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1 Introduction
Many real world decision-making problems need to accomplish many objectives: mini-
mize cost, maximize reliability, minimize deviations from desire levels, minimize risk, etc.
In these cases optimization problems have a large number of applications. The main goal
of single objective optimization is to find the best solution which corresponds to the min-
imum or maximum value of a single objective function.
In many research fields and real world problems, the methodology for solving optimiza-

tion problems has been used. There are three kinds of methodology that are used for
solving optimization problems, namely deterministic optimization problem, stochastic
optimization problem and interval-valued optimization problem. The optimization prob-
lems with interval coefficients are termed an interval-valued optimization problem. In
this problem, the coefficient is taken as closed intervals. The solution concept imposed
upon the objective function is the main difference between the above said three kinds of
problems.
Interval programming methods have been used to tackle specific issues in multiple ob-

jective linear programming: some deal with uncertainty in the objective functions, others
handle uncertainty both in the objective functions and in the RHS of the constraints and
others deal with uncertainty in all the coefficients of the model. Charnes et al. [] pro-
posed an idea for solving the linear programming problems in which the constraints were
assumed as closed intervals. Later, Steuer [] developed an algorithm to solve the linear
programming problem with interval objective functions.
Urli and Nadeau [] presented a process to solve the multi-objective linear program-

ming problems with interval coefficients. Chanas and Kuchta [] generalized the solution
concepts of the linear programming problem with interval coefficients in the objective
function based on preference relations between intervals. By imposing a partial ordering
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on the set of all closed intervals, Wu [] introduced a solution concept in optimization
problems with interval-valued objective functions.
There are several approaches to model uncertainty in optimization problems such as

stochastic optimization and fuzzy optimization. Here we consider an optimization prob-
lemwith interval-valued objective function. Stancu-Minasian andTigan [, ] investigated
this kind of optimization problem.
Wu [] formulated Karush-Kuhn-Tucker optimality conditions for an interval-valued

objective function. Later, Wu [, ] formulated a Wolfe-type dual problem related to
the interval-valued optimization problem and established duality theorems by using the
concept of nondominated solution employed in vector optimization problems. Zhou and
Wang [] established a sufficient optimality condition and discussed mixed-type dual-
ity for a class of nonlinear interval-valued optimization problems. Recently, Bhurjee and
Panda [] developed a methodology to study the existence of the solutions of an interval
optimization problem. Very recently, Zhang et al. [] discussed the optimality conditions
and duality results for interval-valued optimization problems under generalized preinvex-
ity.
Convexity plays an important role in proving the existence of a solution of a general

optimization problem. Hence there is a need to study the convex property of interval op-
timization problems. One of the most useful generalizations of convexity was introduced
by Hanson []. For details, readers are advised to see []. After the concept of ρ – (η, θ )-
invex function and (p, r)-invex function had been introduced by Zalmai [] and Antczak
[], respectively, Mandal and Nahak[] proposed a new concept of (p, r) – ρ – (η, θ )-
invex function and established some symmetric duality results. Recently, Jayswal et al.
[] derived sufficient optimality conditions and duality theorems for interval-valued op-
timization problems involving generalized convex functions.
In this paper, we consider an interval-valued optimization problem in which the ob-

jective function is an interval-valued function and the constraint functions are real-
valued, and derive sufficient optimality conditions and duality theorems under general-
ized (p, r) –ρ – (η, θ )-invexity. The organization of the paper is as follows. In Section , we
recall some definitions and some basic properties related to interval-valued optimization
problems. In Section , some sufficient optimality conditions for a class of interval-valued
programming problems are discussed. Wolfe and Mond-Weir type duality theorems are
obtained in Sections  and , respectively. Conclusion and future work are proposed in
Section .

2 Notation and preliminaries
Let I be a class of all closed and bounded intervals in R. Throughout this paper, when we
say thatA is a closed interval, wemean thatA is also bounded in R. IfA is a closed interval,
we use the notation A = [aL,aU ], where aL and aU mean the lower and upper bounds
of A, respectively. If aL = aU = a, then A = [a,a] = a is a real number. Let A = [aL,aU ],
B = [bL,bU ] ∈ I , we define

(i) A + B = {a + b : a ∈ A and b ∈ B} = [aL + bL,aU + bU ],
(ii) –A = {–a : a ∈ A} = [–aU , –aL].

Therefore we see that A – B = A + (–B) = [aL – bU ,aU – bL]. We also have
(i) k +A = {k + a : a ∈ A} = [k + aL,k + aU ],
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(ii) kA = {ka : a ∈ A} =
{
[kaL,kaU ] if k ≥ ,
[kaU ,kaL] if k < ,

where k is a real number.

Let Rn denote an n-dimensional Euclidean space. The function F : Rn → I is called an
interval-valued function, i.e., F(x) = F(x,x, . . . ,xn) is a closed interval in R for each x ∈ Rn.
The interval-valued function F can also be written as F(x) = [FL(x),FU (x)], where FL(x),
FU (x) are real-valued functions defined on Rn and satisfy the condition FL(x) ≤ FU (x) for
each x ∈ Rn. We note that [F(x)]L = FL(x) and [F(x)]U = FU (x).
In interval mathematics, an order relation is often used to rank interval numbers and

it implies that an interval number is better than another but not that one is larger than
another. For A = [aL,aU ] and B = [bL,bU ], we write A ≤LU B if and only if aL ≤ bL and
aU ≤ bU . It is easy to see that ≤LU is a partial ordering on I . Also, we can write A <LU B if
and only if A≤LU B and A �= B.
Equivalently, A <LU B if and only if

aL < bL, aU ≤ bU or

aL ≤ bL, aU < bU or

aL < bL, aU < bU .

Definition . [] Let f : Rn → R be a differentiable function and let p, r be arbitrary
real numbers. If there exist η : Rn × Rn → Rn, θ : Rn × Rn → Rn and ρ ∈ R such that the
relations


r
(
er(f (x)–f (y)) – 

)
(>)≥ 

p
∇f (y)

(
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥ for p �= , r �= ,


r
(
er(f (x)–f (y)) – 

)
(>)≥ ∇f (y)η(x, y) + ρ

∥∥θ (x, y)
∥∥ for p = , r �= ,

f (x) – f (y)(>)≥ 
p
∇f (y)

(
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥ for p �= , r = ,

f (x) – f (y)(>)≥ ∇f (y)η(x, y) + ρ
∥∥θ (x, y)

∥∥ for p = , r = 

hold, then f is said to be (strictly) (p, r) – ρ – (η, θ )-invex at the point y on Rn with respect
to η, θ .

Definition . Let f : Rn → R be a differentiable function and let p, r be arbitrary real
numbers. If there exist η : Rn×Rn → Rn, θ : Rn×Rn → Rn and ρ ∈ R such that the relations


p
∇f (y)

(
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥ ≥  ⇒ 

r
(
er(f (x)–f (y)) – 

)
(>)≥  for p �= , r �= ,

∇f (y)η(x, y) + ρ
∥∥θ (x, y)

∥∥ ≥  ⇒ 
r
(
er(f (x)–f (y)) – 

)
(>)≥  for p = , r �= ,


p
∇f (y)

(
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥ ≥  ⇒ f (x) – f (y)(>)≥  for p �= , r = ,

∇f (y)η(x, y) + ρ
∥∥θ (x, y)

∥∥ ≥  ⇒ f (x) – f (y)(>)≥  for p = , r = 

hold, then f is said to be (strictly) (p, r) – ρ – (η, θ )-pseudo-invex at the point y on Rn with
respect to η, θ .
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Definition . Let f : Rn → R be a differentiable function and let p, r be arbitrary real
numbers. If there exist η : Rn×Rn → Rn, θ : Rn×Rn → Rn and ρ ∈ R such that the relations


r
(
er(f (x)–f (y)) – 

) ≤  ⇒ 
p
∇f (y)

(
epη(x,y) – 

) ≤ –ρ
∥∥θ (x, y)

∥∥ for p �= , r �= ,


r
(
er(f (x)–f (y)) – 

) ≤  ⇒ ∇f (y)η(x, y) ≤ –ρ
∥∥θ (x, y)

∥∥ for p = , r �= ,

f (x) – f (y) ≤  ⇒ 
p
∇f (y)

(
epη(x,y) – 

) ≤ –ρ
∥∥θ (x, y)

∥∥ for p �= , r = ,

f (x) – f (y) ≤  ⇒ ∇f (y)η(x, y) ≤ –ρ
∥∥θ (x, y)

∥∥ for p = , r = 

hold, then f is said to be (p, r) – ρ – (η, θ )-quasi-invex at the point y on Rn with respect to
η, θ .

Remark . It should be noted that the exponentials appearing on the right-hand sides
of inequalities above are understood to be taken componentwise and  = (, , . . . , ) ∈ Rn.

Remark . All theorems in this paper will be proved only in the case when p �= , r �= 
(other cases can be dealt with likewise since the only changes arise in a form of inequality).
Moreover, without loss of generality, we shall assume that r > , p >  (in the case when
r < , p < , the direction of some of the inequalities in the proof of the theorems should
be changed to the opposite one).

In this paper, we consider the following primal optimization problem with interval-
valued objective function:

(IVP) minF(x) =
[
FL(x),FU (x)

]
subject to gj(x)≤ , j = , , . . . ,m,

where F : Rn → I is an interval-valued function and gj : Rn → R is a real-valued function.
Let � = {x ∈ Rn : gj(x) ≤ , j = , , . . . ,m} be the set of all feasible solutions of (IVP). We
also denote by Obj(F ,�) = {F(x) : x ∈ �} the set of all objective values of primal problem
(IVP).

Definition . [] Let x* be a feasible solution of the primal problem (IVP). We say that
x* is a LU optimal solution of problem (IVP) if there exists no x ∈ � such that F(x) <LU
F(x*).

Theorem . (Karush-Kuhn-Tucker type conditions []) Assume that x* is a LU optimal
solution of primal problem (IVP) and F , gj, j = , , . . . ,m, are differentiable at x*. Sup-
pose that the constraint function gj, j = , , . . . ,m, satisfies the suitable Kuhn-Tucker con-
straint qualification [] at x*. Then there exist multipliers  < ξL, ξU ∈ R and  ≤ μj ∈ R,
j = , , . . . ,m, such that

ξL∇FL(x*) + ξU∇FU(
x*

)
+

m∑
j=

μj∇gj
(
x*

)
= , ()

μjgj
(
x*

)
= , j = , , . . . ,m. ()
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3 Sufficient optimality conditions
In this section, we shall establish the following sufficient optimality conditions for (IVP).

Theorem . (Sufficiency) Let x* ∈ � be a feasible solution of (IVP). Suppose that the
objective function F and the constraint function gj, j = , , . . . ,m, are differentiable at x*.
Assume that FL and FU are (p, r) – ρ – (η, θ )-invex and (p, r) – ρ – (η, θ )-invex, respec-
tively, with respect to η, θ and

∑m
j= μjgj is (p, r) – ρ – (η, θ )-invex with respect to η, θ at

x* with (ξLρ + ξUρ + ρ) ≥ . If there exist (Lagrange) multipliers  < ξL, ξU ∈ R and
μ = (μ,μ, . . . ,μm),  ≤ μj ∈ R, j = , , . . . ,m, such that (x*, ξL, ξU ,μ) satisfies () and (),
then x* is a LU optimal solution to problem (IVP).

Proof Let x* be not a LU optimal solution of (IVP). Then there exists a feasible solution
x ∈ � such that

F(x) <LU F
(
x*

)
.

That is,

{
FL(x) < FL(x*),
FU (x) < FU (x*),

or

{
FL(x) ≤ FL(x*),
FU (x) < FU (x*),

or

{
FL(x) < FL(x*),
FU (x) ≤ FU (x*).

Since r > , using the property of an exponential function, we obtain

{

r [e

r{FL(x)–FL(x*)} – ] < ,

r [e

r{FU (x)–FU (x*)} – ] < ,
or

{

r [e

r{FL(x)–FL(x*)} – ] ≤ ,

r [e

r{FU (x)–FU (x*)} – ] < ,
or

{

r [e

r{FL(x)–FL(x*)} – ] < ,

r [e

r{FU (x)–FU (x*)} – ] ≤ .

Using the above inequalities and the (p, r) –ρ – (η, θ )-invexity of FL and the (p, r) –ρ –
(η, θ )-invexity of FU at x* , we get

{

p {∇FL(x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ < ,

p {∇FU (x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ < ,

or

{

p {∇FL(x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ ≤ ,

p {∇FU (x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ < ,

or

{

p {∇FL(x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ < ,

p {∇FU (x*)}(epη(x,x*) – ) + ρ‖θ (x,x*)‖ ≤ .

Since ξL >  and ξU > , from the above inequalities, we get


p
{
ξL∇FL(x*) + ξU∇FU(

x*
)}(

epη(x,x
*) – 

)
+ ξLρ

∥∥θ
(
x,x*

)∥∥ + ξUρ
∥∥θ

(
x,x*

)∥∥ < . ()
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On the other hand, from the feasibility of x to (IVP), we have

gj(x) ≤ , j = , , . . . ,m.

Since μj ≥ , j = , , . . . ,m, the above inequality together with () yields

m∑
j=

μjgj(x) ≤
m∑
j=

μjgj
(
x*

)
.

As r > , using the property of an exponential function, we get


r
[
er{

∑m
j= μjgj(x)–

∑m
j= μjgj(x*)} – 

] ≤ ,

which together with the assumption that
∑m

j= μjgj is (p, r) – ρ – (η, θ )-invex at x* gives


p

m∑
j=

μj∇gj
(
x*

)(
epη(x,x

*) – 
)
+ ρ

∥∥θ
(
x,x*

)∥∥ ≤ . ()

On adding () and (), we get


p
(
epη(x,x

*) – 
)[

ξL∇FL(x*) + ξU∇FU(
x*

)
+

m∑
j=

μj∇gj
(
x*

)]

+
(
ξLρ + ξUρ + ρ

)∥∥θ
(
x,x*

)∥∥ < .

Therefore, from the hypothesis that (ξLρ + ξUρ + ρ) ≥  and the above inequality, we
get


p
(
epη(x,x

*) – 
)[

ξL∇FL(x*) + ξU∇FU(
x*

)
+

m∑
j=

μj∇gj
(
x*

)]
< ,

which contradicts (). Therefore x* is a LU optimal solution of (IVP). This completes the
proof. �

Theorem . (Sufficiency) Let x* ∈ � be a feasible solution of (IVP). Suppose that the
objective function F and the constraint function gj, j = , , . . . ,m, are differentiable at x*.
Assume that (ξLFL + ξUFU ) is (p, r) – ρ – (η, θ )-pseudo-invex with respect to η, θ and∑m

j= μjgj is (p, r) – ρ – (η, θ )-quasi-invex with respect to η, θ at x* with (ρ + ρ) ≥ .
If there exist (Lagrange) multipliers  < ξL, ξU ∈ R and μ = (μ,μ, . . . ,μm),  ≤ μj ∈ R,
j = , , . . . ,m, such that (x*, ξL, ξU ,μ) satisfies () and (), then x* is a LU optimal solution
to problem (IVP).

Proof Let x* be not a LU optimal solution of (IVP). Then there exists a feasible solution
x ∈ � such that

F(x) <LU F
(
x*

)
.
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That is,
{
FL(x) < FL(x*),
FU (x) < FU (x*),

or

{
FL(x) ≤ FL(x*),
FU (x) < FU (x*),

or

{
FL(x) < FL(x*),
FU (x) ≤ FU (x*).

Since ξL >  and ξU > , from the above inequalities, we have

ξLFL(x) + ξUFU (x) < ξLFL(x*) + ξUFU(
x*

)
.

As r > , using the property of an exponential function, we get


r
[
er{(ξ

LFL(x)+ξUFU (x))–(ξLFL(x*)+ξUFU (x*))} – 
]
< ,

which together with the assumption that ξLFL + ξUFU is (p, r) – ρ – (η, θ )-pseudo-invex
at x* gives


p
{
ξL∇FL(x*) + ξU∇FU(

x*
)}(

epη(x,x
*) – 

)
+ ρ

∥∥θ
(
x,x*

)∥∥ < . ()

On the other hand, from the feasibility of x to (IVP), we have

gj(x) ≤ , j = , , . . . ,m.

Since μj ≥ , j = , , . . . ,m, the above inequality together with () yields

m∑
j=

μjgj(x) ≤
m∑
j=

μjgj
(
x*

)
.

As r > , using the property of an exponential function, we get


r
[
er{

∑m
j= μjgj(x)–

∑m
j= μjgj(x*)} – 

] ≤ ,

which together with the assumption that
∑m

j= μjgj is (p, r) – ρ – (η, θ )-quasi-invex at x*

gives


p

m∑
j=

μj∇gj
(
x*

)(
epη(x,x

*) – 
)
+ ρ

∥∥θ
(
x,x*

)∥∥ ≤ . ()

On adding () and (), we get


p
(
epη(x,x

*) – 
)[

ξL∇FL(x*) + ξU∇FU(
x*

)
+

m∑
j=

μj∇gj
(
x*

)]

+ (ρ + ρ)
∥∥θ

(
x,x*

)∥∥ < .

Since (ρ + ρ)≥ , we have


p
(
epη(x,x

*) – 
)[

ξL∇FL(x*) + ξU∇FU(
x*

)
+

m∑
j=

μj∇gj
(
x*

)]
< ,
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which contradicts (). Therefore x* is a LU optimal solution of (IVP). This completes the
proof. �

4 Wolfe-type duality
In this section, we consider the following Wolfe-type dual problem:

(WD) maxF(y) +
m∑
j=

μjgj(y)

subject to

ξL∇FL(y) + ξU∇FU (y) +
m∑
j=

μj∇gj(y) = , ()

ξL > , ξU > ,μj ≥ , j = , , . . . ,m, ()

where F(y) +
∑m

j= μjgj(y) = [FL(y) +
∑m

j= μjgj(y),FU (y) +
∑m

j= μjgj(y)] is an interval-valued
function.

Definition . Let (y*, ξ *L, ξ *U ,μ*) be a feasible solution of dual problem (WD). We say
that (y*, ξ *L, ξ *U ,μ*) is a LU optimal solution of dual problem (WD) if there exists no
(y, ξ *L, ξ *U ,μ*) such that F(y*) +

∑m
j= μ

*
j gj(y*) <LU F(y) +

∑m
j= μ

*
j gj(y).

Theorem . (Weak duality) Let X be an open subset of Rn. Let F and gj, j = , , . . . ,m, be
differentiable on X. Suppose that x and (y, ξL, ξU ,μ) are the feasible solutions to (IVP) and
(WD), respectively. Further assume that ξL > , ξU >  and μj ≥ , j = , , . . . ,m, such that
ξLFL + ξUFU +

∑m
j= μjgj is (p, r) – ρ – (η, θ )-invex with respect to η, θ at y with ξL + ξU = 

and ρ ≥ . Then

F(x)≥LU F(y) +
m∑
j=

μjgj(y).

Proof Suppose contrary to the result that

F(x) <LU F(y) +
m∑
j=

μjgj(y).

That is,
{
FL(x) < FL(y) +

∑m
j= μjgj(y),

FU (x) < FU (y) +
∑m

j= μjgj(y),
or

{
FL(x)≤ FL(y) +

∑m
j= μjgj(y),

FU (x) < FU (y) +
∑m

j= μjgj(y),
or

{
FL(x) < FL(y) +

∑m
j= μjgj(y),

FU (x)≤ FU (y) +
∑m

j= μjgj(y).

Since ξL > , ξU >  and ξL + ξU = , the above inequalities together with the feasibility
of x to (IVP) become

ξLFL(x) + ξUFU (x) +
m∑
j=

μjgj(x) < ξLFL(y) + ξUFU (y) +
m∑
j=

μjgj(y). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/313
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From the assumption that ξLFL + ξUFU +
∑m

j= μjgj is (p, r) – ρ – (η, θ )-invex at y, we have


r
[
er{(ξ

LFL(x)+ξUFU (x)+
∑m

j= μjgj(x))–(ξLFL(y)+ξUFU (y)+
∑m

j= μjgj(y))} – 
]

≥ 
p

[
ξL∇FL(y) + ξU∇FU (y) +

m∑
j=

μj∇gj(y)

](
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥.

The above inequality together with () and ρ ≥  yields


r
[
er{(ξ

LFL(x)+ξUFU (x)+
∑m

j= μjgj(x))–(ξLFL(y)+ξUFU (y)+
∑m

j= μjgj(y))} – 
] ≥ .

Since r > , using the property of an exponential function, we get

ξLFL(x) + ξUFU (x) +
m∑
j=

μjgj(x)≥ ξLFL(y) + ξUFU (y) +
m∑
j=

μjgj(y),

which contradicts the inequality (). This completes the proof. �

Theorem . (Strong duality) Let x* be a LU optimal solution to (IVP) at which Kuhn-
Tucker constraints qualification are satisfied. Then there exist ξ *L > , ξ *U >  and μ* ≥ 
such that (x*, ξ *L, ξ *U ,μ*) is feasible for (WD) and the two objectives have the same value.
Further, if the hypothesis of weak duality Theorem . holds for all feasible solutions
(y*, ξ *L, ξ *U ,μ*), then (x*, ξ *L, ξ *U ,μ*) is a LU optimal solution to (WD).

Proof Since x* is a LU optimal solution to (IVP) and the Kuhn-Tucker constraints qualifi-
cation are satisfied at x*, then by Theorem ., there exist multipliers ξ *L > , ξ *U >  and
μ*
j ≥ , j = , , . . . ,m, such that

ξ *L∇FL(x*) + ξ *U∇FU(
x*

)
+

m∑
j=

μ*
j∇gj

(
x*

)
= ,

μ*
j gj

(
x*

)
= ,

which yields that (x*, ξ *L, ξ *U ,μ*) is a feasible solution for (WD) and corresponding objec-
tive values are the same. Further, if (x*, ξ *L, ξ *U ,μ*) is not a LU optimal solution of (WD),
then there exists a feasible solution (y*, ξ *L, ξ *U ,μ*) for (WD) such that

F
(
x*

)
<LU F

(
y*

)
+

m∑
j=

μ*
j gj

(
y*

)
,

which contradicts weak duality Theorem .. Hence (x*, ξ *L, ξ *U ,μ*) is a LU optimal solu-
tion to (WD). �

Theorem . (Strict converse duality) Let X be an open subset of Rn. Let F and gj,
j = , , . . . ,m, be differentiable on X. Suppose that x* and (y*, ξ *L, ξ *U ,μ*) are the feasi-
ble solutions to (IVP) and (WD), respectively. Assume that ξ *LFL + ξ *UFU +

∑m
j= μ

*
j gj is
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strictly (p, r) – ρ – (η, θ )-invex with respect to η, θ at y* with ρ ≥  and

ξ *LFL(x*) + ξ *UFU(
x*

)
+

m∑
j=

μ*
j gj

(
x*

) ≤ ξ *LFL(y*) + ξ *UFU(
y*

)
+

m∑
j=

μ*
j gj

(
y*

)
. ()

Then x* = y*.

Proof Now we assume that x* �= y* and exhibit a contradiction. From the assumption that
ξ *LFL + ξ *UFU +

∑m
j= μ

*
j gj is strictly (p, r) – ρ – (η, θ )-invex at y*, we have


r
[
er{(ξ

*LFL(x*)+ξ *
UFU (x*)+

∑m
j= μ*

j gj(x
*))–(ξ *LFL(y*)+ξ *

UFU (y*)+
∑m

j= μ*
j gj(y

*))} – 
]

>

p

[
ξ *L∇FL(y*) + ξ *U∇FU(

y*
)
+

m∑
j=

μ*
j∇gj

(
y*

)](
epη(x

*,y*) – 
)
+ ρ

∥∥θ
(
x*, y*

)∥∥.

From the feasibility of (y*, ξ *L, ξ *U ,μ*) to (WD), the above inequality together with the
hypothesis ρ ≥  yields


r
[
er{(ξ

*LFL(x*)+ξ *
UFU (x*)+

∑m
j= μ*

j gj(x
*))–(ξ *LFL(y*)+ξ *

UFU (y*)+
∑m

j= μ*
j gj(y

*))} – 
]
> .

Since r > , using the property of an exponential function, we get

ξ *LFL(x*) + ξ *UFU(
x*

)
+

m∑
j=

μ*
j gj

(
x*

)
> ξ *LFL(y*) + ξ *UFU(

y*
)
+

m∑
j=

μ*
j gj

(
y*

)
,

which contradicts (). This completes the proof. �

5 Mond-Weir type duality
In this section, we consider the following Mond-Weir type dual problem for (IVP):

(MWD) maxF(y) =
[
FL(y),FU (y)

]
subject to

ξL∇FL(y) + ξU∇FU (y) +
m∑
j=

μj∇gj(y) = , ()

μjgj(y) ≥ , j = , , . . . ,m, ()

ξL > , ξU > ,μj ≥ , j = , , . . . ,m. ()

Definition . Let (y*, ξ *L, ξ *U ,μ*) be a feasible solution of dual problem (MWD).We say
that (y*, ξ *L, ξ *U ,μ*) is a LU optimal solution of dual problem (MWD) if there exists no
(y, ξ *L, ξ *U ,μ*) such that F(y*) <LU F(y).

Theorem . (Weak duality) Let X be an open subset of Rn. Let F and gj, j = , , . . . ,m,
be differentiable on X. Suppose that x and (y, ξL, ξU ,μ) are the feasible solutions to (IVP)
and (MWD), respectively. Further assume that there exist ξL >  and ξU >  andμj ≥ , j =

http://www.journalofinequalitiesandapplications.com/content/2013/1/313
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, , . . . ,m, such that (ξLFL+ξUFU ) is (p, r)–ρ –(η, θ )-pseudo-invexwith respect to η, θ and∑m
j= μjgj is (p, r) – ρ – (η, θ )-quasi-invex with respect to η, θ at y with (ρ + ρ) ≥ . Then

F(x)≥LU F(y).

Proof Suppose contrary to the result that

F(x) <LU F(y).

That is,
{
FL(x) < FL(y),
FU (x) < FU (y),

or

{
FL(x) ≤ FL(y),
FU (x) < FU (y),

or

{
FL(x) < FL(y),
FU (x) ≤ FU (y).

Since ξL >  and ξU > , from the above inequalities, we have

ξLFL(x) + ξUFU (x) < ξLFL(y) + ξUFU (y). ()

On the other hand, since μj ≥ , j = , , . . . ,m, from the feasibility of x and (y, ξL, ξU ,μ) to
(IVP) and (MWD), respectively, we obtain

m∑
j=

μjgj(x)≤
m∑
j=

μjgj(y).

Since r > , using the property of an exponential function, we get


r
[
er{

∑m
j= μjgj(x)–

∑m
j= μjgj(y)} – 

] ≤ ,

which together with the assumption that
∑m

j= μjgj is (p, r) – ρ – (η, θ )-quasi-invex at y,
gives


p

m∑
j=

μj∇gj(y)
(
epη(x,y) – 

)
+ ρ

∥∥θ (x, y)
∥∥ ≤ .

Therefore, from () and the hypothesis that (ρ + ρ) ≥ , the above inequality yields


p
(
epη(x,y) – 

)[
ξL∇FL(y) + ξU∇FU (y)

]
+ ρ

∥∥θ (x, y)
∥∥ ≥ ,

which together with the assumption that ξLFL + ξUFU is (p, r) – ρ – (η, θ )-pseudo-invex
at y gives


r
[
er{(ξ

LFL(x)+ξUFU (x))–(ξLFL(y)+ξUFU (y))} – 
] ≥ .

Since r > , using the property of an exponential function, we get

ξLFL(x) + ξUFU (x) ≥ ξLFL(y) + ξUFU (y),

which contradicts (). This completes the proof. �
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Theorem . (Strong duality) Let x* be a LU optimal solution to (IVP) at which Kuhn-
Tucker constraints qualification are satisfied. Then there exist ξ *L > , ξ *U >  and μ* ≥
 such that (x*, ξ *L, ξ *U ,μ*) is feasible for (MWD) and the two objectives have the same
value. Further, if the hypothesis of weak duality Theorem . holds for all feasible solutions
(y*, ξ *L, ξ *U ,μ*), then (x*, ξ *L, ξ *U ,μ*) is a LU optimal solution to (MWD).

Proof Since x* is a LU optimal solution to (IVP) and the Kuhn-Tucker constraints qual-
ification are satisfied at x*, then by Theorem ., there exist multipliers ξ *L > , ξ *U > ,
μ*
j ≥ , j = , , . . . ,m, such that

ξ *L∇FL(x*) + ξ *U∇FU(
x*

)
+

m∑
j=

μ*
j∇gj

(
x*

)
= ,

μ*
j gj

(
x*

)
= ,

which yields that (x*, ξ *L, ξ *U ,μ*) is a feasible solution for (MWD) and corresponding ob-
jective values are same. Further, if (x*, ξ *L, ξ *U ,μ*) is not a LU optimal solution of (MWD),
then there exists a feasible solution (y*, ξ *L, ξ *U ,μ*) for (MWD) such that

F
(
x*

)
<LU F

(
y*

)
,

which contradicts weak duality Theorem .. Hence (x*, ξ *L, ξ *U ,μ*) is a LU optimal solu-
tion to (MWD). �

Theorem . (Strict converse duality) Let X be an open subset of Rn. Let F and gj,
j = , , . . . ,m, be differentiable on X. Suppose that x* and (y*, ξ *L, ξ *U ,μ*) are the fea-
sible solutions to (IVP) and (MWD), respectively. Assume that ξ *LFL + ξ *UFU is strictly
(p, r) – ρ – (η, θ )-pseudo-invex and

∑m
j= μ

*
j gj is (p, r) – ρ – (η, θ )-quasi-invex with respect

to η, θ at y* with (ρ + ρ) ≥  and

ξ *LFL(x*) + ξ *UFU(
x*

) ≤ ξ *LFL(y*) + ξ *UFU(
y*

)
. ()

Then x* = y*.

Proof Now we assume that x* �= y* and exhibit a contradiction. From the assumption that
(y*, ξ *L, ξ *U ,μ*) is a feasible solution for (MWD), we get

ξ *L∇FL(y*) + ξ *U∇FU(
y*

)
+

m∑
j=

μ*
j∇gj

(
y*

)
= . ()

Since μ*
j ≥ , j = , , . . . ,m, from the feasibility of x* and (y*, ξ *L, ξ *U ,μ*) to (IVP) and

(MWD), respectively, we obtain

m∑
j=

μ*
j gj

(
x*

) ≤
m∑
j=

μ*
j gj

(
y*

)
.
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As r > , using the property of an exponential function, we get


r
[
er{

∑m
j= μ*

j gj(x
*)–

∑m
j= μ*

j gj(y
*)} – 

] ≤ ,

which together with the assumption that
∑m

j= μ
*
j gj is (p, r) – ρ – (η, θ )-quasi-invex at y*

gives


p

m∑
j=

μ*
j∇gj

(
y*

)(
epη(x

*,y*) – 
)
+ ρ

∥∥θ
(
x*, y*

)∥∥ ≤ .

Therefore, from () and the hypothesis that (ρ + ρ) ≥ , the above inequality yields


p
(
epη(x

*,y*) – 
)[

ξ *L∇FL(y*) + ξ *U∇FU(
y*

)]
+ ρ

∥∥θ
(
x*, y*

)∥∥ ≥ ,

which togetherwith the assumption that ξ *LFL+ξ *UFU is strictly (p, r)–ρ –(η, θ )-pseudo-
invex at y* gives


r
[
er{(ξ

*LFL(x*)+ξ *
UFU (x*))–(ξ *LFL(y*)+ξ *

UFU (y*))} – 
]
> .

Since r > , using the property of an exponential function, we get

ξ *LFL(x*) + ξ *UFU(
x*

)
> ξ *LFL(y*) + ξ *UFU(

y*
)
,

which contradicts (). This completes the proof. �

6 Conclusion
In this paper, we have derived sufficient optimality conditions for a class of interval-valued
optimization problems under generalized invex functions. Weak, strong and strict con-
verse duality theorems are discussed for two types of the dual models. It will be interesting
to obtain the optimality and duality theorem for a class of interval-valued programming
under generalized invexity assumptions in which the involved functions are non-smooth.
Moreover, it will also be interesting to see whether the second-order duality results for
a class of interval-valued programming problem hold or not. This will orient the future
research of the authors.
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