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Abstract
In this paper, we propose and analyze some iterative algorithms by hybrid viscosity
approximation methods for solving a general system of variational inequalities and a
common fixed point problem of an infinite family of nonexpansive mappings in a
uniformly convex Banach space which has a uniformly Gâteaux differentiable norm,
and we prove some strong convergence theorems under appropriate conditions. The
results presented in this paper improve, extend, supplement and develop the
corresponding results recently obtained in the literature.
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1 Introduction
Let X be a real Banach space whose dual space is denoted by X∗. Let U = {x ∈ X : ‖x‖ = }
denote the unit sphere of X. The Banach space X is said to be uniformly convex if for each
ε ∈ (, ] there exists δ >  such that for all x, y ∈U ,

‖x – y‖ ≥ ε ⇒ ‖x + y‖/ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. The
Banach space X is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈ U ; in this case, X is also said to have a Gâteaux differentiable norm.
X is said to have a uniformly Gâteaux differentiable norm if for each y ∈ U , the limit is
attained uniformly for x ∈ U . Moreover, it is said to be uniformly smooth if this limit is
attained uniformly for x, y ∈ U . The norm of X is said to be the Fréchet differential if for
each x ∈ U , this limit is attained uniformly for y ∈ U . In addition, we define a function
ρ : [,∞)→ [,∞), called the modulus of smoothness of X, as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.
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It is known that X is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then the Banach space X is said to be q-uniformly smooth
if there exists a constant c >  such that ρ(τ ) ≤ cτ q for all τ > . As pointed out in [], no
Banach space is q-uniformly smooth for q > .
Let X∗ be the dual of X. The normalized duality mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is an immediate consequence of
the Hahn-Banach theorem that J(x) is nonempty for each x ∈ X. Moreover, it is known
that J is single-valued if and only if X is smooth, whereas if X is uniformly smooth, then
the mapping J is norm-to-norm uniformly continuous on bounded subsets of X. If X has
a uniformly Gateaux differentiable norm, then the duality mapping J is norm-to-weak∗

uniformly continuous on bounded subsets of X.
Let C be a nonempty closed convex subset of a real Banach space X. Amapping T : C →

C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

The set of fixed points of T is denoted by Fix(T). We use the notation ⇀ to indicate the
weak convergence and the one → to indicate the strong convergence.

Definition . Let A : C → X be a mapping of C into X. Then A is said to be
(i) accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ ,

where J is the normalized duality mapping;
(ii) α-strongly accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for some α ∈ (, );
(iii) β-inverse-strongly-accretive if for each x, y ∈ C there exists j(x – y) ∈ J(x – y) such

that

〈
Ax –Ay, j(x – y)

〉 ≥ β‖Ax –Ay‖,

for some β > ;
(iv) λ-strictly pseudocontractive [] (see also []) if for each x, y ∈ C there exists

j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥

for some λ ∈ (, ).
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In the literature, much work has been done related to strong convergence for solving
variational inequalities and fixed point problems, see [–]. It is worth emphasizing that
the definition of the inverse strongly accretive mapping is based on that of the inverse
strongly monotone mapping, which was studied by so many authors; see, e.g., [, , ].
Very recently, Cai and Bu [] considered the following general system of variational

inequalities (GSVI) in a real smooth Banach space X, which involves finding (x∗, y∗) ∈
C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

where C is a nonempty, closed and convex subset of X, B,B : C → X are two nonlinear
mappings andμ andμ are two positive constants. Here the set of solutions of GSVI (.)
is denoted by GSVI(C,B,B). In particular, if X =H , a real Hilbert space, then GSVI (.)
reduces to the following GSVI of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

where μ and μ are two positive constants. The set of solutions of problem (.) is still
denoted by GSVI(C,B,B). In particular, if B = B = A, then problem (.) reduces to
the new system of variational inequalities (NSVI), introduced and studied by Verma [].
Further, if x∗ = y∗ additionally, then theNSVI reduces to the classical variational inequality
problem (VIP) of finding x∗ ∈ C such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted byVI(C,A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, equilibrium problems. It is now well known that the
variational inequalities are equivalent to the fixed point problems, the origin of which can
be traced back to Lions and Stampacchia []. This alternative formulation has been used
to suggest and analyze the projection iterative method for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous.
Recently, Ceng,Wang and Yao [] transformed problem (.) into a fixed point problem

in the following way.

Lemma . (see []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of problem (.) if and only if x̄
is a fixed point of the mapping G : C → C defined by

G(x) = PC
[
PC(x –μBx) –μBPC(x –μBx)

]
, ∀x ∈ C, (.)

where ȳ = PC(x̄ –μBx̄).
In particular, if the mappings Bi : C → H are βi-inverse strongly monotone for i = , ,

then the mapping G is nonexpansive provided μi ∈ (, βi) for i = , .
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In , Korpelevich [] proposed an iterative algorithm for solving VIP (.) in the
Euclidean space Rn:

⎧⎨
⎩yn = PC(xn – τAxn),

xn+ = PC(xn – τAyn), n≥ ,

with τ >  a given number, which is known as the extragradient method (see also [, ]).
The literature on the VIP is vast and Korpelevich’s extragradient method has received
great attention given by many authors, who improved it in various ways; see, e.g., [–,
, ] and references therein, to name but a few.
In particular, whenever X is still a real smooth Banach space, B = B = A and x∗ = y∗,

then GSVI (.) reduces to the variational inequality problem (VIP) of finding x∗ ∈ C such
that

〈
Ax∗, J

(
x – x∗)〉 ≥ , ∀x ∈ C (.)

which was considered by Aoyama, Iiduka and Takahashi []. Note that VIP (.) is con-
nected with the fixed point problem for a nonlinear mapping (see, e.g., []), the problem
of finding a zero point of a nonlinear operator (see, e.g., []) and so on. It is clear that VIP
(.) extends VIP (.) from Hilbert spaces to Banach spaces.
In order to find a solution of VIP (.), Aoyama, Iiduka and Takahashi [] introduced

the following iterative scheme for an accretive operator A:

xn+ = αnxn + ( – αn)ΠC(xn – λnAxn), ∀n≥ ,

where ΠC is a sunny nonexpansive retraction from X onto C. Then they proved a weak
convergence theorem. For related work, see [] and the references therein.
Recently, Jung [] introduced and analyzed a composite iterative algorithm by the vis-

cosity approximationmethod for solving a fixed point problemof a nonexpansivemapping
and VIP (.) for an inverse-strongly monotone mapping A in a real Hilbert space H .

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let A : C → H be an α-inverse-strongly monotone mapping, let S : C →
C be a nonexpansive mapping such that Fix(S) ∩ VI(C,A) �= ∅, and let f : C → C be a
contraction with coefficient ρ ∈ (, ). Let {xn} be the sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

yn = αnf (xn) + ( – αn)SPC(xn – λnAxn),

xn+ = ( – βn)yn + βnSPC(yn – λnAyn), ∀n≥ ,

where {λn} ⊂ [, α], {αn} ⊂ [, ) and {βn} ⊂ [, ]. If {αn}, {λn} and {βn} satisfy the follow-
ing conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii) {βn} ⊂ [,a), ∀n≥  for some a ∈ (, ),
(iii) {λn} ⊂ [c,d] for some c,d ∈ (, α),
(iv)

∑∞
n= |αn+ – αn| <∞,

∑∞
n= |βn+ – βn| <∞ and

∑∞
n= |λn+ – λn| <∞,

http://www.journalofinequalitiesandapplications.com/content/2013/1/334
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then {xn} converges strongly to q ∈ Fix(S)∩VI(C,A), which solves the VIP

〈
q – f (q),q – p

〉 ≤ , ∀p ∈ Fix(S)∩VI(C,A).

Beyond doubt, it is an interesting and valuable problem of how to construct some algo-
rithmswith strong convergence for solving GSVI (.) which contains VIP (.) as a special
case. Very recently, Cai and Bu [] constructed an iterative algorithm for solving GSVI
(.) and a common fixed point problem of an infinite family of nonexpansive mappings
in a uniformly convex and -uniformly smooth Banach space. They proved strong con-
vergence of the proposed method by virtue of the following inequality in a -uniformly
smooth Banach space X.

Lemma . (see []) Let X be a -uniformly smooth Banach space. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖κy‖, ∀x, y ∈ X, (.)

where κ is the -uniformly smooth constant of X and J is the normalized duality mapping
from X into X∗.

Define the mapping G : C → C as follows:

G(x) :=ΠC(I –μB)ΠC(I –μB)x, ∀x ∈ C. (.)

The fixed point set of G is denoted by Ω . Then their strong convergence theorem on the
proposed method is stated as follows.

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly convex and -uniformly smooth Banach space X. Let ΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be αi-inverse-strongly accre-
tive with  < μi < αi

κ
for i = , . Let f be a contraction of C into itself with coefficient

δ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into itself such
that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping G defined by

(.). For arbitrarily given x ∈ C, let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+ = βnxn + ( – βn)Snyn,

yn = αnf (xn) + ( – αn)zn,

zn = ΠC(un –μBun),

un = ΠC(xn –μBxn), ∀n≥ .

Suppose that {αn} and {βn} are two sequences in (, ) satisfying the following conditions:
(i)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞.

Assume that
∑∞

n= supx∈D ‖Sn+x – Snx‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into X defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

n= Fix(Sn). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/334
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We remark that in Theorem ., the Banach space X is both uniformly convex and
-uniformly smooth. According to Lemma ., the -uniform smoothness ofX guarantees
the nonexpansivity of the mapping I – μiBi for an αi-inverse-strongly accretive mapping
Bi : C → X with  ≤ μi ≤ αi

κ
for i = , , and hence the composite mapping G : C → C

is nonexpansive where G = ΠC(I – μB)ΠC(I – μB). In the meantime, for the conve-
nience of implementing the argument techniques in [], the assumption of real smooth-
ness and uniform convexity on X guarantees that the following inequality holds (see []):
for any given r > , there exists a strictly increasing, continuous and convex function
g : [, r] → R, g() =  such that

g
(‖x – y‖) ≤ ‖x‖ – 

〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ Br , (.)

where Br = {x ∈ X : ‖x‖ ≤ r}.
Naturally, we wonder whether the uniform convexity and -uniform smoothness of X

can be replaced by the weaker geometrical property of X or not. There is no doubt that it
is an interesting problem worth investigating.
In this paper, motivated by the above facts, we introduce and study two implicit iter-

ative algorithms and two explicit iterative algorithms by hybrid viscosity approximation
methods for finding a common element of the set of solutions of GSVI (.) and the set of
common fixed points of an infinite family of nonexpansive mappings in a real uniformly
convex Banach space which has a uniformly Gâteaux differentiable norm.We prove some
strong convergence theorems under appropriate conditions. Our results improve, extend,
supplement and develop recent corresponding results in the literature, especially [, The-
orem .] in the following aspects. First, the assumption of the uniformly convex and
-uniformly smooth Banach space X in [, Theorem .] is weakened to the one of the
uniformly convex Banach space X having a uniformly Gâteaux differentiable norm in our
results. Second, the proof in [, Theorem .] depends on the argument techniques in
[], inequality (.) in -uniformly smooth Banach spaces and inequality (.) in smooth
and uniform convex Banach spaces. It is worth emphasizing that the proof in our results
depends on no argument techniques in [] but use the inequality in uniform convex Ba-
nach spaces; see Lemma . in Section  of this paper. Third, the four iterative algorithms
proposed in this paper are very different from the iterative algorithm in [, Theorem .]
because two iterative algorithms are implicit ones and the iterative step of computing xn+
in other two explicit iterative algorithms involves the sum of three terms.

2 Preliminaries
We list some lemmas that will be used in the sequel. Lemma . can be found in [].
Lemma . is an immediate consequence of the subdifferential inequality of the function

‖ · ‖.

Lemma . Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnβn + γn, ∀n≥ ,

where {αn}, {βn} and {γn} satisfy the conditions:
(i) {αn} ⊂ [, ] and

∑∞
n= αn = ∞;

http://www.journalofinequalitiesandapplications.com/content/2013/1/334
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(ii) lim supn→∞ βn ≤ ;
(iii) γn ≥ , ∀n≥ , and

∑∞
n= γn <∞.

Then lim supn→∞ sn = .

Lemma . In a smooth Banach space X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ X.

Lemma . (see []) Let {xn} and {zn} be bounded sequences in a Banach space X, and
let {αn} be a sequence in [, ] which satisfies the following condition

 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < .

Suppose xn+ = αnxn + ( – αn)zn, ∀n ≥  and lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖) ≤ .
Then limn→∞ ‖zn – xn‖ = .

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

wheneverΠ (x)+ t(x–Π (x)) ∈ C for x ∈ C and t ≥ . AmappingΠ ofC into itself is called
a retraction ifΠ = Π . If amappingΠ ofC into itself is a retraction, thenΠ (z) = z for every
z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma . [] Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let D be a nonempty subset of C. Let Π be a retraction of C onto D. Then the
following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π (x) –Π (y)‖ ≤ 〈x – y, J(Π (x) –Π (y))〉, ∀x, y ∈ C;
(iii) 〈x –Π (x), J(y –Π (x))〉 ≤ , ∀x ∈ C, y ∈D.

It is well known that if X = H , a Hilbert space, then a sunny nonexpansive retraction
ΠC is coincident with the metric projection from X onto C; that is, ΠC = PC . If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C → C is a nonexpansive mapping with the fixed point set Fix(T) �= ∅, then
the set Fix(T) is a sunny nonexpansive retract of C.

Lemma . (see []) Given a number r > , a real Banach space X is uniformly con-
vex if and only if there exists a continuous strictly increasing function g : [,∞) → [,∞),
g() = , such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)
for all λ ∈ [, ] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

http://www.journalofinequalitiesandapplications.com/content/2013/1/334


Ceng et al. Journal of Inequalities and Applications 2013, 2013:334 Page 8 of 44
http://www.journalofinequalitiesandapplications.com/content/2013/1/334

Lemma . (see []) Let C be a nonempty closed convex subset of a Banach space X. Let
S,S, . . . be a sequence of mappings of C into itself. Suppose that

∑∞
n= sup{‖Snx – Sn–x‖ :

x ∈ C} < ∞. Then, for each y ∈ C, {Sny} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = limn→∞ Sny for all y ∈ C. Then
limn→∞ sup{‖Sx – Snx‖ : x ∈ C} = .

Let C be a nonempty closed convex subset of a Banach space X, and let T : C → C be a
nonexpansive mapping with Fix(T) �= ∅. As previously, letΞC be the set of all contractions
on C. For t ∈ (, ) and f ∈ ΞC , let xt ∈ C be the unique fixed point of the contraction
x �→ tf (x) + ( – t)Tx on C; that is,

xt = tf (xt) + ( – t)Txt .

Lemma . (see []) Let X be a reflexive and strictly convex Banach space with a uni-
formly Gâteaux differentiable norm. Let C be a nonempty closed convex subset of X, let
T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and f ∈ ΞC . Then the net {xt} de-
fined by xt = tf (xt)+ (– t)Txt converges strongly to a point in Fix(T). If we define amapping
Q :ΞC → Fix(T) by Q(f ) := s – limt→ xt , ∀f ∈ ΞC , then Q(f ) solves the VIP

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀f ∈ ΞC ,p ∈ Fix(T).

Lemma . (see []) Let C be a nonempty closed convex subset of a strictly convex Ba-
nach space X. Let {Tn}∞n= be a sequence of nonexpansive mappings on C. Suppose that⋂∞

n= Fix(Tn) is nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = .
Then a mapping S on C defined by Sx =

∑∞
n= λnTnx for x ∈ C is well defined, nonexpan-

sive and Fix(S) =
⋂∞

n= Fix(Tn) holds.

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X and
let the mapping Bi : C → X be λi-strictly pseudocontractive and αi-strongly accretive with
αi + λi ≥  for i = , . Then, for μi ∈ (, ], we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤

{√
 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖, ∀x, y ∈ C,

for i = , . In particular, if  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then I – μiBi is nonexpansive for
i = , .

Proof Taking into account the λi-strictly pseudocontractivity of Bi, we derive for every
x, y ∈ C

λi
∥∥(I – Bi)x – (I – Bi)y

∥∥ ≤ 〈
(I – Bi)x – (I – Bi)y, J(x – y)

〉
≤ ∥∥(I – Bi)x – (I – Bi)y

∥∥‖x – y‖,

which implies that

∥∥(I – Bi)x – (I – Bi)y
∥∥ ≤ 

λi
‖x – y‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/334
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Hence,

‖Bix – Biy‖ ≤ ∥∥(I – Bi)x – (I – Bi)y
∥∥ + ‖x – y‖ ≤

(
 +


λi

)
‖x – y‖.

Utilizing the αi-strong accretivity and λi-strict pseudocontractivity of Bi, we get

λi
∥∥(I – Bi)x – (I – Bi)y

∥∥ ≤ ‖x – y‖ – 〈
Bix – Biy, J(x – y)

〉 ≤ ( – αi)‖x – y‖.

So, we have

∥∥(I – Bi)x – (I – Bi)y
∥∥ ≤

√
 – αi

λi
‖x – y‖.

Therefore, for μi ∈ (, ] we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤ ∥∥(I – Bi)x – (I – Bi)y

∥∥ + ( –μi)‖Bix – Biy‖

≤
√
 – αi

λi
‖x – y‖ + ( –μi)

(
 +


λi

)
‖x – y‖

=
{√

 – αi

λi
+ ( –μi)

(
 +


λi

)}
‖x – y‖.

Since  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , it follows immediately that

√
 – αi

λi
+ ( –μi)

(
 +


λi

)
≤ .

This implies that I –μiBi is nonexpansive for i = , . �

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X. Let
ΠC be a sunny nonexpansive retraction from X onto C, and let the mapping Bi : C → X
be λi-strictly pseudocontractive and αi-strongly accretive with αi + λi ≥  for i = , . Let
G : C → C be a mapping defined by

G(x) = ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤ , then G : C → C is nonexpansive.

Proof According to Lemma ., we know that I –μiBi is nonexpansive for i = , . Hence,
for all x, y ∈ C, we have

∥∥G(x) –G(y)
∥∥ =

∥∥ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
–ΠC

[
ΠC(y –μBy) –μBΠC(y –μBy)

]∥∥
=

∥∥ΠC(I –μB)ΠC(I –μB)x –ΠC(I –μB)ΠC(I –μB)y
∥∥
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≤ ∥∥(I –μB)ΠC(I –μB)x – (I –μB)ΠC(I –μB)y
∥∥

≤ ∥∥ΠC(I –μB)x –ΠC(I –μB)y
∥∥

≤ ∥∥(I –μB)x – (I –μB)y
∥∥

≤ ‖x – y‖.

This shows that G : C → C is nonexpansive. This completes the proof. �

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X. Let
ΠC be a sunny nonexpansive retraction from X onto C, and let the mapping Bi : C → X
be λi-strictly pseudocontractive and αi-strongly accretive for i = , . For given x∗, y∗ ∈ C,
(x∗, y∗) is a solution of GSVI (.) if and only if x∗ = ΠC(y∗ – μBy∗), where y∗ = ΠC(x∗ –
μBx∗).

Proof We can rewrite GSVI (.) as
⎧⎨
⎩〈x∗ – (y∗ –μBy∗), J(x – x∗)〉 ≥ , ∀x ∈ C,

〈y∗ – (x∗ –μBx∗), J(x – y∗)〉 ≥ , ∀x ∈ C,

which is obviously equivalent to
⎧⎨
⎩x∗ = ΠC(y∗ –μBy∗),

y∗ = ΠC(x∗ –μBx∗),

because of Lemma .. This completes the proof. �

Remark . By Lemma ., we observe that

x∗ = ΠC
[
ΠC

(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G = ΠC(I –μB)ΠC(I –μB).

3 Two-step implicit iterative algorithm
In this section, we introduce our two-step implicit iterative algorithm and show the strong
convergence of the purposed algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I –μB)ΠC(I –μB). For arbitrarily given x ∈ C, let {xn} be the sequence gener-
ated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)G(xn),

xn+ = βnxn + γnyn + δnSn+xn+, ∀n≥ ,
(.)
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where  – λi
+λi

( –
√

–αi
λi

)≤ μi ≤  for i = , . Suppose that {αn}, {βn}, {γn} and {δn} are the
sequences in (, ) satisfying the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(iv)

∑∞
n= | γn

–βn
– γn–

–βn–
| < ∞ or limn→∞ 

αn
| γn
–βn

– γn–
–βn–

| = ;
(v)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(vi)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Assume that

∑∞
n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, and let S be a

mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =⋂∞
i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F . (.)

Proof Take a fixed p ∈ F arbitrarily. Then byLemma.we know that p =G(p).Moreover,
by Lemma . we have

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ ( – αn)

(
G(xn) – p

)∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)

∥∥G(xn) – p
∥∥

≤ αnρ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖xn – p‖
=

(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥. (.)

From (.) we obtain

‖xn+ – p‖ = ∥∥βn(xn – p) + γn(yn – p) + δn(Sn+xn+ – p)
∥∥

≤ βn‖xn – p‖ + γn‖yn – p‖ + δn‖xn+ – p‖,

which together with (.) implies that

‖xn+ – p‖ ≤ 
βn + γn

[
βn‖xn – p‖ + γn‖yn – p‖]

≤ 
βn + γn

{
βn‖xn – p‖ + γn

[(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥]}

=


βn + γn

{(
βn + γn – αnγn( – ρ)

)‖xn – p‖ + αnγn
∥∥f (p) – p

∥∥}

=
(
 –

αnγn( – ρ)
βn + γn

)
‖xn – p‖ + αnγn

βn + γn

∥∥f (p) – p
∥∥

=
(
 –

αnγn( – ρ)
βn + γn

)
‖xn – p‖ + αnγn( – ρ)

βn + γn
· ‖f (p) – p‖

 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
,

which implies that {xn} is bounded. By Lemma . we know from (.) that {G(xn)} and
{yn} both are bounded.
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Let us show that ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞. As a matter of fact, from
(.) we have

yn–yn– = αn
(
f (xn)– f (xn–)

)
+(αn–αn–)

(
f (xn–)–G(xn–)

)
+(–αn)

(
G(xn)–G(xn–)

)
.

It follows that

‖yn – yn–‖ ≤ αn
∥∥f (xn) – f (xn–)

∥∥ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥
+ ( – αn)

∥∥G(xn) –G(xn–)
∥∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥
+ ( – αn)‖xn – xn–‖

=
(
 – ( – ρ)αn

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥. (.)

Taking into consideration that  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) <  and
lim infn→∞ γn =  – lim supn→∞(βn + δn) > , we may assume that {βn} ⊂ [c,d] and γn ⊂
[c, ) for some c,d ∈ (, ). First, we write xn = βn–xn– + ( – βn–)vn–, ∀n ≥ , where
vn– = xn–βn–xn–

–βn–
. It follows that for all n≥ ,

vn – vn– =
xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn–

=
γnyn + δnSn+xn+

 – βn
–

γn–yn– + δn–Snxn
 – βn–

=
γn(yn – yn–) + δn(Sn+xn+ – Snxn)

 – βn

+
(

γn

 – βn
–

γn–

 – βn–

)
yn– +

(
δn

 – βn
–

δn–

 – βn–

)
Snxn. (.)

This together with (.) implies that

‖vn – vn–‖

≤ ‖γn(yn – yn–) + δn(Sn+xn+ – Snxn)‖
 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖
+

∣∣∣∣ δn

 – βn
–

δn–

 – βn–

∣∣∣∣‖Snxn‖
≤ γn‖yn – yn–‖ + δn(‖Sn+xn+ – Sn+xn‖ + ‖Sn+xn – Snxn‖)

 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖ +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖Snxn‖
≤ γn‖yn – yn–‖ + δn‖xn+ – xn‖

 – βn
+

δn

 – βn
‖Sn+xn – Snxn‖

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Snxn‖
)

≤ γn

γn + δn

[(
 – ( – ρ)αn

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥]
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+
δn

γn + δn
‖xn+ – xn‖ + δn

 – βn
‖Sn+xn – Snxn‖

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Snxn‖
)

≤ γn

γn + δn

(
 – ( – ρ)αn

)‖xn – xn–‖ + γn

γn + δn
|αn – αn–|M

+
δn

γn + δn
‖xn+ – xn‖ + δn

γn + δn
‖Sn+xn – Snxn‖ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M, (.)

where supn≥{‖f (xn) –G(xn)‖} ≤ M and supn≥{‖yn–‖ + ‖Snxn‖} ≤ M for someM > .
Now we observe that

xn+ – xn = (βn – βn–)(xn – vn) + βn–(xn – xn–) + ( – βn–)(vn – vn–),

 – ( – βn–)
δn

γn + δn
=

γn + βn–δn

γn + δn
,

and

βn– + ( – βn–)
γn

γn + δn

(
 – ( – ρ)αn

)

= βn–

(
γn

γn + δn
+

δn

γn + δn

)
+ ( – βn–)

γn

γn + δn

(
 – ( – ρ)αn

)

=
βn–δn

γn + δn
+

γn

γn + δn

[
βn– + ( – βn–)

(
 – ( – ρ)αn

)]

=
βn–δn

γn + δn
+

γn

γn + δn

[
 – ( – βn–)( – ρ)αn

]

=
γn + βn–δn

γn + δn
– ( – βn–)( – ρ)

αnγn

γn + δn
.

Hence from (.) it follows that

‖xn+ – xn‖
≤ |βn – βn–|‖xn – vn‖ + βn–‖xn – xn–‖ + ( – βn–)‖vn – vn–‖
≤ |βn – βn–|‖xn – vn‖ + βn–‖xn – xn–‖

+ ( – βn–)
{

γn

γn + δn

(
 – ( – ρ)αn

)‖xn – xn–‖ + γn

γn + δn
|αn – αn–|M

+
δn

γn + δn
‖xn+ – xn‖ + δn

γn + δn
‖Sn+xn – Snxn‖ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M
}

≤ |βn – βn–|M +
[
βn– + ( – βn–)

γn

γn + δn

(
 – ( – ρ)αn

)]‖xn – xn–‖

+ |αn – αn–|M + ( – βn–)
δn

γn + δn
‖xn+ – xn‖ + ‖Sn+xn – Snxn‖

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M

=
[

γn + βn–δn

γn + δn
– ( – βn–)( – ρ)

αnγn

γn + δn

]
‖xn – xn–‖
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+ ( – βn–)
δn

γn + δn
‖xn+ – xn‖

+M

(
|αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)
+ ‖Sn+xn – Snxn‖,

where supn≥{M + ‖xn – vn‖} ≤ M for someM > . Therefore, we get

‖xn+ – xn‖

≤
[
 – ( – βn–)( – ρ)

αnγn

γn + βn–δn

]
‖xn – xn–‖

+
γn + δn

γn + βn–δn

[
M

(
|αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+ ‖Sn+xn – Snxn‖
]

≤
[
 – c( – d)( – ρ)

αn

γn + βn–δn

]
‖xn – xn–‖

+


γn + βn–δn

[
M

(
|αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+ ‖Sn+xn – Snxn‖
]

=
[
 – c( – d)( – ρ)

αn

γn + βn–δn

]
‖xn – xn–‖

+ c( – d)( – ρ)


γn + βn–δn
· 
c( – d)( – ρ)

[
M

(
|αn – αn–| + |βn – βn–|

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)
+ ‖Sn+xn – Snxn‖

]
.

Utilizing Lemma ., from conditions (i), (iv)-(vi) and the assumption on {Sn}, we deduce
that

lim
n→∞‖xn+ – xn‖ = . (.)

Also, we note that for p ∈ F ,

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ ( – αn)

(
G(xn) –G(p)

)∥∥

≤ ∥∥( – αn)
(
G(xn) –G(p)

)∥∥ + αn
〈
f (xn) – p, J(yn – p)

〉
≤ ‖xn – p‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖. (.)

Since {xn} and {yn} both are bounded, by Lemma . there exists a continuous strictly
increasing function g : [,∞)→ [,∞), g() =  such that

‖xn+ – p‖

=
∥∥∥∥(βn + δn)

(
βn

βn + δn
(xn – p) +

δn

βn + δn
(Sn+xn+ – p)

)
+ γn(yn – p)

∥∥∥∥
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≤ (βn + δn)
∥∥∥∥ βn

βn + δn
(xn – p) +

δn

βn + δn
(Sn+xn+ – p)

∥∥∥∥


+ γn‖yn – p‖

≤ (βn + δn)
[

βn

βn + δn
‖xn – p‖ + δn

βn + δn
‖Sn+xn+ – p‖

–
βnδn

(βn + δn)
g
(‖xn – Sn+xn+‖

)]
+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖xn+ – p‖ – βnδn

βn + δn
g
(‖xn – Sn+xn+‖

)
+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖xn+ – p‖ – βnδn

βn + δn
g
(‖xn – Sn+xn+‖

)
+ γn

[‖xn – p‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖]
= (βn + γn)‖xn – p‖ + δn‖xn+ – p‖ – βnδn

βn + δn
g
(‖xn – Sn+xn+‖

)
+ αnγn

∥∥f (xn) – p
∥∥‖yn – p‖,

which immediately yields

βnδng
(‖xn – Sn+xn+‖

)
≤ βnδn

βn + δn
g
(‖xn – Sn+xn+‖

)
≤ (βn + γn)

(‖xn – p‖ – ‖xn+ – p‖) + αn
∥∥f (xn) – p

∥∥‖yn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖.

Since αn → , ‖xn+ – xn‖ → , lim infn→∞ βn >  and lim infn→∞ δn > , we get
limn→∞ g(‖xn – Sn+xn+‖) =  and hence

lim
n→∞‖xn – Sn+xn+‖ = . (.)

In the meantime, according to condition (iii), we have

lim inf
n→∞ γn = lim inf

n→∞ ( – βn – δn) =  – lim sup
n→∞

(βn + δn) > .

Thus, from (.) and (.) it follows that

γn‖yn – xn‖ =
∥∥(xn+ – xn) – δn(Sn+xn+ – xn)

∥∥
≤ ‖xn+ – xn‖ + δn‖Sn+xn+ – xn‖ →  as n→ ∞.

That is,

lim
n→∞‖yn – xn‖ = . (.)

This together with (.) leads to

( – αn)
∥∥G(xn) – xn

∥∥ =
∥∥(yn – xn) – αn

(
f (xn) – xn

)∥∥
≤ ‖yn – xn‖ + αn

∥∥f (xn) – xn
∥∥ →  as n→ ∞.
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That is,

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

On the other hand, we observe that

yn –G(xn) = αn
(
f (xn) –G(xn)

)
,

which together with αn →  implies that

lim
n→∞

∥∥yn –G(xn)
∥∥ = . (.)

We note that

∥∥SnG(xn) –G(xn)
∥∥

≤ ∥∥SnG(xn) – Sn+xn+
∥∥ + ‖Sn+xn+ – xn‖ +

∥∥xn –G(xn)
∥∥

≤ ∥∥SnG(xn) – Snxn+
∥∥ + ‖Snxn+ – Sn+xn+‖ + ‖Sn+xn+ – xn‖ +

∥∥xn –G(xn)
∥∥

≤ ∥∥G(xn) – xn+
∥∥ + ‖Snxn+ – Sn+xn+‖ + ‖Sn+xn+ – xn‖ +

∥∥xn –G(xn)
∥∥

≤ ∥∥G(xn) – xn
∥∥ + ‖xn – xn+‖ + ‖Snxn+ – Sn+xn+‖ + ‖Sn+xn+ – xn‖

+
∥∥xn –G(xn)

∥∥
≤ 

∥∥G(xn) – xn
∥∥ + ‖xn – xn+‖ + ‖Snxn+ – Sn+xn+‖ + ‖Sn+xn+ – xn‖.

From (.), (.), (.) and the assumption on {Sn}, we obtain that

lim
n→∞

∥∥SnG(xn) –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n → ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n → ∞. (.)

Define amappingWx = (–θ )Sx+θG(x), whereG is defined by (.), θ ∈ (, ) is a constant.
Then by Lemma . we have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.
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From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Now, we claim that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s – limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

Then xt solves the fixed point equation xt = tf (xt) + ( – t)Wxt . Thus we have

‖xt – xn‖ =
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥.
By Lemma . we conclude that

‖xt – xn‖

=
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥

≤ ( – t)‖Wxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖xt – xn‖ + ‖Wxn – xn‖
) + t

〈
f (xt) – xn, J(xt – xn)

〉
= ( – t)

[‖xt – xn‖ + ‖xt – xn‖‖Wxn – xn‖ + ‖Wxn – xn‖
]

+ t
〈
f (xt) – xt , J(xt – xn)

〉
+ t

〈
xt – xn, J(xt – xn)

〉
=

(
 – t + t

)‖xt – xn‖ + fn(t) + t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖, (.)

where

fn(t) = ( – t)
(
‖xt – xn‖ + ‖xn –Wxn‖

)‖xn –Wxn‖ →  as n→ ∞. (.)

It follows from (.) that

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
fn(t). (.)

Letting n → ∞ in (.) and noticing (.), we derive

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

M, (.)

where M >  is a constant such that ‖xt – xn‖ ≤ M for all t ∈ (, ) and n ≥ . Taking
t →  in (.), we have

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ . (.)
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On the other hand, we have

〈
f (q) – q, J(xn – q)

〉
=

〈
f (q) – q, J(xn – q)

〉
–

〈
f (q) – q, J(xn – xt)

〉
+

〈
f (q) – q, J(xn – xt)

〉
–

〈
f (q) – xt , J(xn – xt)

〉
+

〈
f (q) – xt , J(xn – xt)

〉
–

〈
f (xt) – xt , J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
=

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+

〈
xt – q, J(xn – xt)

〉
+

〈
f (q) – f (xt), J(xn – xt)

〉
+

〈
f (xt) – xt , J(xn – xt)

〉
.

It follows that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
+ ‖xt – q‖ lim sup

n→∞
‖xn – xt‖ + ρ‖q – xt‖ lim sup

n→∞
‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , J(xn – xt)

〉
.

Taking into account that xt → q as t → , we have from (.)

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉
≤ lim sup

t→
lim sup
n→∞

〈
f (q) – q, J(xn – q) – J(xn – xt)

〉
.

Since X has a uniformly Gâteaux differentiable norm, the duality mapping J is norm-to-
weak∗ uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable and hence (.) holds. From (.) we get (yn–q)–(xn–q) → . Noticing
that J is norm-to-weak∗ uniformly continuous on bounded subsets of X, we deduce from
(.) that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉
= lim sup

n→∞

〈
f (q) – q, J(xn – q)

〉
≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

= αn
〈
f (xn) – q, J(yn – q)

〉
+ ( – αn)

〈
G(xn) – q, J(yn – q)

〉
= αn

〈
f (xn) – f (q), J(yn – q)

〉
+ αn

〈
f (q) – q, J(yn – q)

〉
+ ( – αn)

〈
G(xn) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)

∥∥G(xn) – q
∥∥‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)‖xn – q‖‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
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=
[
 – αn( – ρ)

]‖xn – q‖‖yn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


(‖xn – q‖ + ‖yn – q‖) + αn

〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


‖xn – q‖ + 


‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤ [
 – αn( – ρ)

]‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Also, by the convexity of ‖ · ‖ and (.), we get

‖xn+ – q‖ ≤ βn‖xn – q‖ + γn‖yn – q‖ + δn‖xn+ – q‖,

which together with (.) leads to

‖xn+ – q‖ ≤ βn

βn + γn
‖xn – q‖ + γn

βn + γn
‖yn – q‖

≤ βn

βn + γn
‖xn – q‖ + γn

βn + γn

[(
 – αn( – ρ)

)‖xn – q‖

+ αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ

]

=
[
 –

αnγn( – ρ)
βn + γn

]
‖xn – q‖

+
αnγn( – ρ)

βn + γn
· 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontrac-
tive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such that F =
Fix(S)∩Ω �= ∅,whereΩ is the fixed point set of themapping G = ΠC(I–μB)ΠC(I–μB).
For arbitrarily given x ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)G(xn),

xn+ = βnxn + γnyn + δnSxn+, ∀n≥ ,

where  – λi
+λi

( –
√

–αi
λi

)≤ μi ≤  for i = , . Suppose that {αn}, {βn}, {γn} and {δn} are the
sequences in (, ) satisfying the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
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(iv)
∑∞

n= | γn
–βn

– γn–
–βn–

| < ∞ or limn→∞ 
αn

| γn
–βn

– γn–
–βn–

| = ;
(v)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(vi)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = .
Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

4 Three-step implicit iterative algorithm
In this section, we introduce our three-step implicit iterative algorithm and show strong
convergence of the purposed algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I –μB)ΠC(I –μB). For arbitrarily given x ∈ C, let {xn} be the sequence gener-
ated by

⎧⎪⎪⎨
⎪⎪⎩
zn = σnG(xn) + ( – σn)SnG(xn),

yn = αnf (xn) + ( – αn)zn,

xn+ = βnxn + γnyn + δnSn+G(xn+), ∀n≥ ,

(.)

where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {σn}, {αn}, {βn}, {γn} and {δn}
are the sequences in (, ) satisfying the following conditions:

(i)  < lim infn→∞ σn ≤ lim supn→∞ σn < ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(v)

∑∞
n= | γn

–βn
– γn–

–βn–
| < ∞ or limn→∞ 

αn
| γn
–βn

– γn–
–βn–

| = ;
(vi)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(vii)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = ;
(viii)

∑∞
n= |σn – σn–| < ∞ or limn→∞ |σn – σn–|/αn = .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F . (.)

Proof Take a fixed p ∈ F arbitrarily. Then by Lemma . we know that p = G(p) and p =
Snp for all n ≥ . Moreover, by Lemma . we have

‖zn – p‖ = ∥∥σn
(
G(xn) – p

)
+ ( – σn)

(
SnG(xn) – p

)∥∥
≤ σn

∥∥G(xn) – p
∥∥ + ( – σn)

∥∥SnG(xn) – p
∥∥
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≤ σn
∥∥G(xn) – p

∥∥ + ( – σn)
∥∥G(xn) – p

∥∥
=

∥∥G(xn) – p
∥∥

≤ ‖xn – p‖, (.)

and

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ ( – αn)(zn – p)

∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)‖zn – p‖

≤ αnρ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖xn – p‖
=

(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥. (.)

From (.) we obtain

‖xn+ – p‖ = ∥∥βn(xn – p) + γn(yn – p) + δn
(
Sn+G(xn+) – p

)∥∥
≤ βn‖xn – p‖ + γn‖yn – p‖ + δn‖xn+ – p‖,

which together with (.) implies that

‖xn+ – p‖ ≤ 
βn + γn

[
βn‖xn – p‖ + γn‖yn – p‖]

≤ 
βn + γn

{
βn‖xn – p‖ + γn

[(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥]}

=


βn + γn

{(
βn + γn – αnγn( – ρ)

)‖xn – p‖ + αnγn
∥∥f (p) – p

∥∥}

=
(
 –

αnγn( – ρ)
βn + γn

)
‖xn – p‖ + αnγn

βn + γn

∥∥f (p) – p
∥∥

=
(
 –

αnγn( – ρ)
βn + γn

)
‖xn – p‖ + αnγn( – ρ)

βn + γn
· ‖f (p) – p‖

 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
,

which implies that {xn} is bounded. By Lemma . we know from (.) and (.) that {yn},
{zn}, {G(xn)} and {G(yn)} are bounded.
Let us show that ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞. As a matter of fact, from

(.) we have

zn – zn– = σn
(
G(xn) –G(xn–)

)
+ (σn – σn–)

(
G(xn–) – Sn–G(xn–)

)
+ ( – σn)

(
SnG(xn) – Sn–G(xn–)

)
,

and

yn – yn– = αn
(
f (xn) – f (xn–)

)
+ (αn – αn–)

(
f (xn–) – zn–

)
+ ( – αn)(zn – zn–).
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It follows that

‖zn – zn–‖ ≤ σn
∥∥G(xn) –G(xn–)

∥∥ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ ( – σn)

∥∥SnG(xn) – Sn–G(xn–)
∥∥

≤ σn
∥∥G(xn) –G(xn–)

∥∥ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ ( – σn)

(∥∥SnG(xn) – SnG(xn–)
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥)

≤ σn
∥∥G(xn) –G(xn–)

∥∥ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ ( – σn)

(∥∥G(xn) –G(xn–)
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥)

≤ ∥∥G(xn) –G(xn–)
∥∥ + |σn – σn–|

∥∥G(xn–) – Sn–G(xn–)
∥∥

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥
≤ ‖xn – xn–‖ + |σn – σn–|

∥∥G(xn–) – Sn–G(xn–)
∥∥

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥,
and

‖yn – yn–‖ ≤ αn
∥∥f (xn) – f (xn–)

∥∥ + |αn – αn–|
∥∥f (xn–) – zn–

∥∥
+ ( – αn)‖zn – zn–‖

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – zn–

∥∥
+ ( – αn)‖zn – zn–‖

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – zn–

∥∥
+ ( – αn)

[‖xn – xn–‖ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+

∥∥SnG(xn–) – Sn–G(xn–)
∥∥]

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ |αn – αn–|

∥∥f (xn–) – zn–
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥. (.)

Taking into consideration that  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) <  and
lim infn→∞ γn =  – lim supn→∞(βn + δn) > , we may assume that {βn} ⊂ [c,d] and {γn} ⊂
[c, ) for some c,d ∈ (, ). Now, we write xn = βn–xn– + ( – βn–)vn–, ∀n ≥ , where
vn– = xn–βn–xn–

–βn–
. It follows that for all n≥ ,

vn – vn– =
xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn–

=
γnyn + δnSn+G(xn+)

 – βn
–

γn–yn– + δn–SnG(xn)
 – βn–

=
γn(yn – yn–) + δn(Sn+G(xn+) – SnG(xn))

 – βn

+
(

γn

 – βn
–

γn–

 – βn–

)
yn– +

(
δn

 – βn
–

δn–

 – βn–

)
SnG(xn). (.)
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This together with (.) implies that

‖vn – vn–‖

≤ ‖γn(yn – yn–) + δn(Sn+G(xn+) – SnG(xn))‖
 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖
+

∣∣∣∣ δn

 – βn
–

δn–

 – βn–

∣∣∣∣∥∥SnG(xn)∥∥
≤ γn‖yn – yn–‖ + δn(‖Sn+G(xn+) – Sn+G(xn)‖ + ‖Sn+G(xn) – SnG(xn)‖)

 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖ +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣∥∥SnG(xn)∥∥
≤ γn‖yn – yn–‖ + δn‖xn+ – xn‖

 – βn
+

δn

 – βn

∥∥Sn+G(xn) – SnG(xn)
∥∥

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ∥∥SnG(xn)∥∥)
≤ γn

γn + δn

[(
 – αn( – ρ)

)‖xn – xn–‖ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ |αn – αn–|

∥∥f (xn–) – zn–
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥]

+
δn

γn + δn
‖xn+ – xn‖ + δn

γn + δn

∥∥Sn+G(xn) – SnG(xn)
∥∥

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ∥∥SnG(xn)∥∥)
≤ γn

γn + δn

[(
 – αn( – ρ)

)‖xn – xn–‖ + |σn – σn–|M

+ |αn – αn–|M +
∥∥SnG(xn–) – Sn–G(xn–)

∥∥]
+

δn

γn + δn
‖xn+ – xn‖

+
δn

γn + δn

∥∥Sn+G(xn) – SnG(xn)
∥∥ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M, (.)

where supn≥{‖f (xn) – zn‖+ ‖G(xn) – SnG(xn)‖} ≤ M and supn≥{‖yn–‖+ ‖Snxn‖} ≤ M for
someM > .
Now we observe that

xn+ – xn = (βn – βn–)(xn – vn) + βn–(xn – xn–) + ( – βn–)(vn – vn–),

 – ( – βn–)
δn

γn + δn
=

γn + βn–δn

γn + δn
,

and

βn– + ( – βn–)
γn

γn + δn

(
 – ( – ρ)αn

)

= βn–

(
γn

γn + δn
+

δn

γn + δn

)
+ ( – βn–)

γn

γn + δn

(
 – ( – ρ)αn

)

=
βn–δn

γn + δn
+

γn

γn + δn

[
βn– + ( – βn–)

(
 – ( – ρ)αn

)]
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=
βn–δn

γn + δn
+

γn

γn + δn

[
 – ( – βn–)( – ρ)αn

]

=
γn + βn–δn

γn + δn
– ( – βn–)( – ρ)

αnγn

γn + δn
.

Hence from (.) it follows that

‖xn+ – xn‖
≤ |βn – βn–|‖xn – vn‖ + βn–‖xn – xn–‖ + ( – βn–)‖vn – vn–‖
≤ |βn – βn–|‖xn – vn‖ + βn–‖xn – xn–‖

+ ( – βn–)
{

γn

γn + δn

[(
 – αn( – ρ)

)‖xn – xn–‖ + |σn – σn–|M

+ |αn – αn–|M +
∥∥SnG(xn–) – Sn–G(xn–)

∥∥]
+

δn

γn + δn
‖xn+ – xn‖

+
δn

γn + δn

∥∥Sn+G(xn) – SnG(xn)
∥∥ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M
}

≤ |βn – βn–|M +
[
βn– + ( – βn–)

γn

γn + δn

(
 – ( – ρ)αn

)]‖xn – xn–‖

+ |σn – σn–|M + |αn – αn–|M +
∥∥SnG(xn–) – Sn–G(xn–)

∥∥
+ ( – βn–)

δn

γn + δn
‖xn+ – xn‖ +

∥∥Sn+G(xn) – SnG(xn)
∥∥ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣M

=
[

γn + βn–δn

γn + δn
– ( – βn–)( – ρ)

αnγn

γn + δn

]
‖xn – xn–‖

+ ( – βn–)
δn

γn + δn
‖xn+ – xn‖

+M

(
|σn – σn–| + |αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥ +
∥∥Sn+G(xn) – SnG(xn)

∥∥,
where supn≥{M + ‖xn – vn‖} ≤ M for someM > . Therefore, we get

‖xn+ – xn‖

≤
[
 – ( – βn–)( – ρ)

αnγn

γn + βn–δn

]
‖xn – xn–‖ + γn + δn

γn + βn–δn

[
M

(
|σn – σn–|

+ |αn – αn–| + |βn – βn–| +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥ +
∥∥Sn+G(xn) – SnG(xn)

∥∥]

≤
[
 – c( – d)( – ρ)

αn

γn + βn–δn

]
‖xn – xn–‖

+


γn + βn–δn

[
M

(
|αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

http://www.journalofinequalitiesandapplications.com/content/2013/1/334


Ceng et al. Journal of Inequalities and Applications 2013, 2013:334 Page 25 of 44
http://www.journalofinequalitiesandapplications.com/content/2013/1/334

+ ‖Sn+xn – Snxn‖
]

=
[
 – c( – d)( – ρ)

αn

γn + βn–δn

]
‖xn – xn–‖

+ c( – d)( – ρ)


γn + βn–δn
· 
c( – d)( – ρ)

[
M

(
|σn – σn–| + |αn – αn–|

+ |βn – βn–| +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)
+

∥∥SnG(xn–) – Sn–G(xn–)
∥∥

+
∥∥Sn+G(xn) – SnG(xn)

∥∥]

≤
[
 – c( – d)( – ρ)

αn

γn + βn–δn

]
‖xn – xn–‖

+


γn + βn–δn

[
M

(
|αn – αn–| + |βn – βn–| +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+ ‖Sn+xn – Snxn‖
]
.

Utilizing Lemma ., from conditions (ii), (v)-(viii) and the assumption on {Sn}, we deduce
that

lim
n→∞‖xn+ – xn‖ = . (.)

Also, taking into account the boundedness of {G(xn)} and {SnG(xn)}, by Lemma . there
exists a continuous strictly increasing function g : [,∞)→ [,∞), g() =  such that for
p ∈ F ,

‖zn – p‖

=
∥∥σn

(
G(xn) – p

)
+ ( – σn)

(
SnG(xn) – p

)∥∥

≤ σn
∥∥G(xn) – p

∥∥ + ( – σn)
∥∥SnG(xn) – p

∥∥ – σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)

= ‖xn – p‖ – σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
,

and hence

‖yn – p‖

=
∥∥αn

(
f (xn) – p

)
+ ( – αn)(zn – p)

∥∥

≤ ∥∥( – αn)(zn – p)
∥∥ + αn

〈
f (xn) – p, J(yn – p)

〉
≤ ‖zn – p‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖

≤ ‖xn – p‖ – σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
+ αn

∥∥f (xn) – p
∥∥‖yn – p‖. (.)
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Since {xn} and {SnG(xn)} both are bounded, by Lemma. there exists a continuous strictly
increasing function g : [,∞)→ [,∞), g() =  such that

‖xn+ – p‖

=
∥∥∥∥(βn + δn)

(
βn

βn + δn
(xn – p) +

δn

βn + δn

(
Sn+G(xn+) – p

))
+ γn(yn – p)

∥∥∥∥


≤ (βn + δn)
∥∥∥∥ βn

βn + δn
(xn – p) +

δn

βn + δn

(
Sn+G(xn+) – p

)∥∥∥∥


+ γn‖yn – p‖

≤ (βn + δn)
[

βn

βn + δn
‖xn – p‖ + δn

βn + δn

∥∥Sn+G(xn+) – p
∥∥

–
βnδn

(βn + δn)
g

(∥∥xn – Sn+G(xn+)
∥∥)]

+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖xn+ – p‖ – βnδn

βn + δn
g

(∥∥xn – Sn+G(xn+)
∥∥)

+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖xn+ – p‖ – βnδn

βn + δn
g

(∥∥xn – Sn+G(xn+)
∥∥)

+ γn
[‖xn – p‖ – σn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)

+ αn
∥∥f (xn) – p

∥∥‖yn – p‖]
= (βn + γn)‖xn – p‖ + δn‖xn+ – p‖ – γnσn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)

–
βnδn

βn + δn
g

(‖xn – Sn+xn+‖
)
+ αnγn

∥∥f (xn) – p
∥∥‖yn – p‖,

which immediately yields

γnσn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
+ βnδng

(∥∥xn – Sn+G(xn+)
∥∥)

≤ γnσn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
+

βnδn

βn + δn
g
(‖xn – Sn+xn+‖

)
≤ (βn + γn)

(‖xn – p‖ – ‖xn+ – p‖) + αn
∥∥f (xn) – p

∥∥‖yn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖.

According to condition (iv), we have

lim inf
n→∞ γn = lim inf

n→∞ ( – βn – δn) =  – lim sup
n→∞

(βn + δn) > .

Since αn → , ‖xn+ – xn‖ → , lim infn→∞ βn >  and lim infn→∞ δn > , we obtain from
condition (i) that

lim
n→∞ g

(∥∥G(xn) – SnG(xn)
∥∥)

=  and lim
n→∞ g

(∥∥xn – Sn+G(xn+)
∥∥)

= .

Utilizing the properties of g and g, we have

lim
n→∞

∥∥G(xn) – SnG(xn)
∥∥ =  and lim

n→∞
∥∥xn – Sn+G(xn+)

∥∥ = . (.)
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Thus, from (.) and (.) it follows that

γn‖yn – xn‖ =
∥∥(xn+ – xn) – δn

(
Sn+G(xn+) – xn

)∥∥
≤ ‖xn+ – xn‖ + δn

∥∥Sn+G(xn+) – xn
∥∥ →  as n→ ∞.

That is,

lim
n→∞‖yn – xn‖ = . (.)

Since it follows from (.) that

yn –G(xn) = αn
(
f (xn) –G(xn)

)
+ ( – αn)( – σn)

(
SnG(xn) –G(xn)

)
,

we conclude from (.) and αn →  that

∥∥yn –G(xn)
∥∥ =

∥∥αn
(
f (xn) –G(xn)

)
+ ( – αn)( – σn)

(
SnG(xn) –G(xn)

)∥∥
≤ αn

∥∥f (xn) –G(xn)
∥∥ + ( – αn)( – σn)

∥∥SnG(xn) –G(xn)
∥∥

≤ αn
∥∥f (xn) –G(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n→ ∞.

That is,

lim
n→∞

∥∥yn –G(xn)
∥∥ = . (.)

This together with (.) leads to

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n → ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n → ∞. (.)

Define amappingWx = (–θ )Sx+θG(x), whereG is defined by (.), θ ∈ (, ) is a constant.
Then by Lemma . we have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.
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From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Utilizing the arguments similar to those of (.) in the proof of Theorem ., we can
obtain

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s– limt→ xt with xt being the fixed point of the contraction x �→ tf (x)+(–t)Wx;
that is, xt solves the fixed point equation xt = tf (xt)+(– t)Wxt . Noticing that J is norm-to-
weak∗ uniformly continuous on bounded subsets of X, we deduce from (.) and (.)
that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

= αn
〈
f (xn) – q, J(yn – q)

〉
+ ( – αn)

〈
σn

(
G(xn) – q

)
+ ( – σn)

(
SnG(xn) – q

)
, J(yn – q)

〉
= αn

〈
f (xn) – f (q), J(yn – q)

〉
+ αn

〈
f (q) – q, J(yn – q)

〉
+ ( – αn)

〈
σn

(
G(xn) – q

)
+ ( – σn)

(
SnG(xn) – q

)
, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)

∥∥σn
(
G(xn) – q

)
+ ( – σn)

(
SnG(xn) – q

)∥∥‖yn – q‖
+ αn

〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)

(
σn

∥∥G(xn) – q
∥∥ + ( – σn)

∥∥SnG(xn) – q
∥∥)‖yn – q‖

+ αn
〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)

(
σn‖xn – q‖ + ( – σn)‖xn – q‖)‖yn – q‖

+ αn
〈
f (q) – q, J(yn – q)

〉
= αnρ‖xn – q‖‖yn – q‖ + ( – αn)‖xn – q‖‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖‖yn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


(‖xn – q‖ + ‖yn – q‖) + αn

〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


‖xn – q‖ + 


‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤ (
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)
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Also, by (.) and the convexity of ‖ · ‖, we get

‖xn+ – q‖ = ∥∥βn(xn – q) + γn(yn – q) + δn
(
Sn+G(xn+) – q

)∥∥

≤ βn‖xn – q‖ + γn‖yn – q‖ + δn‖xn+ – q‖,

which together with (.) implies that

‖xn+ – q‖ ≤ βn

βn + γn
‖xn – q‖ + γn

βn + γn
‖yn – q‖

≤ βn

βn + γn
‖xn – q‖ + γn

βn + γn

[(
 – αn( – ρ)

)‖xn – q‖

+ αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ

]

=
(
 –

αnγn( – ρ)
βn + γn

)
‖xn – q‖

+
αnγn( – ρ)

βn + γn
· 〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we conclude that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontrac-
tive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such that F =
Fix(S)∩Ω �= ∅,whereΩ is the fixed point set of themapping G = ΠC(I–μB)ΠC(I–μB).
For arbitrarily given x ∈ C, let {xn} be the sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
zn = σnG(xn) + ( – σn)SG(xn),

yn = αnf (xn) + ( – αn)zn,

xn+ = βnxn + γnyn + δnSG(xn+), ∀n≥ ,

where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {σn}, {αn}, {βn}, {γn} and {δn}
are the sequences in (, ) satisfying the following conditions:

(i)  < lim infn→∞ σn ≤ lim supn→∞ σn < ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(v)

∑∞
n= | γn

–βn
– γn–

–βn–
| < ∞ or limn→∞ 

αn
| γn
–βn

– γn–
–βn–

| = ;
(vi)

∑∞
n= |αn – αn–| < ∞ or limn→∞ αn–/αn = ;

(vii)
∑∞

n= |βn – βn–| <∞ or limn→∞ |βn – βn–|/αn = ;
(viii)

∑∞
n= |σn – σn–| < ∞ or limn→∞ |σn – σn–|/αn = .

Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .
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5 Two-step explicit iterative algorithm
In this section, we introduce our two-step explicit iterative algorithm and show strong
convergence of the purposed algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I –μB)ΠC(I –μB). For arbitrarily given x ∈ C, let {xn} be the sequence gener-
ated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)G(xn),

xn+ = βnxn + γnyn + δnSnyn, ∀n≥ ,
(.)

where  – λi
+λi

( –
√

–αi
λi

)≤ μi ≤  for i = , . Suppose that {αn}, {βn}, {γn} and {δn} are the
sequences in (, ) satisfying the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(iv) limn→∞ | γn

–βn
– γn–

–βn–
| = .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C and let S be
a mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that
Fix(S) =

⋂∞
i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following

VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F . (.)

Proof Take a fixed p ∈ F arbitrarily. Then byLemma.we know that p =G(p).Moreover,
by Lemma . we have

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ ( – αn)

(
G(xn) – p

)∥∥
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)

∥∥G(xn) – p
∥∥

≤ αnρ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖xn – p‖
=

(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥. (.)

From (.) we obtain

‖xn+ – p‖ = ∥∥βn(xn – p) + γn(yn – p) + δn(Snyn – p)
∥∥

≤ βn‖xn – p‖ + γn‖yn – p‖ + δn‖yn – p‖
= βn‖xn – p‖ + ( – βn)‖yn – p‖
≤ βn‖xn – p‖ + ( – βn)

[(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥]
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=
[
 – ( – βn)( – ρ)αn

]‖xn – p‖ + ( – βn)( – ρ)αn · ‖f (p) – p‖
 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
,

which implies that {xn} is bounded. By Lemma . we know from (.) that {G(xn)} and
{yn} both are bounded.
Let us show that ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞. As a matter of fact, from

(.) we have

yn–yn– = αn
(
f (xn)– f (xn–)

)
+(αn–αn–)

(
f (xn–)–G(xn–)

)
+(–αn)

(
G(xn)–G(xn–)

)
.

It follows that

‖yn – yn–‖ ≤ αn
∥∥f (xn) – f (xn–)

∥∥ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥
+ ( – αn)

∥∥G(xn) –G(xn–)
∥∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥
+ ( – αn)‖xn – xn–‖

=
(
 – ( – ρ)αn

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥. (.)

Now, we write xn = βn–xn– + ( –βn–)vn–, ∀n≥ , where vn– = xn–βn–xn–
–βn–

. It follows that
for all n ≥ ,

vn – vn– =
xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn–

=
γnyn + δnSnyn

 – βn
–

γn–yn– + δn–Sn–yn–
 – βn–

=
γn(yn – yn–) + δn(Snyn – Sn–yn–)

 – βn

+
(

γn

 – βn
–

γn–

 – βn–

)
yn– +

(
δn

 – βn
–

δn–

 – βn–

)
Sn–yn–. (.)

This together with (.) implies that

‖vn – vn–‖

≤ ‖γn(yn – yn–) + δn(Snyn – Sn–yn–)‖
 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖
+

∣∣∣∣ δn

 – βn
–

δn–

 – βn–

∣∣∣∣‖Sn–yn–‖
≤ γn‖yn – yn–‖ + δn(‖Snyn – Snyn–‖ + ‖Snyn– – Sn–yn–‖)

 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖ +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖Sn–yn–‖
≤ γn‖yn – yn–‖ + δn‖yn – yn–‖

γn + δn
+

δn

γn + δn
‖Snyn– – Sn–yn–‖
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+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Sn–yn–‖
)

≤ ‖yn – yn–‖ + ‖Snyn– – Sn–yn–‖ +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Sn–yn–‖
)

≤ (
 – ( – ρ)αn

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) –G(xn–)

∥∥
+ ‖Snyn– – Sn–yn–‖ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Sn–yn–‖
)

≤ (
 – ( – ρ)αn

)‖xn – xn–‖ + |αn – αn–|
(∥∥f (xn–)∥∥ +

∥∥G(xn–)∥∥)
+ ‖Snyn– – Sn–yn–‖ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ‖Sn–yn–‖
)

≤ ‖xn – xn–‖ +M
(

|αn – αn–| +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)
+ ‖Snyn– – Sn–yn–‖, (.)

where supn≥{‖f (xn)‖ + ‖G(xn)‖ + ‖yn‖ + ‖Snyn‖} ≤ M for some M > . Since αn → ,
| γn
–βn

– γn–
–βn–

| →  and the assumption on {Sn}, we have

lim sup
n→∞

(‖vn – vn–‖ – ‖xn – xn–‖
) ≤ .

Utilizing Lemma ., from condition (iii) we obtain that

lim
n→∞‖vn – xn‖ = .

So, we get

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖vn – xn‖ = . (.)

Also, we note that for p ∈ F ,

‖yn – p‖ = ∥∥αn
(
f (xn) – p

)
+ ( – αn)

(
G(xn) –G(p)

)∥∥

≤ ∥∥( – αn)
(
G(xn) –G(p)

)∥∥ + αn
〈
f (xn) – p, J(yn – p)

〉
≤ ‖xn – p‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖. (.)

Since {xn} and {yn} both are bounded, by Lemma . there exists a continuous strictly
increasing function g : [,∞)→ [,∞), g() =  such that

‖xn+ – p‖

=
∥∥∥∥(βn + δn)

(
βn

βn + δn
(xn – p) +

δn

βn + δn
(Snyn – p)

)
+ γn(yn – p)

∥∥∥∥


≤ (βn + δn)
∥∥∥∥ βn

βn + δn
(xn – p) +

δn

βn + δn
(Snyn – p)

∥∥∥∥


+ γn‖yn – p‖

≤ (βn + δn)
[

βn

βn + δn
‖xn – p‖ + δn

βn + δn
‖Snyn – p‖ – βnδn

(βn + δn)
g
(‖xn – Snyn‖

)]

+ γn‖yn – p‖
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≤ βn‖xn – p‖ + δn‖Snyn – p‖ – βnδn

βn + δn
g
(‖xn – Snyn‖

)
+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖yn – p‖ – βnδn

βn + δn
g
(‖xn – Snyn‖

)
+ γn‖yn – p‖

= βn‖xn – p‖ + ( – βn)‖yn – p‖ – βnδn

βn + δn
g
(‖xn – Snyn‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖]
–

βnδn

βn + δn
g
(‖xn – Snyn‖

)

≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖ – βnδn

βn + δn
g
(‖xn – Snyn‖

)
,

which immediately yields

βnδng
(‖xn – Snyn‖

) ≤ βnδn

βn + δn
g
(‖xn – Snyn‖

)
≤ ‖xn – p‖ – ‖xn+ – p‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖.

Since αn → , ‖xn+ – xn‖ → , lim infn→∞ βn >  and lim infn→∞ δn > , we get
limn→∞ g(‖xn – Snyn‖) =  and hence

lim
n→∞‖xn – Snyn‖ = . (.)

In the meantime, according to condition (iii), we have

lim inf
n→∞ γn = lim inf

n→∞ ( – βn – δn) =  – lim sup
n→∞

(βn + δn) > .

Thus, from (.) and (.) it follows that

γn‖yn – xn‖ =
∥∥(xn+ – xn) – δn(Snyn – xn)

∥∥
≤ ‖xn+ – xn‖ + δn‖Snyn – xn‖ →  as n → ∞.

That is,

lim
n→∞‖yn – xn‖ = . (.)

This together with (.) leads to

( – αn)
∥∥G(xn) – xn

∥∥ =
∥∥(yn – xn) – αn

(
f (xn) – xn

)∥∥
≤ ‖yn – xn‖ + αn

∥∥f (xn) – xn
∥∥ →  as n→ ∞.

That is,

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)
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On the other hand, we observe that

yn –G(xn) = αn
(
f (xn) –G(xn)

)
,

which together with αn →  implies that

lim
n→∞

∥∥yn –G(xn)
∥∥ = . (.)

We note that

∥∥SnG(xn) –G(xn)
∥∥ ≤ ∥∥SnG(xn) – Snyn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥
≤ ∥∥G(xn) – yn

∥∥ + ‖Snyn – xn‖ +
∥∥xn –G(xn)

∥∥.
From (.), (.) and (.), we obtain

lim
n→∞

∥∥SnG(xn) –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n → ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n → ∞. (.)

Define amappingWx = (–θ )Sx+θG(x), whereG is defined by (.), θ ∈ (, ) is a constant.
Then by Lemma . we have that Fix(W ) = Fix(S)∩ Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.

From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Utilizing the arguments similar to those of (.) in the proof of Theorem ., we can
obtain

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)
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where q = s– limt→ xt with xt being the fixed point of the contraction x �→ tf (x)+(–t)Wx;
that is, xt solves the fixed point equation xt = tf (xt)+(– t)Wxt . Noticing that J is norm-to-
weak∗ uniformly continuous on bounded subsets of X, we deduce from (.) and (.)
that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

= αn
〈
f (xn) – q, J(yn – q)

〉
+ ( – αn)

〈
G(xn) – q, J(yn – q)

〉
= αn

〈
f (xn) – f (q), J(yn – q)

〉
+ αn

〈
f (q) – q, J(yn – q)

〉
+ ( – αn)

〈
G(xn) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)

∥∥G(xn) – q
∥∥‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)‖xn – q‖‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
=

[
 – αn( – ρ)

]‖xn – q‖‖yn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


(‖xn – q‖ + ‖yn – q‖) + αn

〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


‖xn – q‖ + 


‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤ [
 – αn( – ρ)

]‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Also, by the convexity of ‖ · ‖ and (.), we get

‖xn+ – q‖ ≤ βn‖xn – q‖ + γn‖yn – q‖ + δn‖yn – q‖

= βn‖xn – q‖ + ( – βn)‖yn – q‖.

It follows from (.) that

‖xn+ – q‖ ≤ [
 – αn( – βn)( – ρ)

]‖xn – q‖

+ αn( – βn)( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we obtain that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontrac-
tive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such that F =
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Fix(S)∩Ω �= ∅,whereΩ is the fixed point set of themapping G = ΠC(I–μB)ΠC(I–μB).
For arbitrarily given x ∈ C, let {xn} be the sequence generated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)G(xn),

xn+ = βnxn + γnyn + δnSyn, ∀n≥ ,

where  – λi
+λi

( –
√

–αi
λi

)≤ μi ≤  for i = , . Suppose that {αn}, {βn}, {γn} and {δn} are the
sequences in (, ) satisfying the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(iv) limn→∞ | γn

–βn
– γn–

–βn–
| = .

Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

6 Three-step explicit iterative algorithm
In this section, we introduce our three-step explicit iterative algorithm and show strong
convergence of the proposed algorithm.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontractive
and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction with
coefficient ρ ∈ (, ). Let {Sn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Si) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = ΠC(I –μB)ΠC(I –μB). For arbitrarily given x ∈ C, let {xn} be the sequence gener-
ated by

⎧⎪⎪⎨
⎪⎪⎩
zn = σnG(xn) + ( – σn)SnG(xn)

yn = αnf (xn) + ( – αn)zn,

xn+ = βnxn + γnyn + δnSnG(yn), ∀n≥ ,

(.)

where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {σn}, {αn}, {βn}, {γn} and {δn}
are the sequences in (, ) satisfying the following conditions:

(i)  < lim infn→∞ σn ≤ lim supn→∞ σn < ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(v) limn→∞ |σn – σn–| =  and limn→∞ | γn

–βn
– γn–

–βn–
| = .

Assume that
∑∞

n= supx∈D ‖Snx – Sn–x‖ < ∞ for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = limn→∞ Snx for all x ∈ C and suppose that Fix(S) =⋂∞

i= Fix(Si). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F . (.)
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Proof Take a fixed p ∈ F arbitrarily. Then by Lemma . we know that p =G(p) and Snp =
p for all n≥ . Moreover, by Lemma . we have

‖zn – p‖ ≤ σn
∥∥G(xn) – p

∥∥ + ( – σn)
∥∥SnG(xn) – p

∥∥
≤ ‖xn – p‖, (.)

and

‖yn – p‖ ≤ αn
∥∥f (xn) – f (p)

∥∥ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖zn – p‖
≤ αnρ‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + ( – αn)‖xn – p‖

=
(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥. (.)

From (.) and (.) we obtain

‖xn+ – p‖ ≤ βn‖xn – p‖ + γn‖yn – p‖ + δn
∥∥SnG(yn) – p

∥∥
≤ βn‖xn – p‖ + ( – βn)‖yn – p‖
≤ βn‖xn – p‖ + ( – βn)

[(
 – αn( – ρ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥]
=

[
 – ( – βn)( – ρ)αn

]‖xn – p‖ + ( – βn)( – ρ)αn · ‖f (p) – p‖
 – ρ

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
,

which implies that {xn} is bounded. By Lemma . we know from (.) and (.) that {yn},
{zn}, {G(xn)} and {G(yn)} are bounded.
Let us show that ‖xn+ – xn‖ →  and ‖xn – yn‖ →  as n→ ∞. As a matter of fact, from

(.), we have

zn – zn– = σn
(
G(xn) –G(xn–)

)
+ (σn – σn–)

(
G(xn–) – Sn–G(xn–)

)
+ ( – σn)

(
SnG(xn) – Sn–G(xn–)

)
,

and

yn – yn– = αn
(
f (xn) – f (xn–)

)
+ (αn – αn–)

(
f (xn–) – zn–

)
+ ( – αn)(zn – zn–).

It follows that

‖zn – zn–‖ ≤ σn
∥∥G(xn) –G(xn–)

∥∥ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ ( – σn)

(∥∥SnG(xn) – SnG(xn–)
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥)

≤ ∥∥G(xn) –G(xn–)
∥∥ + |σn – σn–|

∥∥G(xn–) – Sn–G(xn–)
∥∥

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥
≤ ‖xn – xn–‖ + |σn – σn–|

∥∥G(xn–) – Sn–G(xn–)
∥∥

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥,
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and

‖yn – yn–‖ ≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – zn–

∥∥
+ ( – αn)

[‖xn – xn–‖ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+

∥∥SnG(xn–) – Sn–G(xn–)
∥∥]

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + |σn – σn–|
∥∥G(xn–) – Sn–G(xn–)

∥∥
+ |αn – αn–|

∥∥f (xn–) – zn–
∥∥ +

∥∥SnG(xn–) – Sn–G(xn–)
∥∥. (.)

Now, we write xn = βn–xn– + ( –βn–)vn–, ∀n≥ , where vn– = xn–βn–xn–
–βn–

. It follows that
for all n ≥ ,

vn – vn– =
xn+ – βnxn

 – βn
–
xn – βn–xn–

 – βn–

=
γnyn + δnSnG(yn)

 – βn
–

γn–yn– + δn–Sn–G(yn–)
 – βn–

=
γn(yn – yn–) + δn(SnG(yn) – Sn–G(yn–))

 – βn

+
(

γn

 – βn
–

γn–

 – βn–

)
yn– +

(
δn

 – βn
–

δn–

 – βn–

)
Sn–G(yn–). (.)

This together with (.) implies that

‖vn – vn–‖

≤ ‖γn(yn – yn–) + δn(SnG(yn) – Sn–G(yn–))‖
 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖
+

∣∣∣∣ δn

 – βn
–

δn–

 – βn–

∣∣∣∣∥∥Sn–G(yn–)∥∥
≤ γn‖yn – yn–‖ + δn(‖SnG(yn) – SnG(yn–)‖ + ‖SnG(yn–) – Sn–G(yn–)‖)

 – βn

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣‖yn–‖ +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣∥∥Sn–G(yn–)∥∥
≤ γn‖yn – yn–‖ + δn‖yn – yn–‖

γn + δn
+

δn

γn + δn

∥∥SnG(yn–) – Sn–G(yn–)
∥∥

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ∥∥Sn–G(yn–)∥∥)
≤ ‖yn – yn–‖ +

∥∥SnG(yn–) – Sn–G(yn–)
∥∥

+
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ∥∥Sn–G(yn–)∥∥)
≤ (

 – αn( – ρ)
)‖xn – xn–‖ + |σn – σn–|

∥∥G(xn–) – Sn–G(xn–)
∥∥

+ |αn – αn–|
∥∥f (xn–) – zn–

∥∥ +
∥∥SnG(xn–) – Sn–G(xn–)

∥∥
+

∥∥SnG(yn–) – Sn–G(yn–)
∥∥ +

∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣(‖yn–‖ + ∥∥Sn–G(yn–)∥∥)
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≤ ‖xn – xn–‖ +M
(

|σn – σn–| + |αn – αn–| +
∣∣∣∣ γn

 – βn
–

γn–

 – βn–

∣∣∣∣
)

+
∥∥SnG(xn–) – Sn–G(xn–)

∥∥ +
∥∥SnG(yn–) – Sn–G(yn–)

∥∥, (.)

where supn≥{‖G(xn)‖+ ‖SnG(xn)‖+ ‖f (xn)‖+ ‖zn‖+ ‖yn‖+ ‖Snyn‖} ≤ M for someM > .
Since |σn – σn–| → , αn → , | γn

–βn
– γn–

–βn–
| →  and the assumption on {Sn}, we have

lim sup
n→∞

(‖vn – vn–‖ – ‖xn – xn–‖
) ≤ .

Utilizing Lemma ., from condition (iv) we obtain that

lim
n→∞‖vn – xn‖ = .

So, we get

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖vn – xn‖ = . (.)

Also, taking into account the boundedness of {G(xn)} and {SnG(xn)}, by Lemma . there
exists a continuous strictly increasing function g : [,∞)→ [,∞), g() =  such that for
p ∈ F ,

‖zn – p‖

≤ σn
∥∥G(xn) – p

∥∥ + ( – σn)
∥∥SnG(xn) – p

∥∥ – σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
≤ ‖xn – p‖ – σn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)
,

and hence

‖yn – p‖

≤ ∥∥( – αn)(zn – p)
∥∥ + αn

〈
f (xn) – p, J(yn – p)

〉
≤ ‖xn – p‖ – σn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)

+ αn
∥∥f (xn) – p

∥∥‖yn – p‖. (.)

Since {xn} and {SnG(yn)} both are bounded, by Lemma . there exists a continuous strictly
increasing function g : [,∞)→ [,∞), g() =  such that

‖xn+ – p‖

=
∥∥∥∥(βn + δn)

(
βn

βn + δn
(xn – p) +

δn

βn + δn

(
SnG(yn) – p

))
+ γn(yn – p)

∥∥∥∥


≤ (βn + δn)
∥∥∥∥ βn

βn + δn
(xn – p) +

δn

βn + δn

(
SnG(yn) – p

)∥∥∥∥


+ γn‖yn – p‖

≤ (βn + δn)
[

βn

βn + δn
‖xn – p‖ + δn

βn + δn

∥∥SnG(yn) – p
∥∥

–
βnδn

(βn + δn)
g

(∥∥xn – SnG(yn)
∥∥)]

+ γn‖yn – p‖
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≤ βn‖xn – p‖ + δn
∥∥SnG(yn) – p

∥∥ –
βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)

+ γn‖yn – p‖

≤ βn‖xn – p‖ + δn‖yn – p‖ – βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)

+ γn‖yn – p‖

= βn‖xn – p‖ + ( – βn)‖yn – p‖ – βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖ – σn( – σn)g

(∥∥G(xn) – SnG(xn)
∥∥)

+ αn
∥∥f (xn) – p

∥∥‖yn – p‖] – βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)

≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖ – ( – βn)σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
–

βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)
,

which immediately yields

( – βn)σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
+ βnδng

(∥∥xn – SnG(yn)
∥∥)

≤ ( – βn)σn( – σn)g
(∥∥G(xn) – SnG(xn)

∥∥)
+

βnδn

βn + δn
g

(∥∥xn – SnG(yn)
∥∥)

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn
∥∥f (xn) – p

∥∥‖yn – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn

∥∥f (xn) – p
∥∥‖yn – p‖.

Since αn → , ‖xn+ – xn‖ →  and lim infn→∞ δn > , we deduce from conditions (i) and
(iv) that

lim
n→∞ g

(∥∥G(xn) – SnG(xn)
∥∥)

=  and lim
n→∞ g

(∥∥xn – SnG(yn)
∥∥)

= .

Utilizing the properties of g and g, we have

lim
n→∞

∥∥G(xn) – SnG(xn)
∥∥ =  and lim

n→∞
∥∥xn – SnG(yn)

∥∥ = . (.)

In the meantime, according to condition (iv), we have

lim inf
n→∞ γn = lim inf

n→∞ ( – βn – δn) =  – lim sup
n→∞

(βn + δn) > .

Thus, from (.) and (.) it follows that

γn‖yn – xn‖ =
∥∥(xn+ – xn) – δn

(
SnG(yn) – xn

)∥∥
≤ ‖xn+ – xn‖ + δn

∥∥SnG(yn) – xn
∥∥ →  as n→ ∞.

That is,

lim
n→∞‖yn – xn‖ = . (.)
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Since it follows from (.) that

∥∥yn –G(xn)
∥∥ =

∥∥αn
(
f (xn) –G(xn)

)
+ ( – αn)( – σn)

(
SnG(xn) –G(xn)

)∥∥
≤ αn

∥∥f (xn) –G(xn)
∥∥ + ( – αn)( – σn)

∥∥SnG(xn) –G(xn)
∥∥

≤ αn
∥∥f (xn) –G(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥,
we obtain from (.) and αn →  that

lim
n→∞

∥∥yn –G(xn)
∥∥ = , (.)

which together with (.) leads to

lim
n→∞

∥∥xn –G(xn)
∥∥ = . (.)

By (.) and Lemma ., we have

∥∥SG(xn) –G(xn)
∥∥ ≤ ∥∥SG(xn) – SnG(xn)

∥∥ +
∥∥SnG(xn) –G(xn)

∥∥
→  as n → ∞. (.)

In terms of (.) and (.), we have

‖xn – Sxn‖ ≤ ∥∥xn –G(xn)
∥∥ +

∥∥G(xn) – SG(xn)
∥∥ +

∥∥SG(xn) – Sxn
∥∥

≤ 
∥∥xn –G(xn)

∥∥ +
∥∥G(xn) – SG(xn)

∥∥
→  as n → ∞. (.)

Define a mapping Wx = ( – θ )Sx + θG(x), where G is defined by (.) and θ ∈ (, ) is a
constant. Then by Lemma . we have that Fix(W ) = Fix(S)∩Fix(G) = F . We observe that

‖xn –Wxn‖ =
∥∥( – θ )(xn – Sxn) + θ

(
xn –G(xn)

)∥∥
≤ ( – θ )‖xn – Sxn‖ + θ

∥∥xn –G(xn)
∥∥.

From (.) and (.), we obtain

lim
n→∞‖xn –Wxn‖ = . (.)

Utilizing the arguments similar to those of (.) in the proof of Theorem ., we can
obtain

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ , (.)

where q = s– limt→ xt with xt being the fixed point of the contraction x �→ tf (x)+(–t)Wx;
that is, xt solves the fixed point equation xt = tf (xt)+(– t)Wxt . Noticing that J is norm-to-
weak∗ uniformly continuous on bounded subsets of X, we deduce from (.) and (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/334


Ceng et al. Journal of Inequalities and Applications 2013, 2013:334 Page 42 of 44
http://www.journalofinequalitiesandapplications.com/content/2013/1/334

that

lim sup
n→∞

〈
f (q) – q, J(yn – q)

〉 ≤ . (.)

Finally, let us show that xn → q as n→ ∞. We observe that

‖yn – q‖

= αn
〈
f (xn) – f (q), J(yn – q)

〉
+ αn

〈
f (q) – q, J(yn – q)

〉
+ ( – αn)

〈
σn

(
G(xn) – q

)
+ ( – σn)

(
SnG(xn) – q

)
, J(yn – q)

〉
≤ αnρ‖xn – q‖‖yn – q‖ + ( – αn)‖xn – q‖‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
=

(
 – αn( – ρ)

)‖xn – q‖‖yn – q‖ + αn
〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


(‖xn – q‖ + ‖yn – q‖) + αn

〈
f (q) – q, J(yn – q)

〉
≤  – αn( – ρ)


‖xn – q‖ + 


‖yn – q‖ + αn

〈
f (q) – q, J(yn – q)

〉
,

which implies that

‖yn – q‖ ≤ (
 – αn( – ρ)

)‖xn – q‖ + αn( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Also, by (.) and the convexity of ‖ · ‖, we get

‖xn+ – q‖ ≤ βn‖xn – q‖ + γn‖yn – q‖ + δn‖yn – q‖

= βn‖xn – q‖ + ( – βn)‖yn – q‖.

It follows from (.) that

‖xn+ – q‖ ≤ (
 – αn( – βn)( – ρ)

)‖xn – q‖

+ αn( – βn)( – ρ)
〈f (q) – q, J(yn – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we conclude that xn → q as n → ∞. This completes the
proof. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gâteaux differentiable norm. LetΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be λi-strictly pseudocontrac-
tive and αi-strongly accretive with αi + λi ≥  for i = , . Let f : C → C be a contraction
with coefficient ρ ∈ (, ). Let S be a nonexpansive mapping of C into itself such that F =
Fix(S)∩Ω �= ∅,whereΩ is the fixed point set of themapping G = ΠC(I–μB)ΠC(I–μB).
For arbitrarily given x ∈ C, let {xn} be the sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
zn = σnG(xn) + ( – σn)SG(xn),

yn = αnf (xn) + ( – αn)zn,

xn+ = βnxn + γnyn + δnSG(yn), ∀n≥ ,
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where  – λi
+λi

( –
√

–αi
λi

) ≤ μi ≤  for i = , . Suppose that {σn}, {αn}, {βn}, {γn} and {δn}
are the sequences in (, ) satisfying the following conditions:

(i)  < lim infn→∞ σn ≤ lim supn→∞ σn < ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii) βn + γn + δn = , ∀n≥ , and lim infn→∞ δn > ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞(βn + δn) < ;
(v) limn→∞ |σn – σn–| =  and limn→∞ | γn

–βn
– γn–

–βn–
| = .

Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .
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