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Abstract
In this paper, we establish some new Ostrowski-type inequalities for absolutely
continuous mappings whose first derivatives in absolute value are h-convex (resp.
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1 Introduction
[] Let f : I ⊂ [,∞) → R be a differentiable mapping on I◦, the interior of the interval I ,
such that f ′ ∈ L[a,b], where a,b ∈ I with a < b. If |f ′(x)| ≤ M, then the following inequality
holds:

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤ M
b – a

[
(x – a) + (b – x)



]
. (.)

This result is known in the literature as the Ostrowski inequality. For recent results and
generalizations concerning Ostrowski’s inequality, see [–] and the references therein.

Definition  [] We say that f : I →R is a Godunova-Levin function or that f belongs to
the class Q(I) if f is nonnegative, and for all x, y ∈ I and t ∈ (, ), we have

f
(
tx + ( – t)y

) ≤ f (x)
t

+
f (y)
 – t

. (.)

Definition  [] We say that f : I ⊆ R → R is a P-function, or that f belongs to the class
P(I), if f is nonnegative, and for all x, y ∈ I and t ∈ [, ], we have

f
(
tx + ( – t)y

) ≤ f (x) + f (y). (.)

Definition  [] Let s ∈ (, ]. A function f : [,∞)→ [,∞) is said to be s-convex in the
second sense if

f
(
tx + ( – t)y

) ≤ tsf (x) + ( – t)sf (y) (.)

for all x, y ∈ [,∞) and t ∈ [, ]. This class of s-convex functions is usually denoted by K
s .
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Definition  [] Let h : J →R be a nonnegative function, h 
≡ . We say that f : I ⊆R →
R is an h-convex function, or that f belongs to the class SX(h, I), if f is nonnegative, and
for all x, y ∈ I and t ∈ [, ], we have

f
(
tx + ( – t)y

) ≤ h(t)f (x) + h( – t)f (y). (.)

If inequality (.) is reversed, then f is said to be h-concave, i.e., f ∈ SV (h, I). Obviously,
if h(t) = t, then all nonnegative convex functions belong to SX(h, I) and all nonnegative
concave functions belong to SV (h, I); if h(t) = 

t , then SX(h, I) = Q(I); if h(t) = , then
SX(h, I)⊇ P(I); and if h(t) = ts, where s ∈ (, ), then SX(h, I)⊇ K

s .

Remark  [] Let h be a nonnegative function such that

h(α)≥ α (.)

for all α ∈ (, ). For example, the function hk(x) = xk , where k ≤  and x > , has that
property. If f is a nonnegative convex function on I , then for x, y ∈ I , α ∈ (, ), we have

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y) ≤ h(α)f (x) + h( – α)f (y). (.)

So, f ∈ SX(h, I). Similarly, if the function h has the property h(α)≤ α for all α ∈ (, ), then
any nonnegative concave function f belongs to the class SV (h, I).

Definition  [] A function h : J →R is said to be a super-multiplicative function if

h(xy) ≥ h(x)h(y) (.)

for all x, y ∈ J , when xy ∈ J .

If inequality (.) is reversed, then h is said to be a sub-multiplicative function. If equality
is held in (.), then h is said to be a multiplicative function.

Definition  [] A function h : J →R is said to be a super-additive function if

h(x + y) ≥ h(x) + h(y) (.)

for all x, y ∈ J , when x + y ∈ J .

In [], Sarıkaya et al. established the following Hadamard-type inequality for h-convex
functions.

Theorem  [] Let f ∈ SX(h, I), a,b ∈ I and f ∈ L([a,b]), then


h(  )

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ [

f (a) + f (b)
]∫ 


h(t)dt. (.)

For recent results related to h-convex functions, see [, –].
The aim of this study is to establish some Ostrowski-type inequalities for the class of

functions whose derivatives in absolute value are h-convex and h-concave functions.
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2 Ostrowski-type inequalities for h-convex functions
In order to achieve our objective, we need the following lemma [].

Lemma  [] Let f : I ⊆R →R be a differentiable mapping on I◦ where a,b ∈ I with a < b.
If f ′ ∈ L[a,b], then the following equality holds:

f (x) –


b – a

∫ b

a
f (u)du

=
(x – a)

b – a

∫ 


tf ′(tx + ( – t)a

)
dt –

(b – x)

b – a

∫ 


tf ′(tx + ( – t)b

)
dt

for each x ∈ [a,b].

Theorem  Let h : J ⊆ R → R be a nonnegative and super-multiplicative function, let
f : I ⊆ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with
a < b, and h(α) ≥ α. If |f ′| is an h-convex function on I and |f ′(x)| ≤ M, x ∈ [a,b], then we
have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤ M[(x – a) + (b – x)]
b – a

∫ 



[
h
(
t

)
+ h

(
t – t

)]
dt (.)

for each x ∈ [a,b].

Proof By Lemma  and since |f ′| is h-convex, then we can write

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ (x – a)

b – a

∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣dt + (b – x)

b – a

∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣dt

≤ (x – a)

b – a

∫ 


t
[
h(t)

∣∣f ′(x)
∣∣ + h( – t)

∣∣f ′(a)
∣∣]dt

+
(b – x)

b – a

∫ 


t
[
h(t)

∣∣f ′(x)
∣∣ + h( – t)

∣∣f ′(b)
∣∣]dt

≤ M(x – a)

b – a

∫ 



[
h(t) + h(t)h( – t)

]
dt

+
M(b – x)

b – a

∫ 



[
h(t) + h(t)h( – t)

]
dt

≤ M[(x – a) + (b – x)]
b – a

∫ 



[
h
(
t

)
+ h

(
t – t

)]
dt.

The proof is completed. �

Remark  In (.), if we choose h(t) = t, inequality (.) reduces to (.).

In the next corollary, we also make use of the beta function of Euler type, which is for
x, y >  defined as

β(x, y) =
∫ 


tx–( – t)y– dt =

�(x)�(y)
�(x + y)

.
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Corollary  In (.), if we choose h(t) = ts, then we have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ M[(x – a) + (b – x)]

b – a

∫ 



[
ts +

(
t – t

)s]dt

=
M[(x – a) + (b – x)]

b – a

∫ 



[
ts + ts( – t)s

]
dt

=
M[(x – a) + (b – x)]

b – a

[


s + 
+

�(s + )�(s + )
�(s + )

]

=
M[(x – a) + (b – x)]

b – a

[
�(s + ) + s(�(s))

(s + )�(s + )

]
.

One of the important results is given in the following theorem.

Theorem  Let h : J ⊆ R → R be a nonnegative and super-additive function, let f : I ⊆
R →R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with a < b. If
|f ′|q is an h-convex function on [a,b], p,q > , 

p +

q = , h(t)≥ t and |f ′(x)| ≤ M, x ∈ [a,b],

then

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤ Mh

q ()

b – a

(∫ 



(
h
(
tp

)
dt

)) 
p (
(x – a) + (b – x)

)
(.)

for each x ∈ [a,b].

Proof Suppose that p > . From Lemma  and using Hölder’s inequality, we can write

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ (x – a)

b – a

∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣dt + (b – x)

b – a

∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣dt

≤ (x – a)

b – a

(∫ 


tp dt

) 
p
(∫ 



∣∣f ′(tx + ( – t)a
)∣∣q dt

) 
q

+
(b – x)

b – a

(∫ 


tp dt

) 
p
(∫ 



∣∣f ′(tx + ( – t)b
)∣∣q dt

) 
q
.

Since |f ′|q is h-convex, by using the properties of h-convexity in the assumptions, we
have

∫ 



∣∣f ′(tx + ( – t)a
)∣∣q dt ≤

∫ 



[
h(t)

∣∣f ′(x)
∣∣q + h( – t)

∣∣f ′(a)
∣∣q]dt

≤ Mq
∫ 



[
h(t) + h( – t)

]
dt

≤ Mq
∫ 


h()dt =Mqh().

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
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Similarly, we can show that

∫ 



∣∣f ′(tx + ( – t)b
)∣∣q dt ≤

∫ 



[
h(t)

∣∣f ′(x)
∣∣q + h( – t)

∣∣f ′(b)
∣∣q]dt

≤ Mqh()

and

∫ 


tp dt ≤

∫ 


h
(
tp

)
dt.

Therefore, we obtain

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤ Mh

q ()

(x – a)

b – a

(∫ 


h
(
tp

)
dt

) 
p

+Mh

q ()

(b – x)

b – a

(∫ 


h
(
tp

)
dt

) 
p

=
Mh


q ()

b – a

(∫ 


h
(
tp

)
dt

) 
p (
(x – a) + (b – x)

)
.

The proof is completed. �

For example, h(t) = t is a super-additive function for nonnegative real numbers because
the square of (u+ v) is always greater than or equal to the square of u plus the square of v,
for u, v ∈ [,∞).

Corollary  In (.), if we choose h(t) = tn with n ∈N, n≥ , then we have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤ M
b – a

(


np + 

) 
p (
(x – a) + (b – x)

)
. (.)

Remark  Since ( 
np+ )


p < 

 , for any  ≥ n > p > , n ∈ N, then we behold that inequality
(.) is better than inequality (.). Better approaches can be obtained even if it is irregular
for bigger n and p numbers.

As we know, h-convex functions include all nonnegative convex, s-convex in the second
sense, Q(I)-convex and P-convex function classes. In this respect, it is normal to obtain
weaker results once comparedwith inequalities in referenced studies, because the inequal-
ities written herein were considered to bemore general than the above-mentioned classes,
and it was taken into account to be super-multiplicative or super-additive material. In this
case, the right side of inequality may be greater.
A new approach to an h-convex function is given in the following result.

Theorem  Let h : J ⊆ R → R be a nonnegative and super-multiplicative function, let
f : I ⊆ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with
a < b. If |f ′|q is an h-convex function on [a,b], q ≥ , h(α) ≥ α and |f ′(x)| ≤ M, x ∈ [a,b],

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
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then

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣

≤
q√M

(b – a)
(
(x – a) + (b – x)

)(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q

(.)

for each x ∈ [a,b].

Proof Suppose that q ≥ . From Lemma  and using the power mean inequality, we
have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ (x – a)

b – a

∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣dt + (b – x)

b – a

∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣dt

≤ (x – a)

b – a

(∫ 


t dt

)– 
q
(∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣q dt
) 

q

+
(b – x)

b – a

(∫ 


t dt

)– 
q
(∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣q dt
) 

q
.

Since |f ′|q is h-convex, we have
∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣q dt ≤
∫ 



[
th(t)

∣∣f ′(x)
∣∣q + th( – t)

∣∣f ′(a)
∣∣q]dt

≤ ∣∣f ′(x)
∣∣q ∫ 


h(t)h(t)dt +

∣∣f ′(a)
∣∣q ∫ 


h(t)h( – t)dt

≤ Mq
[∫ 


h
(
t

)
dt +

∫ 


h
(
t – t

)
dt

]
.

Similarly, we can observe that

∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣q dt ≤ ∣∣f ′(x)
∣∣q ∫ 


h(t)h(t)dt +

∣∣f ′(b)
∣∣q ∫ 


h(t)h( – t)dt

≤ Mq
{∫ 


h
(
t

)
dt +

∫ 


h
(
t – t

)
dt

}
.

Therefore, we deduce

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣

≤ (x – a)

b – a

(



)– 
q
(
Mq

∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q

+
(b – x)

b – a

(



)– 
q
(
Mq

∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
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=M
(



)– 
q
(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q
(
(x – a) + (b – x)

(b – a)

)

= q√M
(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q
(
(x – a) + (b – x)

(b – a)

)

and the proof is completed. �

Remark 
(i) In the above inequalities, one can establish several midpoint-type inequalities by

letting x = a+b
 .

(ii) In Theorem , if we choose
(a) x = a+b

 , then we obtain

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (u)du

∣∣∣∣

≤
q√M(b – a)



(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q
,

(b) x = a, then we obtain

∣∣∣∣f (a) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤
q√M(b – a)



(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q
,

(c) x = b, then we obtain

∣∣∣∣f (b) – 
b – a

∫ b

a
f (u)du

∣∣∣∣ ≤
q√M(b – a)



(∫ 



(
h
(
t

)
+ h

(
t – t

))
dt

) 
q
.

The following result holds for h-concave functions.

Theorem  Let h : J ⊆ R → R be a nonnegative and super-additive function, let f : I ⊆
R →R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with a < b. If
|f ′|q is an h-concave function on [a,b], p,q > , 

p +

q = , h(t)≥ t, then

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ 

q√(p + )

p h


q (  )

[
(x – a)

b – a

∣∣∣∣f ′
(
x + a


)∣∣∣∣ + (b – x)

b – a

∣∣∣∣f ′
(
x + b


)∣∣∣∣
]

(.)

for each x ∈ [a,b].

Proof Suppose that p > . From Lemma  and using Hölder’s inequality, we can write

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣
≤ (x – a)

b – a

∫ 


t
∣∣f ′(tx + ( – t)a

)∣∣dt + (b – x)

b – a

∫ 


t
∣∣f ′(tx + ( – t)b

)∣∣dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
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≤ (x – a)

b – a

(∫ 


tp dt

) 
p

·
(∫ 



∣∣f ′(tx + ( – t)a
)∣∣q dt

) 
q

+
(b – x)

b – a

(∫ 


tp dt

) 
p

·
(∫ 



∣∣f ′(tx + ( – t)b
)∣∣q dt

) 
q
. (.)

However, since |f ′|q is h-concave, using inequality (.), we have
(∫ 



∣∣f ′(tx + ( – t)a
)∣∣q dt

)
≤ 

h(  )

∣∣∣∣f ′
(
x + a


)∣∣∣∣
q

(.)

and
(∫ 



∣∣f ′(tx + ( – t)b
)∣∣q dt

)
≤ 

h(  )

∣∣∣∣f ′
(
x + b


)∣∣∣∣
q

. (.)

By combining the numbered inequalities above, we obtain

∣∣∣∣f (x) – 
b – a

∫ b

a
f (u)du

∣∣∣∣

≤ (x – a)

b – a


(p + )

p

(


h(  )

) 
q
∣∣∣∣f ′

(
x + a


)∣∣∣∣

+
(b – x)

b – a


(p + )

p

(


h(  )

) 
q
∣∣∣∣f ′

(
x + b


)∣∣∣∣

=


q√(p + )

p h


q (  )

[
(x – a)

b – a

∣∣∣∣f ′
(
x + a


)∣∣∣∣ + (b – x)

b – a

∣∣∣∣f ′
(
x + b


)∣∣∣∣
]
.

The proof is completed. �

A midpoint-type inequality for functions whose derivatives in absolute value are
h-concave may be established from the result above as follows.

Corollary  In (.), if we choose x = a+b
 , then we get

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (u)du

∣∣∣∣
≤ b – a

q√q+(p + )

p h


q (  )

[∣∣∣∣f ′
(
a + b


)∣∣∣∣ +
∣∣∣∣f ′

(
a + b


)∣∣∣∣
]
. (.)

For instance, if h(t) = t, then we obtain

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (u)du

∣∣∣∣
≤ b – a

(p + )

p

[∣∣∣∣f ′
(
a + b


)∣∣∣∣ +
∣∣∣∣f ′

(
a + b


)∣∣∣∣
]
, (.)

where |f ′|q is an h-concave function on [a,b], p,q > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
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3 Applications to special means
We consider the means for arbitrary positive numbers a, b (a 
= b) as follows.
The arithmetic mean:

A(a,b) =
a + b


.

The generalized log-mean:

Lp(a,b) =
[

bp+ – ap+

(p + )(b – a)

] 
p
, p ∈R \ {–, }.

The identric mean:

I(a,b) =

e

(
bb

aa

) 
b–a

.

Now, using the result of Section , we give some applications to special means of real
numbers.
In [], the following example is given.

Example  [] Let h be a function defined by h(x) = (c + x)p–, x ≥ . If c = , then the
function h ismultiplicative. If c≥ , then for p ∈ (, ) the function h is super-multiplicative
and for p >  the function h is sub-multiplicative.

Hence, for c = , p ∈ (, ), we have h(t) = ( + t)p–, t ≥ , is super-multiplicative. Let
f (x) = xn, x > , |n| ≥ , be an h-convex function.

Proposition  Let  < a < b, p ∈ (, ) and |n| ≥ . Then

∣∣An(a,b) – Lnn(a,b)
∣∣ ≤ M(b – a)



[∫ 



(
 + t

)p– dt +
∫ 



(
 + t – t

)p– dt
]
.

Proof The inequality is derived from (.) with x = a+b
 applied to the h-convex functions

f : R → R, f (x) = xn, |n| ≥ , and h : R → R, h(t) = ( + t)p–, p ∈ (, ). The details are
disregarded. �

Proposition  Let  < a < b, p ∈ (, ), q >  and |n| ≥ . Then

∣∣An(a,b) – Lnn(a,b)
∣∣ ≤

p√M(b – a)


[∫ 



(
 + t

)p– dt +
∫ 



(
 + t – t

)p– dt
] 

q
.

Proof The inequality is derived from (.) with x = a+b
 applied to the h-convex functions

f : R → R, f (x) = xn, |n| ≥ , and h : R → R, h(t) = ( + t)p–, p ∈ (, ). The details are
disregarded. �

Proposition  Let  < a < b and p,q > . Then we have

∣∣ln(A(a,b) + 
)
– (b – a) ln I(a + ,b + )

∣∣ ≤ b – a

(p + )

p

[


a + b + 
+


a + b + 

]
.
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Proof The inequality is derived from (.) applied to the concave function f : [a,b]→R,
f (x) = ln(x + ). The details are disregarded. �
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13. Sarıkaya, MZ, Sağlam, A, Yıldırım, H: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal.

2(3), 335-341 (2008)
14. Bombardelli, M, Varošanec, S: Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities.

Comput. Math. Appl. 58, 1869-1877 (2009)
15. Burai, P, Hazy, A: On approximately h-convex functions. J. Convex Anal. 18(2), 447-454 (2011)
16. Özdemir, ME, Gürbüz, M, Akdemir, AO: Inequalities for h-convex functions via further properties. RGMIA Res. Rep. Coll.

14, Article No. 22 (2011)

doi:10.1186/1029-242X-2013-326
Cite this article as: Tunç: Ostrowski-type inequalities via h-convex functions with applications to special means.
Journal of Inequalities and Applications 2013 2013:326.

http://www.journalofinequalitiesandapplications.com/content/2013/1/326
http://www.rgmia.org/papers/v5n2/Paperwapp2q.pdf
http://www.rgmia.org/papers/v5e/OTIDC2_col.pdf

	Ostrowski-type inequalities via h-convex functions with applications to special means
	Abstract
	MSC
	Keywords

	Introduction
	Ostrowski-type inequalities for h-convex functions
	Applications to special means
	Competing interests
	Acknowledgements
	References


