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1 Introduction
In this paper, we apply the Bohnenblust-Karlin fixed point theorem to prove the existence
of solutions for a fractional differential inclusion with integral boundary conditions given
by

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) ∈ F(t,x(t)), t ∈ [,T],T > ,  < q ≤ ,

x() = , x(T) = μ
∫ T
 g(s,x(s))ds,

x′() – λx′(T) = μ
∫ T
 h(s,x(s))ds,

(.)

where cDq denotes the Caputo fractional derivative of order q, F : [,T] × R → R \ {∅},
g,h : [,T]×R →R are given continuous functions and λ,μ,μ,∈R with λ �= –.
Differential inclusions of integer order (classical case) play an important role in the

mathematical modeling of various situations in economics, optimal control, etc. and are
widely studied in literature. Motivated by an extensive study of classical differential inclu-
sions, a significant work has also been established for fractional differential inclusions. For
examples and details, see [–] and references therein.

2 Preliminaries
LetC([,T],R) denote a Banach space of continuous functions from [,T] intoRwith the
norm ‖x‖ = supt∈[,T]{|x(t)|}. Let L([,T],R) be the Banach space of functions x : [,T] →
R which are Lebesgue integrable and normed by ‖x‖L =

∫ T
 |x(t)|dt.

Now we recall some basic definitions on multi-valued maps [–].
Let (X,‖ · ‖) be a Banach space. Then a multi-valued map G : X → X is convex (closed)

valued if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded sets if
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G(B) =
⋃

x∈BG(x) is bounded in X for any bounded set B of X (i.e., supx∈B{sup{|y| : y ∈
G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on X if for each x ∈ X, the set
G(x) is a nonempty closed subset of X, and if for each open set B of X containing G(x),
there exists an open neighborhoodN of x such thatG(N ) ⊆ B.G is said to be completely
continuous if G(B) is relatively compact for every bounded subset B of X. If the multi-
valued map G is completely continuous with nonempty compact values, then G is u.s.c.
if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). In
the following study, BCC(X) denotes the set of all nonempty bounded, closed and convex
subsets of X. G has a fixed point if there is x ∈ X such that x ∈ G(x).
Let us record some definitions on fractional calculus [–].

Definition . For an at least (n – )-times continuously differentiable function g :
[,∞)→R, the Caputo derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q ≤ n,q > ,

where � denotes the gamma function.

Definition . The Riemann-Liouville fractional integral of order q for a function g is
defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the right-hand side is pointwise defined on (,∞).

To define the solution for (.), we consider the following lemma.We do not provide the
proof of this lemma as it employs the standard arguments.

Lemma . For a given y ∈ C([,T],R), the solution of the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) = y(t), t ∈ [,T],T > ,  < q ≤ ,

x() = , x(T) = μ
∫ T
 g(s,x(s))ds,

x′() – λx′(T) = μ
∫ T
 h(s,x(s))ds,

(.)

is given by the integral equation

x(t) =
∫ t



(t – s)q–

�(q)
y(s)ds +

λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
y(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
y(s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds. (.)
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In view of Lemma ., a function x ∈ AC([,T],R) is a solution of the problem (.) if
there exists a function f ∈ L([,T],R) such that f (t) ∈ F(t,x) a.e. on [,T] and

x(t) =
∫ t



(t – s)q–

�(q)
f (s)ds +

λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
f (s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
f (s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds. (.)

Now we state the following lemmas which are necessary to establish the main result.

Lemma . (Bohnenblust-Karlin []) Let D be a nonempty subset of a Banach space X,
which is bounded, closed and convex. Suppose that G : D → X \ {} is u.s.c. with closed,
convex values such that G(D)⊂D and G(D) is compact. Then G has a fixed point.

Lemma . [] Let I be a compact real interval. Let F be a multi-valued map satisfying
(A) and let� be linear continuous from L(I,R) → C(I), then the operator�◦SF : C(I) →
BCC(C(I)), x �→ (� ◦ SF )(x) = �(SF ,x) is a closed graph operator in C(I)×C(I).

For the forthcoming analysis, we need the following assumptions:

(A) Let F : [,T]×R → BCC(R); (t,x)→ F(t,x) be measurable with respect to t for each
x ∈ R, u.s.c. with respect to x for a.e. t ∈ [,T], and for each fixed x ∈ R, the set
SF ,x := {f ∈ L([,T],R) : f (t) ∈ F(t,x) for a.e. t ∈ [,T]} is nonempty.

(A) For each r > , there exists a function mr ,pr ,pr ∈ L([,T],R+) such that ‖F(t,x)‖ =
sup{|v| : v(t) ∈ F(t,x)} ≤ mr(t), ‖g(t,x)‖ ≤ pr(t), ‖h(t,x)‖ ≤ pr(t) for each (t,x) ∈
[,T]×R with |x| ≤ r, and

lim inf
r→+∞

(
ζr

r

)
= γ <∞, (.)

where ζr =max{‖mr‖L ,‖pr‖L ,‖pr‖L}.
Furthermore, we set

max
t∈[,T]

∣∣∣∣ t[t + λ(T – t)]
T( + λ)

∣∣∣∣ = | – λ| + |λ|
| + λ| := δ,

max
t∈[,T]

∣∣∣∣ t(T – t)
T( + λ)

∣∣∣∣ = T
| + λ| := δ,

� =
Tq–

�(q)
{
 + |λ|δ(q – )T– + δ

}
.

(.)

3 Main result
Theorem . Suppose that the assumptions (A) and (A) are satisfied, and

γ < �, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/296
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where γ is given by (.) and

(
� + |μ|δ + |μ|δT

)– = �.

Then the boundary value problem (.) has at least one solution on [,T].

Proof In order to transform the problem (.) into a fixed point problem,we define amulti-
valued map N : C([,T],R)→ C([,T],R) as

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
h ∈ C

(
[,T],R

)
: h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ t


(t–s)q–
�(q) f (s)ds + λt(T–t)

T(+λ)
∫ T


(t–s)q–
�(q–) f (s)ds

– t[t+λ(T–t)]
T(+λ)

∫ T


(t–s)q–
�(q) f (s)ds

+ μt[t+λ(T–t)]
T(+λ)

∫ T
 g(s,x(s))ds

+ μt(T–t)
T(+λ)

∫ T
 h(s,x(s))ds, t ∈ [,T], f ∈ SF ,x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Now we prove that the multi-valued map N satisfies all the assumptions of Lemma .,
and thus N has a fixed point which is a solution of the problem (.). In the first step, we
show that N(x) is convex for each x ∈ C([,T],R). For that, let h,h ∈ N(x). Then there
exist f, f ∈ SF ,x such that for each t ∈ [,T], we have

hi(t) =
∫ t



(t – s)q–

�(q)
fi(s)ds +

λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
fi(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
fi(s)ds +

μt[t + λ(T – t)]
T( + λ)

∫ T


g
(
s,x(s)

)
ds

+
μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds, i = , .

Let  ≤ ϑ ≤ . Then, for each t ∈ [,T], we have

[
ϑh + ( – ϑh

]
(t)

=
∫ t



(t – s)q–

�(q)
[
ϑ f(s) + ( – ϑ)f(s)

]
ds

+
λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
[
ϑ f(s) + ( – ϑ)f(s)

]
ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
[
ϑ f(s) + ( – ϑ)f(s)

]
ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x(s)

)
ds

+
μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds.

Since SF ,x is convex (F has convex values), therefore it follows that λh + ( – ϑ)h ∈N(x).
Next it will be shown that there exists a positive number r such that N(Br) ⊆ Br , where

Br = {x ∈ C([,T]) : ‖x‖ ≤ r}. Clearly Br is a bounded closed convex set in C([,T]) for
each positive constant r. If it is not true, then for each positive number r, there exists a

http://www.journalofinequalitiesandapplications.com/content/2013/1/296
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function xr ∈ Br , hr ∈N(xr) with ‖N(xr)‖ > r, and

hr(t) =
∫ t



(t – s)q–

�(q)
fr(s)ds +

λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
fr(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
fr(s)ds +

μt[t + λ(T – t)]
T( + λ)

∫ T


g
(
s,xr(s)

)
ds

+
μt(T – t)
T( + λ)

∫ T


h
(
s,xr(s)

)
ds for some fr ∈ SF ,xr .

On the other hand, using (A), we have

r <
∥∥N(xr)

∥∥
≤

{
Tq–

�(q)
+ |λ|δ Tq–

�(q – )
+ δ

Tq–

�(q)

}∫ T


mr(s)ds

+ |μ|δ
∫ T


pr(s)ds + |μ|δT

∫ T


pr(s)ds

≤ �‖mr‖L + |μ|δ‖pr‖L + |μ|δT‖pr‖L
≤ ζr

(
� + |μ|δ + |μ|δT

)
.

Dividing both sides by r and taking the lower limit as r → ∞, we find that

γ ≥ (
� + |μ|δ + |μ|δT

)– = �,

which contradicts (.). Hence there exists a positive number r′ such that N(Br′) ⊆ Br′.
Now we show that N(Br′ ) is equi-continuous. Let t′, t′′ ∈ [,T] with t′ < t′′. Let x ∈ Br′

and h ∈ N(x), then there exists f ∈ SF ,x such that for each t ∈ [,T], we have

h(t) =
∫ t



(t – s)q–

�(q)
f (s)ds +

λt(T – t)
T( + λ)

∫ T



(T – s)q–

�(q – )
f (s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(T – s)q–

�(q)
f (s)ds +

μt[t + λ(T – t)]
T( + λ)

∫ T


g
(
s,x(s)

)
ds

+
μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds,

from which we obtain

∣∣h(t′′) – h
(
t′
)∣∣ ≤

∣∣∣∣
∫ t′



(
(t′′ – s)q– – (t′ – s)q–

�(q)

)∣∣f (s)∣∣ds +
∫ t′′

t′

(t′′ – s)q–

�(q)
∣∣f (s)∣∣ds

∣∣∣∣
+

|λ||t′′ – t′||T – t′′ – t′|
T | + λ|

∫ T



(T – s)q–

�(q – )
∣∣f (s)∣∣ds

+
|t′′ – t′||( – λ)t′′ + ( – λ)t′ + λT |

T| + λ|
∫ t



(t – s)q–

�(q)
∣∣f (s)∣∣ds

+
|t′′ – t′||( – λ)t′′ + ( – λ)t′ + λT |

T| + λ|
∫ T



(T – s)q–

�(q – )
∣∣g(s,x(s))∣∣ds

+
|λ||t′′ – t′||T – t′′ – t′|

T | + λ|
∫ T



∣∣h(s,x(s))∣∣ds

http://www.journalofinequalitiesandapplications.com/content/2013/1/296
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≤
∣∣∣∣
∫ t′



(
(t′′ – s)q– – (t′ – s)q–

�(q)

)
mr′ ds +

∫ t′′

t′

(t′′ – s)q–

�(q)
mr′ ds

∣∣∣∣
+

|λ||t′′ – t′||T – t′′ – t′|
T | + λ|

∫ T



(T – s)q–

�(q – )
mr′ (s)ds

+
|t′′ – t′||( – λ)t′′ + ( – λ)t′ + λT |

T| + λ|
∫ t



(t – s)q–

�(q)
mr′ ds

+
|t′′ – t′||( – λ)t′′ + ( – λ)t′ + λT |

T| + λ|
∫ T



(T – s)q–

�(q – )
pr′ (s)ds

+
|λ||t′′ – t′||T – t′′ – t′|

T | + λ|
∫ T


pr′ (s)ds.

Obviously, the right-hand side of the above inequality tends to zero independently of
xr ∈ Br′ as t′′ → t′. Thus, N is equi-continuous.
As N satisfies the above three assumptions, therefore it follows by the Ascoli-Arzelá

theorem that N is a compact multi-valued map.
In our next step, we show that N has a closed graph. Let xn → x∗, hn ∈ N(xn) and

hn → h∗. Then we need to show that h∗ ∈ N(x∗). Associated with hn ∈ N(xn), there ex-
ists fn ∈ SF ,xn such that for each t ∈ [,T],

hn(t) =
∫ t



(t – s)q–

�(q)
fn(s)ds +

λt(T – t)
T( + λ)

∫ T



(t – s)q–

�(q – )
fn(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(t – s)q–

�(q)
fn(s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,xn(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,xn(s)

)
ds.

Thus we have to show that there exists f∗ ∈ SF ,x∗ such that for each t ∈ [,T],

h∗(t) =
∫ t



(t – s)q–

�(q)
f∗(s)ds +

λt(T – t)
T( + λ)

∫ T



(t – s)q–

�(q – )
f∗(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(t – s)q–

�(q)
f∗(s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x∗(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,x∗(s)

)
ds.

Let us consider the continuous linear operator � : L([,T],R)→ C([,T],R) given by

f �→ �(f )(t)

=
∫ t



(t – s)q–

�(q)
f (s)ds +

λt(T – t)
T( + λ)

∫ T



(t – s)q–

�(q – )
f (s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(t – s)q–

�(q)
f (s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,x(s)

)
ds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/296
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Observe that
∥∥hn(t) – h∗(t)

∥∥
=

∥∥∥∥
∫ t



(t – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds +

λt(T – t)
T( + λ)

∫ T



(t – s)q–

�(q – )
f
(
s,x(s)

)(
fn(s) – f∗(s)

)
ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(t – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T



(
g
(
s,xn(s)

)
– g

(
s,x∗(s)

))
ds

+
μt(T – t)
T( + λ)

∫ T



(
h
(
s,xn(s)

)
– h

(
s,x∗(s)

))
ds

∥∥∥∥ →  as n→ ∞.

Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore, Lemma . yields

h∗(t) =
∫ t



(t – s)q–

�(q)
f∗(s)ds +

λt(T – t)
T( + λ)

∫ T



(t – s)q–

�(q – )
f∗(s)ds

–
t[t + λ(T – t)]

T( + λ)

∫ T



(t – s)q–

�(q)
f∗(s)ds

+
μt[t + λ(T – t)]

T( + λ)

∫ T


g
(
s,x∗(s)

)
ds +

μt(T – t)
T( + λ)

∫ T


h
(
s,x∗(s)

)
ds

for some f∗ ∈ SF ,x∗ .
Hence, we conclude that N is a compact multi-valued map, u.s.c. with convex closed

values. Thus, all the assumptions of Lemma . are satisfied. Hence the conclusion of
Lemma . applies and, in consequence, N has a fixed point x which is a solution of the
problem (.). This completes the proof. �

Special cases
By fixing the parameters in the boundary conditions of (.), we obtain some new results.
As the first case, by taking μ = , λ = , μ = , our main result with � = �(q)/Tq–

corresponds to the problem
⎧⎨
⎩

cDqx(t) ∈ F(t,x(t)), t ∈ [,T],T > ,  < q ≤ ,

x() = , x′() = , x(T) = .

In case we fix μ = , λ = , μ = , we obtain a new result for the problem
⎧⎨
⎩

cDqx(t) ∈ F(t,x(t)), t ∈ [,T],T > ,  < q ≤ ,

x() = , x(T) = , x′() = x′(T),

with � = �(q)/( + q)Tq–.

Discussion
As an application of Theorem ., we discuss two cases for nonlinearities F(t,x), g(t,x),
h(t,x): (a) sub-linear growth in the second variable of the nonlinearities; (b) linear growth

http://www.journalofinequalitiesandapplications.com/content/2013/1/296
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in the second variable (state variable). In case of sub-linear growth, there exist functions
ηi(t),ρi(t) ∈ L([,T],R+), μi ∈ [, ) with i = , ,  such that ‖F(t,x)‖ ≤ η(t)|x|μ + ρ(t),
‖g(t,x)‖ ≤ η(t)|x|μ + ρ(t), ‖h(t,x)‖ ≤ η(t)|x|μ + ρ(t) for each (t,x) ∈ [,T] × R. In
this case, mr(t) = η(t)rμ + ρ(t), pr(t) = η(t)rμ + ρ(t), pr(t) = η(t)rμ + ρ(t), and the
condition (.) is  <�. For the linear growth, the nonlinearities F , g , h satisfy the relation
‖F(t,x)‖ ≤ η(t)|x| + ρ(t), pr(t) = η(t)|x| + ρ(t), pr(t) = η(t)|x| + ρ(t) for each (t,x) ∈
[,T]×R. In this casemr(t) = η(t)r +ρ(t), pr(t) = η(t)r +ρ(t), pr(t) = η(t)r +ρ(t), and
the condition (.) becomes max{‖η‖L ,‖η‖L ,‖η‖L} < �. In both cases, the boundary
value problem (.) has at least one solution on [,T].

Example . (linear growth case) Consider the following problem:

⎧⎨
⎩

cD/x(t) ∈ F(t,x(t)), t ∈ [, ],

x() = , x() =
∫ 
 g(s,x(s))ds, x′() – 

x
′(T) = 


∫ 
 h(s,x(s))ds,

(.)

where q = /, T = , μ = , λ = /, μ = /, and

∥∥F(t,x)∥∥ ≤ 
( + t)

|x| + e–t ,
∥∥g(t,x)∥∥ ≤ 

( + t)
|x| + ,

∥∥h(t,x)∥∥ ≤ et

( + et)
|x| + t + .

With the given data, δ = , δ = /, � = /
√

π ,

γ =max
{‖η‖L ,‖η‖L ,‖η‖L} =max

{


,


ln,




(
ln( + e) – ln

)}
=


,

� =
(
� + |μ|δ + |μ|δT

)– = 
√

π

( + 
√

π )
.

Clearly, γ < �. Thus, by Theorem ., the problem (.) has at least one solution on [, ].

Example . (sub-linear growth case) Letting ‖F(t,x)‖ ≤ 
(+t) |x|/ + e–t , ‖g(t,x)‖ ≤


(+t) |x|/ + , ‖h(t,x)‖ ≤ et

(+et ) |x|/ + t +  in Example ., we find that  = γ < �. Hence
there exits a solution for the sub-linear case of the problem (.) by Theorem ..
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