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Abstract
The purpose of this paper is to introduce new sequence spaces associated with a
multiplier sequence by using an infinite matrix, an Orlicz function and a generalized
B-difference operator on a real n-normed space. Some topological properties of these
spaces are examined. We also define a new concept, which will be called
(Bμ

�)
n-statistical A-convergence, and establish some inclusion connections between

the sequence spaceW(A,Bμ
�,p,‖·, . . . , ·‖) and the set of all (Bμ

�)
n-statistically

A-convergent sequences.
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1 Introduction
Let w, l∞, c and c be the linear spaces of all, bounded, convergent and null sequences
x = (xk) for all k ∈N, respectively.
Let X and Y be two subsets of w. By (X,Y ), we denote the class of all matrices of A such

that Am(x) =
∑∞

k= amkxk converges for eachm ∈N, the set of all natural numbers, and the
sequence Ax = (Am(x))∞m= ∈ Y for all x ∈ X.
Let A = (amk) be an infinite matrix of complex numbers. Then A is said to be regular if

and only if it satisfies the following well-known Silverman-Toeplitz conditions:
() supm

∑∞
k= |amk| < ∞,

() limm→∞amk =  for each k ∈N,
() limm→∞

∑∞
k= amk = .

The idea of statistical convergence was given by Zygmund [] in . The concept of
statistical convergence was introduced by Fast [] and Schoenberg [] independently for
the real sequences. Later on, it was further investigated from a sequence point of view and
linked with the summability theory by Fridy [] and many others. The natural density of
a subset E of N is denoted by

δ(E) = lim
m→∞


m

∣∣{k ∈ E : k ≤ m}∣∣,
where the vertical bar denotes the cardinality of the enclosed set.
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Spaces of strongly summable sequences were studied by Kuttner [], Maddox [] and
others. The class of sequences that are strongly Cesaro summable with respect to a mod-
ulus was introduced by Maddox [] as an extension of the definition of strongly Cesaro
summable sequences. Connor [] has further extended this definition to a definition of
strong A-summability with respect to a modulus, where A = (amk) is a non-negative regu-
lar matrix, and established some connections between strongA-summability with respect
to a modulus and A-statistical convergence.
Assume now that A is a non-negative regular summability matrix. Then a sequence x =

(xk) is said to be A-statistically convergent to a number L if δA(K) = limm→∞
∑∞

k= amk ×
χK (k) =  or, equivalently, limm→∞

∑
k∈K amk =  for every ε > , where K = {k ∈ N : |xk –

L| ≥ ε} and χK (k) is the characteristic function of K . We denote this limit by stA- limx = L
[] (see also [, , ]).
For A = C, the Cesaro matrix, A-statistical convergence reduces to statistical conver-

gence (see [, ]). Taking A = I , the identity matrix, A-statistical convergence coincides
with ordinary convergence. We note that if A = (amk) is a regular summability matrix for
which limmmaxk |amk| = , then A-statistical convergence is stronger than usual conver-
gence []. It should be also noted that the concept of A-statistical convergence may also
be given in normed spaces [].
The notion of difference sequence space was introduced by Kızmaz []. It was further

generalized by Et and Çolak [] as follows: Z(�μ) = {x = (xk) ∈ w : (�μxk) ∈ Z} for Z =
l∞, c and c, where μ is a non-negative integer, �μxk = �μ–xk – �μ–xk+, �xk = xk for
all k ∈N or equivalent to the following binomial representation:

�μxk =
μ∑
v=

(–)v
(

μ

v

)
xk+v.

These sequence spaces were generalized by Et and Başarır [] taking Z = l∞(p), c(p)
and c(p).
Dutta [] introduced the following difference sequence spaces using a new difference

operator: Z(�(η)) = {x = (xk) ∈ w : �(η)x ∈ Z} for Z = l∞, c and c, where �(η)x = (�(η)xk) =
(xk – xk–η) for all k,η ∈N.
In [], Dutta introduced the sequence spaces c(‖·, ·‖,�μ

(η),p), c(‖·, ·‖,�μ

(η),p), l∞(‖·, ·‖,
�

μ

(η),p), m(‖·, ·‖,�μ

(η),p) and m(‖·, ·‖,�n
(η),p), where η, μ ∈ N and �

μ

(η)x = (�μ

(η)xk) =
(�μ–

(η) xk – �
μ–
(η) xk–η) and �

(η)xk = xk for all k,η ∈ N, which is equivalent to the following
binomial representation:

�
μ

(η)xk =
μ∑
v=

(–)v
(

μ

v

)
xk–ηv.

The difference sequence spaces have been studied by several authors, [–]. Başar and
Altay [] introduced the generalized difference matrix B = (bmk) for all k,m ∈ N, which
is a generalization of �()-difference operator, by

bmk =

⎧⎪⎨
⎪⎩
r, k =m,
s, k =m – ,
 (k >m) or ( ≤ k <m – ).
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Başarır and Kayıkçı [] defined the matrix Bμ = (bμ

mk) which reduced the difference ma-
trix �

μ

() in case r = , s = –. The generalized Bμ-difference operator is equivalent to the
following binomial representation:

Bμx = Bμ(xk) =
μ∑
v=

(
μ

v

)
rμ–vsvxk–v.

Related articles can be found in [–].
The concept of -normed space was initially introduced by Gähler [] in the mid of

s, while that of n-normed spaces can be found inMisiak []. Since then,many others
have used these concepts and obtained various results; see, for instance, Gunawan [],
Gunawan and Mashadi [], Gunawan et al. [] (see also [–]).

2 Definitions and preliminaries
Let n be a non-negative integer and let X be a real vector space of dimension d ≥ n ≥ .
A real-valued function ‖·, . . . , ·‖ on Xn satisfies the following conditions:
() ‖x, . . . ,xn‖ =  if and only if x, . . . ,xn are linearly dependent,
() ‖x, . . . ,xn‖ is invariant under permutation,
() ‖αx, . . . ,xn–,xn‖ = |α|‖x, . . . ,xn–,xn‖ for any α ∈R,
() ‖x, . . . ,xn–, y + z‖ ≤ ‖x, . . . ,xn–, y‖ + ‖x, . . . ,xn–, z‖.

Then it is called an n-norm on X and the pair (X,‖·, . . . , ·‖) is called an n-normed space.
A trivial example of an n-normed space isX =R

n equippedwith the following Euclidean n-
norm: ‖x, . . . ,xn‖E = |det(xij)|, where xi = (xi , . . . ,xin ) ∈ R

n for each i = , . . . ,n. The stan-
dard n-norm on X, where X is a real inner product space of dimension d ≥ n, is defined as

‖x, . . . ,xn‖S :=

∣∣∣∣∣∣∣∣
〈x,x〉 · · · 〈x,xn〉

...
. . .

...
〈xn,x〉 · · · 〈xn,xn〉

∣∣∣∣∣∣∣∣




,

where 〈·, ·〉 denotes the inner product on X. If X = R
n, then this n-norm is exactly the

same as the Euclidean n-norm ‖x, . . . ,xn‖E as mentioned earlier. Notice that for n = ,
the n-norm above is the usual norm ‖x‖S = 〈x,x〉 

 which gives the length of x, while
for n = , it defines the standard -norm ‖x,x‖S = (‖x‖S.‖x‖S – 〈x,x〉)  which rep-
resents the area of the parallelogram spanned by x and x. Further, if X = R

, then
‖x,x,x‖S = ‖x,x,x‖E represents the volume of the parallelograms spanned by x, x
and x. In general ‖x, . . . ,xn‖S represents the volume of the n-dimensional parallelepiped
spanned by x, . . . ,xn in X.
A sequence (xk) in an n-normed space (X,‖·, . . . , ·‖) is said to converge to some L ∈

X in the n-norm if for each ε >  there exists a positive integer n = n(ε) such that
‖xk – L, z, . . . , zn–‖ < ε for all k ≥ n and for every z, . . . , zn– ∈ X [].
An Orlicz function is a function M : [,∞) → [,∞) which is continuous, non-

decreasing and convex with M() = , M(x) >  for x >  and M(x) → ∞ as x → ∞. It
is well known that ifM is a convex function, thenM(αx) ≤ αM(x) with  < α < .
Let � = (�k) be a sequence of nonzero scalars. Then, for a sequence space E, the multi-

plier sequence space E�, associated with the multiplier sequence �, is defined as

E� =
{
x = (xk) ∈ w : (�kxk) ∈ E

}
.
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The following well-known inequality will be used throughout the paper. Let p = (pk)
be any sequence of positive real numbers with  < h = infk pk ≤ pk ≤ supk pk = H , D =
max{, H–}. Then we have, for all ak ,bk ∈C and for all k ∈N,

|ak + bk|pk ≤ D
(|ak|pk + |bk|pk

)
, (.)

and for a ∈ C, |a|pk ≤ max{|a|h, |a|H}.
In this paper, we introduce some new sequence spaces on a real n-normed space by using

an infinite matrix, an Orlicz function and a generalized Bμ
�-difference operator. Further,

we examine some topological properties of these sequence spaces. We also introduce a
new concept which will be called (Bμ

�)n-statistical A-convergence in an n-normed space.

3 Main results
In this section, we give some new sequence spaces on a real n-normed space and investi-
gate some topological properties of these spaces. We also give some inclusion relations.
Let A = (amk) be an infinite matrix of non-negative real numbers, let p = (pk) be a

bounded sequence of positive real numbers for all k ∈ N, and let � = (�k) be a se-
quence of nonzero scalars. Further, let M be an Orlicz function and (X,‖·, . . . , ·‖) be an
n-normed space. We denote the space of all X-valued sequence spaces by w(n –X) and
x = (xk) ∈ w(n –X) by x = (xk) for brevity. We define the following sequence spaces for
every nonzero z, z, . . . , zn– ∈ X and for some ρ > :

W
(
A,Bμ

�,M,p,‖·, . . . , ·‖)
=

{
x = (xk) : lim

m→∞

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk – L

ρ
, z, . . . , zn–

∥∥∥∥
)]pk

= 

for some L ∈ X

}
,

W
(
A,Bμ

�,M,p,‖·, . . . , ·‖)
=

{
x = (xk) : lim

m→∞

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

= 

}
,

W∞
(
A,Bμ

�,M,p,‖·, . . . , ·‖)
=

{
x = (xk) : sup

m

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

< ∞
}
,

where and throughout the paper Bμ
�xk =

∑μ
v=

( μ

v
)
rμ–vsvxk–v�k–v and μ,k ∈ N. If we con-

sider some special cases of the spaces above, the following are obtained:
() If we take μ = , then the spaces above are reduced toW (A,�,M,p,‖·, . . . , ·‖),

W(A,�,M,p,‖·, . . . , ·‖),W∞(A,�,M,p,‖·, . . . , ·‖), respectively.
() If we take r = , s = –, then we get the spacesW (A,�μ

�,M,p,‖·, . . . , ·‖),
W(A,�μ

�,M,p,‖·, . . . , ·‖),W∞(A,�μ
�,M,p,‖·, . . . , ·‖).

() IfM(x) = x, then the spaces above are denoted byW (A,Bμ
�,p,‖·, . . . , ·‖),

W(A,Bμ
�,p,‖·, . . . , ·‖),W∞(A,Bμ

�,p,‖·, . . . , ·‖), respectively.
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() If pk =  for all k ∈N and � = (�k) = (, , , . . .), then the spaces above are reduced
to the sequence spacesW (A,Bμ,M,‖·, . . . , ·‖),W(A,Bμ,M,‖·, . . . , ·‖),
W∞(A,Bμ,M,‖·, . . . , ·‖), respectively.

() IfM(x) = x and pk =  for all k ∈ N, then the spaces above are denoted by
W (A,Bμ

�,‖·, . . . , ·‖),W(A,Bμ
�,‖·, . . . , ·‖),W∞(A,Bμ

�,‖·, . . . , ·‖), respectively.
() If we take A = C, i.e., the Cesaro matrix, then the spaces above are reduced to the

spacesW (Bμ
�,M,p,‖·, . . . , ·‖),W(Bμ

�,M,p,‖·, . . . , ·‖),W∞(Bμ
�,M,p,‖·, . . . , ·‖).

() If we take A = (amk) is de la Vallee Poussin mean, i.e.,

amk =

{


λm
, k ∈ Im = [m – λm + ,m],

, otherwise,
(.)

where λm is a non-decreasing sequence of positive numbers tending to ∞ and
λm+ ≤ λm + , λ = , then the spaces above are denoted by
W (λ,Bμ

�,M,p,‖·, . . . , ·‖),W(λ,Bμ
�,M,p,‖·, . . . , ·‖),W∞(λ,Bμ

�,M,p,‖·, . . . , ·‖).
() By a lacunary sequence θ = (km),m = , , . . . , where k = , we mean an increasing

sequence of non-negative integers with hm = (km – km–) → ∞ as m → ∞. The
intervals determined by θ are denoted by Im = (km–,km]. Let

amk =

{

hm , km– < k ≤ km,
, otherwise.

(.)

Then we obtain the spacesW (θ ,Bμ
�,M,p,‖·, . . . , ·‖),W(θ ,Bμ

�,M,p,‖·, . . . , ·‖) and
W∞(θ ,Bμ

�,M,p,‖·, . . . , ·‖), respectively.
() If we take A = I , where I is an identity matrix and pk =  for all k ∈N, then the

spaces above are reduced to the sequence spaces c(Bμ
�,M,‖·, . . . , ·‖),

c(Bμ
�,M,‖·, . . . , ·‖) and l∞(Bμ

�,M,‖·, . . . , ·‖), respectively.
() If we take A = I , where I is an identity matrix,M(x) = x and pk =  for all k ∈ N,

then we denote the spaces above by the sequence spaces c(Bμ
�,‖·, . . . , ·‖),

c(Bμ
�,‖·, . . . , ·‖) and l∞(Bμ

�,‖·, . . . , ·‖).

Theorem . W (A,Bμ
�,M,p,‖·, . . . , ·‖), W(A,Bμ

�,M,p,‖·, . . . , ·‖) and W∞(A,Bμ
�,M,p,

‖·, . . . , ·‖) are linear spaces.

Proof Weconsider onlyW (A,Bμ
�,M,p,‖·, . . . , ·‖). Others can be treated similarly. Let x, y ∈

W (A,Bμ
�,M,p,‖·, . . . , ·‖) and α, β be scalars. Suppose that x → L and y→ L. Then there

exists |α|ρ + |β|ρ >  such that

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�(αxk + βyk) – (αL + βL)

|α|ρ + |β|ρ
, z, . . . , zn–

∥∥∥∥
)]pk

≤
∞∑
k=

amk

[
M

( |α|ρ

|α|ρ + |β|ρ

∥∥∥∥B
μ
�xk – L

ρ
, z, . . . , zn–

∥∥∥∥
+

|β|ρ

|α|ρ + |β|ρ

∥∥∥∥B
μ
�yk – L

ρ
, z, . . . , zn–Bμ

�

∥∥∥∥
)]pk

≤
∞∑
k=

amk

[ |α|ρ

|α|ρ + |β|ρ
M

(∥∥∥∥B
μ
�xk – L

ρ
, z, . . . , zn–

∥∥∥∥
)
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+
|β|ρ

|α|ρ + |β|ρ
M

(∥∥∥∥B
μ
�yk – L

ρ
, z, . . . , zn–

∥∥∥∥
)]pk

≤ D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk – L

ρ
, z, . . . , zn–

∥∥∥∥
)]pk

+D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�yk – L

ρ
, z, . . . , zn–

∥∥∥∥
)]pk

,

which leads us, by taking limit asm→ ∞, to the fact that we get (αx+βy) ∈W (A,Bμ
�,M,p,

‖·, . . . , ·‖). �

Theorem . For any two sequences p = (pk) and q = (qk) of positive real numbers and for
any two n-norms ‖·, . . . , ·‖, ‖·, . . . , ·‖ on X, the following holds: Z(A,Bμ

�,M,p,‖·, . . . , ·‖)∩
Z(A,Bμ

�,M,q,‖·, . . . , ·‖) �=∅, where Z =W ,W and W∞.

Proof Since the zero element belongs to each of the above classes of sequences, thus the
intersection is non-empty. �

Theorem . Let A = (amk) be a non-negative matrix, and let p = (pk) be a bounded se-
quence of positive real numbers. Then, for any fixed m ∈N, the sequence space W∞(A,Bμ

�,
M,p,‖·, . . . , ·‖) is a paranormed space for every nonzero z, . . . , zn– ∈ X and for some ρ > 
with respect to the paranorm defined by

gm(x) = inf

{
ρ

pm
H :

( ∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

) 
H

< ∞
}
.

Proof That gm(θ ) =  and gm(–x) = gm(x) are easy to prove. So, we omit them. Let us take
x = (xk) and y = (yk) inW∞(A,Bμ

�,M,p,‖·, . . . , ·‖). Let

A(x) =

{
ρ >  :

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

< ∞
}
,

A(y) =

{
ρ >  :

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�yk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

< ∞
}

for every nonzero z, . . . , zn– ∈ X. Let ρ ∈ A(x) and ρ ∈ A(y), then we have

( ∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�(xk + yk)
(ρ + ρ)

, z, . . . , zn–
∥∥∥∥
)]pk) 

H

< ∞

by using Minkowski’s inequality for p = (pk) > . Thus,

gm(x + y) = inf
{
(ρ + ρ)

pm
H : ρ ∈ A(x),ρ ∈ A(y)

}
≤ inf

{
ρ

pm
H : ρ ∈ A(x)

}
+ inf

{
ρ

pm
H : ρ ∈ A(y)

}
= gm(x) + gm(y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/335
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We also get gm(x + y) ≤ gm(x) + gm(y) for  < pk ≤  by using (.). Hence, we complete the
proof of this condition of the paranorm. Finally, we show that the scalar multiplication
is continuous. Whenever α →  and x is fixed imply gm(αx) → . Also, whenever x → θ

and α is any number imply gm(αx)→ . By using the definition of the paranorm, for every
nonzero z, . . . , zn– ∈ X, we have

gm(αx) = inf

{
ρ

pm
H :

( ∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�(αxk)

ρ
, z, . . . , zn–

∥∥∥∥
)]pk) 

H

<∞
}
.

Then

gm(αx) = inf

{
(α)

pm
H :

( ∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk


, z, . . . , zn–
∥∥∥∥
)]pk) 

H

<∞
}
,

where  = ρ

α
. Since |α|pk ≤max{|α|h, |α|H}, therefore |α| pkH ≤ (max{|α|h, |α|H}) 

H . Then the
required proof follows from the following inequality

gm(αx)≤
(
max

{|α|h, |α|H}) 
H

· inf
{


pm
H :

( ∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk


, z, . . . , zn–
∥∥∥∥
)]pk) 

H

< ∞
}

=
(
max

{|α|h, |α|H}) 
H gm(x). �

Theorem . Let M,M,M be Orlicz functions. Then the following hold:
() Let  < h≤ pk ≤ . Then Z(A,Bμ

�,M,p,‖·, . . . , ·‖) ⊆ Z(A,Bμ
�,M,‖·, . . . , ·‖), where

Z =W ,W.
() Let  < pk ≤ H < ∞. Then Z(A,Bμ

�,M,‖·, . . . , ·‖) ⊆ Z(A,Bμ
�,M,p,‖·, . . . , ·‖), where

Z =W ,W.
() W(A,Bμ

�,M,p,‖·, . . . , ·‖)∩W(A,Bμ
�,M,p,‖·, . . . , ·‖) ⊆

W(A,Bμ
�,M +M,p,‖·, . . . , ·‖).

Proof () We give the proof for the sequence space W(A,Bμ
�,M,p,‖·, . . . , ·‖) only. The

other can be proved by a similar argument. Let (xk) ∈ W(A,Bμ
�,M,p,‖·, . . . , ·‖) and  <

h≤ pk ≤ , then

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]

≤
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

.

Hence, we have the result by taking the limit as m → ∞. This completes the proof.
() Let  < pk ≤ H < ∞ and (xk) ∈ W(A,Bμ

�,M,‖·, . . . , ·‖). Then, for each  < ε < , there
exists a positive integerM such that

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]

< ε < 
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for allm >M. This implies that

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

≤
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]

.

Hence we have the result.
() Let x = (xk) ∈ W(A,Bμ

�,M,p,‖·, . . . , ·‖) ∩ W(A,Bμ
�,M,p,‖·, . . . , ·‖). Then, by the

following inequality, the result follows

∞∑
k=

amk

[
(M +M)

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

≤ D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

+D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

.

If we take the limit as m → ∞, then we get (xk) ∈ W(A,Bμ
�,M +M,p,‖·, . . . , ·‖). This

completes the proof. �

Theorem . Z(A,Bμ–
� ,M,p,‖·, . . . , ·‖) ⊂ Z(A,Bμ

�,M,p,‖·, . . . , ·‖) and the inclusion is
strict for μ ≥ . In general, Z(A,Bj

�,M,p,‖·, . . . , ·‖) ⊂ Z(A,Bμ
�,M,p,‖·, . . . , ·‖) for j =

, , , . . . ,μ –  and the inclusions are strict, where Z =W ,W and W∞.

Proof We give the proof forW(A,Bμ–
� ,M,p,‖·, . . . , ·‖) only. The others can be proved by

a similar argument. Let x = (xk) be any element in the space W(A,Bμ–
� ,M,p,‖·, . . . , ·‖),

then there exists ρ = |r|ρ + |s|ρ >  such that

lim
m→∞

∞∑
k=

amk

[
M

(∥∥∥∥B
μ–
� xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

= .

SinceM is non-decreasing and convex, it follows that

∞∑
k=

amk

[
M

(∥∥∥∥ Bμ
�xk

|r|ρ + |s|ρ
, z, . . . , zn–

∥∥∥∥
)]pk

=
∞∑
k=

amk

[
M

(∥∥∥∥ rB
μ–
� xk + sBμ–

� xk–
|r|ρ + |s|ρ

, z, . . . , zn–
∥∥∥∥
)]pk

≤ D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ–
� xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

+D
∞∑
k=

amk

[
M

(∥∥∥∥B
μ–
� xk–
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

.

The result holds by taking the limit asm → ∞. �

In the following example we show that the inclusion given in the theorem above is strict.
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Example . LetM(x) = x, pk =  for all k ∈N,� = (�k) = (, , . . .),A = C, i.e., the Cesaro
matrix, r = , s = –, where Bμ

�xk =
∑μ

v=
( μ

v
)
rμ–vsvxk–v�k–v for all r, s ∈ R – {}. Consider

the sequence x = (xk) = (kμ–). Then x = (xk) belongs to W(Bμ,M,p,‖·, . . . , ·‖) but does
not belong toW(Bμ–,M,p,‖·, . . . , ·‖).

Theorem . Let A = (amk) be a non-negative regular matrix and p = (pk) be such that
 < h≤ pk ≤ H < ∞. Then

l∞
(
Bμ

�,M,‖·, . . . , ·‖) ⊆W∞
(
A,Bμ

�,M,p,‖·, . . . , ·‖).
Proof Let l∞(Bμ

�,M,‖·, . . . , ·‖). Then there exists T >  such that [M(‖Bμ
�xk
ρ

, z, . . . ,
zn–‖)] ≤ T for all k ∈ N and for every nonzero z, . . . , zn– ∈ X. Since A = (amk) is a non-
negative regular matrix, we have the following inequality by () of Silverman-Toeplitz
conditions:

sup
m

∞∑
k=

amk

[
M

(∥∥∥∥B
μ
�xk
ρ

, z, . . . , zn–
∥∥∥∥
)]pk

≤ max
{
Th
 ,T

H


}
sup
m

∞∑
k=

amk < ∞.

Hence l∞(Bμ
�,M,‖·, . . . , ·‖) ⊆W∞(A,Bμ

�,M,p,‖·, . . . , ·‖). �

4 (Bμ
�)

n-statistically A-convergent sequences
In this section we introduce and study a new concept of (Bμ

�)n-statistical A-convergence
in an n-normed space as follows.

Definition. Let (X,‖·, . . . , ·‖) be an n-normed space and letA = (amk) be a non-negative
regular matrix. A real sequence x = (xk) is said to be (Bμ

�)n-statistically A-convergent to a
number L if δA(Bμ

�)n (K) = limm→∞
∑∞

k= amkχK (k) =  or, equivalently, limm→∞
∑

k∈K amk =
 for each ε >  and for every nonzero z, . . . , zn– ∈ X, where K = {k ∈N : ‖Bμ

�xk –L, z, . . . ,
zn–‖ ≥ ε} and χK is the characteristic function of K .

In this case, we write (Bμ
�)nstat-A- limx = L. S(A(Bμ

�)n) denotes the set of all (Bμ
�)n-

statistically A-convergent sequences.
If we consider some special cases of the matrix, then we have the following:
() If A = C, the Cesaro matrix, then the definition reduces to (Bμ

�)n-statistical
convergence.

() If A = (amk) is de la Vallee Poussin mean, which is given by (.), then the definition
reduces to (Bμ

�)n-statistical λ-convergence.
() If we take A = (amk) as in (.), then the definition reduces to (Bμ

�)n-statistical
lacunary convergence.

Theorem . Let p = (pk) be a sequence of non-negative bounded real numbers such that
infk pk > . Then W (A,Bμ

�,p,‖·, . . . , ·‖) ⊂ S(A(Bμ
�)n).

Proof Assume that x = (xk) ∈ W (A,Bμ
�,p,‖·, . . . , ·‖). So, we have for every nonzero

z, . . . , zn– ∈ X

lim
m→∞

∞∑
k=

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/335
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Let ε >  and K = {k ∈N : ‖Bμ
�xk – L, z, . . . , zn–‖ ≥ ε}. We obtain the following:

∞∑
k=

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk

=
∑
k∈K

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk +

∑
k /∈K

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk

≥ min
{
εh, εH

}∑
k∈K

amk .

If we take the limit asm → ∞, then we get x ∈ S(A(Bμ
�)n). This completes the proof. �

Theorem . Let p = (pk) be a sequence of non-negative bounded real numbers such that
infk pk > . Then

l∞
(
Bμ

�,‖·, . . . , ·‖
) ∩ S

(
A

(
Bμ

�

)n) ⊂W
(
A,Bμ

�,p,‖·, . . . , ·‖
)
.

Proof Suppose that x = (xk) ∈ l∞(Bμ
�,‖·, . . . , ·‖) ∩ S(A(Bμ

�)n). Then there exists an integer
T such that ‖Bμ

�xk – L, z, . . . , zn–‖ ≤ T for all k >  and for every nonzero z, . . . , zn– ∈ X,
and limm→∞

∑
k∈K amk = , where K = {k ∈N : ‖Bμ

�xk – L, z, . . . , zn–‖ ≥ ε}. Then we can
write

∞∑
k=

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk

=
∑
k /∈K

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk +

∑
k∈K

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk

<max
{
εh, εH

}∑
k /∈K

amk +max
{
Th,TH}∑

k∈K
amk .

Since A = (amk) is a non-negative regular matrix, then we have

 = lim
m→∞

∞∑
k=

amk

= lim
m→∞

∑
k /∈K

amk+ lim
m→∞

∑
k∈K

amk .

Hence, limm→∞
∑

k /∈K amk = . Thus

lim
m→∞

∞∑
k=

amk
∥∥Bμ

�xk – L, z, . . . , zn–
∥∥pk

< ε′ lim
m→∞

∑
k /∈K

amk+T ′ lim
m→∞

∑
k∈K

amk

< ε′,

where max{εh, εH} = ε′ and max{Th,TH} = T ′ .
Hence, xk ∈W (A,Bμ

�,p,‖·, . . . , ·‖). �
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24. Nuray, F, Başarır, M: Paranormed difference sequence spaces generated by infinite matrices. Pure Appl. Math. Sci.

34(1-2), 87-90 (1991)
25. Dutta, H: On some n-normed linear space valued difference sequences. J. Franklin Inst. 348(10), 2876-2883 (2011)
26. Dutta, H: On n-normed linear space valued strongly (C, 1)-summable difference sequences. Asian-Eur. J. Math. 3(4),

565-575 (2010)
27. Dutta, H: Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11,

60-67 (2009)
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40. Altay, B, Başar, F: On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces c0
and c. Int. J. Math. Math. Sci. 2005(18), 3005-3013 (2005)
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