≤ , |ζk| ≤ , Eηk = Eζk = , Eη

k ≤ , Eζ 
k ≤ .

Taking t = an in Lemma ., yields the following probability bound:

P
(
max
≤i≤kn

max
≤j≤bn

∣∣L̄n(xij) – L̄n(xi) – L̄(xij) + L̄(xi)
∣∣ ≥ an

)

≤
kn∑
i=

bn∑
j=

P

(∣∣∣∣∣
n∑
k=

(ηk + ζk)

∣∣∣∣∣ ≥ nan

)

≤
kn∑
i=

bn∑
j=

P

(∣∣∣∣∣
n∑
k=

ηk

∣∣∣∣∣ ≥ nan

)
+

kn∑
i=

bn∑
j=

P

(∣∣∣∣∣
n∑
k=

ζk

∣∣∣∣∣ ≥ nan

)

≤
kn∑
i=

bn∑
j=

 exp
(
–nan + nan

)

= knbne– lnn ≤ 
n

.

Using the bound and the Borel-Cantelli lemma, we deduce that I = O(an) a.s. The esti-
mation of I = O(an) is similar noting that |F∗(x) – F∗(y)| ≤ |L̄(x) – L̄(y)| for all x and y.
Therefore, by (.)-(.), (.) holds. (.) follows from (.) and (.). �
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