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Abstract
In Bettaibi and Bouzeffour (J. Math. Anal. Appl. 342:1203-1219, 2008), some properties
of the third Jackson q-Bessel function of order zero were established. This paper is
devoted to studying the q-convolution product by using a q-integral representation
of the related q-translation.
The central part of this work is first to study the related q-heat semi-group and its

hypercontractivity and second to specify the q-analogue of the Wiener algebra.

1 Introduction: notations and preliminaries
1.1 Introduction
In harmonic analysis the positivity of the translation operator is crucial. It plays a central
role in establishing some useful results such as the properties of the convolution product.
In contrast to the classical theory, the positivity of the translation operator associated

to the normalized q-Bessel function of order α is not clear at this stage. In fact it is still
an open conjecture to find q ∈ [, ] and α which assure the positivity of the related trans-
lation. For α = –/, it was proved that the q-translation is not positive for all q ∈ [, ]
(see []). However, for α = , the authors proved (see []) that the q-translation is positive
for all q ∈ [, ]. This fact helps us to study the harmonic analysis associated to the third
Jackson q-Bessel function of order zero and to establish some important inequalities.
This paper is organized as follows. In Section  we begin by summarizing some state-

ments concerning the q-translation operator Tx,q studied in []. Then we prove some facts
about the positivity and the x-continuity of Tx,q for an appropriate space and we give an
integral representation.
In Section , we recall some basic properties of the q-convolution product cited in [].

Then we establish some results of density.
In Section , we study the q-Fourier Bessel transform Fq(f ): after recalling some results

in [] and by the use of the inversion formula, we prove that we can extend the definition
of Fq(f ) to Lq(Rq,+,xdqx) and by density to Lpq(Rq,+,xdqx),  < p ≤ .
Sections  and  are reserved to study the q-analogue of some well-known results asso-

ciated to the heat semi-group and the Wiener algebra.

1.2 Notations and preliminaries
We recall some usual notions and notations used in the q-theory (see []). We refer to
the book by Gasper and Rahmen [] for the definitions, notations and properties of the q-
shifted factorials and the q-hypergeometric functions. Throughout this paper, we assume
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that q ∈], [ and we note

[x]q =
 – qx

 – q
, x ∈ C.

The q-derivatives Dqf and D+
q f of a function f are given by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

,
(
D+

q f
)
(x) =

f (q–x) – f (x)
( – q)x

if x �= , ()

(Dqf )() = f ′() and (D+
q f )() = q–f ′() provided f ′() exists.

Using these two derivatives, we put

�q =
( – q)

x
Dq

[
xD+

q
]
. ()

The q-Jackson integrals from  to a and from  to ∞ are defined by (see [])

∫ a


f (x)dqx = ( – q)a

∞∑
n=

f
(
aqn

)
qn, ()

∫ ∞


f (x)dqx = ( – q)

∞∑
n=–∞

f
(
qn

)
qn, ()

provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a,b] is given by (see [])

∫ b

a
f (x)dqx =

∫ b


f (x)dqx –

∫ a


f (x)dqx. ()

We recall that the q-hypergeometric function ϕ satisfies the following properties (see []
or []):
() For all w, z ∈C, we have

(w,q)∞ϕ(;w;q; z) = (z,q)∞ϕ(; z;q;w). ()

() For n ∈ N and z ∈C, we have

(
q–n;q

)
∞ϕ

(
;q–n;q; z

)
= (–)nq

n(n–)
 zn

(
qn+;q

)
∞ϕ

(
;qn+;q;qnz

)
. ()

() Both sides of () are majorized by

(–z;q)∞(–w;q)∞ and q
n(n–)

 |z|n(–|z|;q)∞(–q;q)∞ if w = q–n (n ∈N). ()

In [] Koornwinder and Swarttouw, in order to study a q-analogue of the Hankel trans-
form and to give its inversion formula and a Plancherel formula, defined the third Jackson
q-Bessel function using the q-hypergeometric function ϕ as follows:

Jα
(
z;q

)
=
zα(qα+;q)∞

(q;q)∞
ϕ

(
;qα+;q,qz

)
. ()
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They proved the following orthogonality relation:

∞∑
k=–∞

qkqn+mJn+k
(
x;q

)
Jm+k

(
x;q

)
= δn,m, |x| < q–,n,m ∈ Z. ()

In [], and more generally in [], the authors gave the following q-analogue of Graf ’s ad-
dition formula by the use of an analytic approach:

Jv
(
Rq(y+z+v);q

)
Jx–v

(
qz;q

)
=

∞∑
k=–∞

Jv
(
Rq(y+x+k);q

)
Jv+k

(
Rqy+v+k ;q

)
Jx

(
q(z–k);q

)
, ()

where z ∈ Z, x, y, v ∈ C satisfy q(+R(x)+R(y))|R| < , R(x) > – and R �= . We have the
following behavior (see []).

Lemma  For α ≥ – 
 and x ∈Rq,+ = {qn : n ∈ Z}, we have

()

∣∣Jα(
x;q

)∣∣ ≤ (–q;q)∞(–q(α+);q)∞
(q;q)∞

⎧⎨
⎩xα if x ≤ q

–q ,

q(
Log(x)
Logq ) if x ≥ q

–q .

() For all ν ∈ R, we have Jα(x;q) = o(x–ν) as x → +∞.
In particular, we have limx→+∞ Jα(x;q) = .

() D+
q (x–αJα(x;q)) = –( – q)–x–αJα+(x;q).

In literature, some authors (see []) developed some elements of q-harmonic analysis
related to the normalized q-jα function using a transmutation operator.
In this paper, we are concernedwith J(x;q), the third Jackson q-Bessel function of order

zero. We construct a product formula for this function leading to a positive q-translation
which is necessary and constructive for some applications.
It is well known (see [], Prop. ) that for all λ ∈C, the function

J
(
λx;q

)
=

∞∑
k=

(–)kqk(k+)λkxk

(q;q)k
()

is the solution of the q-problem

⎧⎨
⎩�qy(x) + λy(x) = ,

y() = , y′() = .

We need the following spaces and sets:
• Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z} and R̃q,+ =Rq,+ ∪ {}.
• S∗q(Rq,+) the space of restrictions on Rq,+ of even functions f such that for all
m,n ∈ N, we have supx∈Rq,+ |xm�n

q(f )(x)| < ∞ and for all n ∈N, we have
(D+

q (�n
q(f )))(x)→  as x ↓  in Rq,+.

• D∗q(Rq,+) the space of restrictions on Rq,+ of even functions with bounded support
such that for all n ∈ N, we have (D+

q (�n
qf ))→  as x ↓  in Rq,+.
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• C∗q,(Rq,+) the space of restrictions on Rq,+ of even functions, for which f (x)→  as
x → +∞ in Rq,+ and f (x)→  as x ↓  in Rq,+, equipped with the norm

‖f ‖∞,q = sup
x∈Rq,+

∣∣f (x)∣∣.
• C∗q,b(R̃q,+) the space of restrictions on R̃q,+ of even functions for which f (x)→ f () as
x ↓  in Rq,+ and

‖f ‖∞,q = sup
x∈R̃q,+

∣∣f (x)∣∣ < ∞. ()

• Lpq(Rq,+,xdqx), p > , the set of all functions defined on Rq,+ such that

‖f ‖p,q =
{∫ ∞



∣∣f (x)∣∣pxdqx}

p
< ∞. ()

• L∞
q (Rq,+), the set of all functions defined on Rq,+ such that

‖f ‖∞,q = sup
x∈Rq,+

∣∣f (x)∣∣ < ∞. ()

2 A q-generalized translation
In [], using the kernel

K
(
qm,qn,qk

)
=

[
Jm–k

(
qn–k ;q

)], m,n,k ∈ Z, ()

the authors defined the q-generalized translation as

⎧⎨
⎩T,qf = f ,

Tx,qf (y) =
∑∞

k=–∞ K(x, y,qk)f (qk), x, y ∈Rq,+,
()

provided the sum converges.
The kernel K satisfies the following properties.
Form,n,k ∈ Z, we have
()

 ≤ K
(
qm,qn,qk

) ≤ (–q(+n–k), –q;q)∞
(q;q)∞

⎧⎨
⎩q(m–k)(n–k) ifm ≥ k,

q(m–k)(m–n–) ifm ≤ k.
()

()

K
(
qm,qn,qk

)
= K

(
qn,qm,qk

)
. ()

()

K
(
qm,qn,qk

)
= q(k–n)K

(
qm,qk ,qn

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/289


Elmonser et al. Journal of Inequalities and Applications 2013, 2013:289 Page 5 of 22
http://www.journalofinequalitiesandapplications.com/content/2013/1/289

()

qm+nK
(
qm,qn,qk

)
is symmetric in n,m and k. ()

()

∞∑
n=–∞

q(n–k)K
(
qn,qm,qk

)
= . ()

()

∀m,n,k ∈ Z,  ≤ K
(
qm,qn,qk

) ≤ min
{
,q|k–n|,q|k–m|,q|n–m|}. ()

()

K
(
qm+r ,qn+r ,qk+r

)
= K

(
qm,qn,qk

)
, r ∈ Z. ()

It was shown in [] that the generalized q-translation satisfies the following results.

Proposition 
() The q-generalized translation is positive.
() Tx,qf (y) = Ty,qf (x), x, y ∈ R̃q,+.
() For f ∈ L(Rq,+,xdqx), y ∈Rq,+, T,qf (y) = limn→+∞ Tqn ,qf (y), y ∈Rq,+.
() Tx,qJ(·;q)(y) = J(x;q)J(y;q), x, y ∈Rq,+.

Proposition  For f , g ∈ L(Rq,+,xdqx), we have for all x ∈ Rq,+,
()

∫ ∞
 Tx,qf (y)ydqy =

∫ ∞
 f (y)ydqy.

()
∫ ∞
 Tx,qf (y)g(y)ydqy =

∫ ∞
 f (y)Tx,qg(y)ydqy.

Now, we put, for x, y, t ∈Rq,+,

W (x, y, t) =
K(x, y, t)
( – q)t

. ()

Using the proprieties of the kernel K and the definition of the generalized q-translation,
one can state the following results.

Proposition 
()

W (x, y, t)≥ . ()

()

W (x, y, t) =W (y,x, t) =W (x, t, y), ∀x, y, t ∈Rq,+. ()
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()

∫ +∞


W (x, y, t)t dqt = . ()

() For x, y ∈Rq,+, we have

Tx,qf (y) =
∫ +∞


f (t)W (x, y, t)t dqt. ()

The following result is useful for the remainder.

Proposition 
() For f ∈ Lpq(Rq,+,xdqx), p≥  and x ∈ R̃q,+, we have Tx,q(f ) ∈ Lp(Rq,+,xdqx) and

∥∥Tx,q(f )
∥∥
p,q ≤ ‖f ‖p,q. ()

() For f ∈ L∞
q (Rq,+) and x ∈ R̃q,+, we have Tx,q(f ) ∈ L∞

q (Rq,+) and

∥∥Tx,q(f )
∥∥∞,q ≤ ‖f ‖∞,q. ()

Proof The case x =  is evident.
- If p ∈ [, +∞[.
Using () and the q-Hölder inequality, we deduce, for x, y ∈Rq,+,

(∫ +∞



∣∣f (t)∣∣W (x, y, t)t dqt
)p

≤
∫ +∞



∣∣f (t)∣∣pW (x, y, t)t dqt.

Applying Fubini-Tonelli’s theorem and the relations () and (), we obtain

∥∥Tx,q(f )
∥∥p
p,q ≤

∫ +∞



∣∣f (t)∣∣p(∫ +∞


W (x, y, t)ydqy

)
t dqt = ‖f ‖pp,q.

- If p = +∞.
∀x ∈ Rq,+, ∀y ∈Rq,+,

∣∣Tx,q(f )(y)
∣∣ ≤

∫ +∞



∣∣f (t)∣∣W (x, y, t)t dqt ≤ ‖f ‖∞,q

∫ +∞


W (x, y, t)t dqt = ‖f ‖∞,q,

which achieves the proof. �

Corollary  For f ∈ Lpq(Rq,+,xdqx), p ≥ , the mapping x → Tx,q(f ) from R̃q,+ into
Lpq(Rq,+,xdqx) is continuous at , i.e.,

lim
x→

∥∥Tx,q(f ) – f
∥∥
p,q = . ()

For f ∈ L∞
q (Rq,+), the mapping x → Tx,q(f ) from R̃q,+ into L∞

q (Rq,+) is continuous at ,
i.e.,

lim
x→

∥∥Tx,q(f ) – f
∥∥∞,q = . ()
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Proof The result follows from the previous proposition, the properties of the q-generalized
translation and the Lebesgue theorem. �

3 q-Bessel Fourier transform
In [], we have defined, for f ∈ Lq(Rq,+,xdqx), the q-Bessel Fourier transform by

Fq(f )(λ) =


 – q

∫ ∞


f (x)J

(
λx;q

)
xdqx, λ ∈ R̃q,+. ()

In the following propositions, we summarize some of its properties (see []).

Proposition 
() For f ∈ Lq(Rq,+,xdqx), we have

Fq(f ) ∈ C∗q,(Rq,+) ()

and

∣∣Fq(f )(λ)
∣∣ ≤ 

 – q
‖f ‖,q, λ ∈ R̃q,+. ()

() For f ∈ Lq(Rq,+,xdqx), we have

Fq(Tx,qf )(λ) = J
(
λx;q

)
Fq(f )(λ), x,λ ∈ R̃q,+. ()

() If f ,D+
q f ,�qf ∈ Lq(Rq,+,xdqx) and xD+

q f (x)→  as x ↓  in Rq,+, then

Fq(�qf )(λ) = –λFq(f )(λ), λ ∈Rq,+. ()

Theorem  (Plancherel formula) Fq is an isomorphism from S∗q(Rq,+) onto itself, F–
q =

Fq, and for all f ∈ S∗q(Rq,+),

∥∥Fq(f )
∥∥
,q = ‖f ‖,q.

Using this result and the relation (), one can state the following proposition.

Proposition  For all f ∈ S∗q(Rq,+) and all x ∈ R̃q,+, we have for λ ∈ Rq,+,

Tx,qf (λ) =


 – q

∫ ∞


Fq(f )(t)J

(
tx;q

)
J

(
tλ;q

)
t dqt, ()

which can be extended for f ∈ L(Rq,+,xdqx).

Proposition  For f ∈ S∗q(Rq,+) and y ∈ Rq,+, we have

Tx,qf (y) =
+∞∑
n=

qn(n+)

(q;q)n
yn

(
�n

qf
)
(x), ()

where �
q(f ) = f and �n+

q (f ) = �q[�n
q(f )], n ∈N.

http://www.journalofinequalitiesandapplications.com/content/2013/1/289
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Proof First by the Plancherel formula, we have

f (x) =


 – q

∫ ∞


Fq(f )(t)J

(
tx;q

)
t dqt.

So,

�n
qf (x) =


 – q

∫ ∞


Fq(f )(t)�n

q
(
J

(
tx;q

))
t dqt =

(–)n

 – q

∫ ∞


Fq(f )(t)tnJ

(
tx;q

)
t dqt.

On the other hand, from the definition of the function J, the Plancherel formula and the
relations () and (), we have

Tx,qf (y) =


 – q

∫ ∞


Fq(f )(t)J

(
tx;q

) ∞∑
n=

(–)nqn(n+)tnyn

(q;q)n
t dqt

=
+∞∑
n=

qn(n+)

(q;q)n
yn

(
�n

qf
)
(x). �

Proposition  For  ≤ p < ∞, S∗q(Rq,+) is dense in Lpq(Rq,+,xdqx).

Proof It suffices to consider functions with compact supports on Rq,+. �

4 q-convolution product
In [], the authors defined the q-convolution product of two suitable functions as

f ∗B g(x) =


 – q

∫ ∞


Tx,qf (y)g(y)ydqy, x ∈Rq,+. ()

It satisfies the following properties (see []).

Proposition  For f , g,h ∈ Lq(Rq,+,xdqx), we have
() f ∗B g = g ∗B f .
() Fq(f ∗B g) =Fq(f )Fq(g).
() (f ∗B g) ∗B h = f ∗B (g ∗B h).

In this section, we shall prove that the notion of q-convolution product can be extended
to functions in Lpq(Rq,+,xdqx) space. We begin by the following result.

Proposition  Let g ∈ Lq(Rq,+,xdqx) and f ∈ Lpq(Rq,+,xdqx),  ≤ p < ∞. Then
() ∀x ∈ Rq,+, y �→ Tx,q(f )(y)g(y) ∈ Lq(Rq,+,xdqx).
() The function f ∗B g ∈ Lpq(Rq,+,xdqx) and

‖f ∗B g‖p,q ≤ 
 – q

‖g‖,q‖f ‖p,q. ()

Proof
(a) For p = :

http://www.journalofinequalitiesandapplications.com/content/2013/1/289
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From Fubini-Tonelli’s theorem and Proposition , we have

∫ ∞


|f ∗B g|(x)xdqx≤

∫ ∞



∣∣g(y)∣∣(∫ ∞



∣∣Tx,q(f )(y)
∣∣xdqx

)
ydqy

=
∫ ∞



∣∣g(y)∣∣∥∥Ty,q(f )
∥∥
q,ydqy≤ ‖g‖,q‖f ‖,q.

(b) For  < p <∞:
Let r ∈ ], +∞[ be such that 

p +

r = . For a bounded subset E of Rq,+, we note χE

the characteristic function of E.
From Fubini-Tonelli’s theorem, we have

∫ ∞



∫ ∞



∣∣Tx,q(f )(y)
∣∣∣∣g(y)∣∣χE(x)ydqyxdqx

=
∫ ∞



∣∣g(y)∣∣(∫ ∞



∣∣Tx,q(f )(y)
∣∣χE(x)xdqx

)
ydqy.

Using the Holder inequality and Proposition , we obtain

∫ ∞



∫ ∞



∣∣Tx,q(f )(y)
∣∣∣∣g(y)∣∣χE(x)xdqxydqy≤ ‖g‖,q‖f ‖p,q

(∫ ∞


χE(x)xdqx

) 
r
< +∞.

Then the function (x, y) �→ Tx,q(f )(y)g(y)χE(x) is integrable on Rq,+ ×Rq,+ with respect to
the measure xdqxydqy. From Fubini’s theorem we deduce that for all x ∈ E, the mapping
y �→ Tx,q(f )(y)g(y) belongs to Lq(Rq,+, ydqy), and the mapping x �→ χE(x)

∫ ∞
 Tx,q(f )(y)×

g(y)ydqy belongs also to Lq(Rq,+,xdqx). Then the function x �→ ∫ ∞
 Tx,q(f )(y)g(y)ydqy is

measurable.
Furthermore, from the Holder inequality, we have for all x ∈Rq,+

∣∣f ∗B g(x)
∣∣ ≤ 

 – q

∫ ∞



∣∣Tx,q(f )(y)
∣∣∣∣g(y)∣∣ 

p
∣∣g(y)∣∣ r y dqy

≤ 
 – q

(∫ ∞



∣∣Tx,q(f )(y)
∣∣p∣∣g(y)∣∣ydqy)


p
(∫ ∞



∣∣g(y)∣∣ydqy)

r
.

Finally, using Fubini’s theorem and Proposition , we obtain

‖f ∗B g‖pq,p ≤
(


 – q

)p

‖g‖+
p
r

,q ‖f ‖pp,q.

This completes the proof. �

Proposition  Let f be in Lpq(Rq,+,xdqx),  < p < +∞, and g in Lrq(Rq,+,xdqx),  < r < +∞,
such that 

p +

r = . Then the function f ∗B g is continuous at , and we have

sup
x∈Rq,+

∣∣f ∗B g(x)
∣∣ ≤ 

 – q
‖f ‖p,q‖g‖r,q. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/289
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Proof From the Holder inequality and Proposition , we have, for x ∈ Rq,+, |f ∗B g(x)| ≤


–q‖f ‖p,q‖g‖r,q and |f ∗B g(x) – f ∗B g()| ≤ ‖Tx,q(f ) – f ‖p,q‖g‖r,q. The continuity of f ∗B g
at  follows from Corollary . �

In the same way, we have the following result.

Proposition  Let f be in Lq(Rq,+,xdqx) and g in L∞
q (Rq,+). Then the function f ∗B g is

continuous in , bounded and we have

sup
x∈Rq,+

∣∣f ∗B g(x)
∣∣ ≤ 

 – q
‖f ‖,q‖g‖∞,q. ()

Proof From the definition of the q-convolution product and Proposition , we have

∣∣f ∗B g(x)
∣∣ ≤ 

 – q
‖f ‖,q‖g‖∞,q.

On the other hand, we have, for x ∈Rq,+,

∣∣f ∗B g(x) – f ∗B g()
∣∣ = 

 – q

∣∣∣∣
∫ +∞



[
Tx,q(f )(y) – f (y)

]
g(y)ydqy

∣∣∣∣
≤ 

 – q
∥∥Tx,q(f ) – f

∥∥
,q‖g‖∞,q,

which gives the result by the use of Corollary . �

Now, let us adopt the following notation:
For a function u defined on Rq,+ and α ∈Rq,+, we define

uα(x) =

α u

(
x
α

)
, x ∈Rq,+. ()

Theorem  Let u be a non-negative function defined on Rq,+ such that


 – q

∫ +∞


u(x)xdqx = . ()

Then
(i) For all f ∈ Lp(Rq,+,xdqx),  ≤ p < ∞, we have

lim
n→+∞‖f ∗B uqn – f ‖p,q = ; ()

(ii) For all f ∈ C∗q,(Rq,+), we have

lim
n→+∞‖f ∗B uqn – f ‖∞,q = . ()

Proof (i) From the properties of the q-generalized translation, the definition of the
q-convolution product and the relation (), we have for all x ∈Rq,+ and n ∈N,

f ∗B uqn (x) – f (x) =


 – q

∫ +∞


uqn (y)

[
Tx,q(f )(y) – f (x)

]
ydqy. ()
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Then

∣∣f ∗B uqn (x) – f (x)
∣∣ ≤ 

 – q

∫ +∞


uqn (y)

∣∣Tx,q(f )(y) – f (x)
∣∣ydqy.

So, for p, r ∈ ], +∞[ such that 
p +


r = , we have, by the use of the q-Holder inequality and

the relation (),

∣∣f ∗B uqn (x) – f (x)
∣∣p ≤

(


 – q

)p(∫ +∞


u


p
qn (y)u


r
qn (y)

∣∣Tx,q(f )(y) – f (x)
∣∣ydqy

)p

≤ 
 – q

∫ +∞


uqn (y)

∣∣Tx,q(f )(y) – f (x)
∣∣pydqy.

Then
∫ +∞



∣∣f ∗B uqn (x) – f (x)
∣∣pxdqx ≤ 

 – q

∫ +∞



∫ +∞


uqn (y)

∣∣Tx,q(f )(y) – f (x)
∣∣pydqyxdqx.

The Fubini-Tonelli’s theorem leads to

‖f ∗B uqn – f ‖pp,q ≤ 
 – q

∫ +∞


uqn (y)

∥∥Ty,q(f ) – f
∥∥p
p,qydqy.

The change of variable t = y
qn gives

‖f ∗B uqn – f ‖pp,q ≤ 
 – q

∫ +∞


u(t)

∥∥Tqnt,q(f ) – f
∥∥p
p,qt dqt.

From the dominated convergence theorem, Corollary  and Proposition , we deduce that

lim
n→+∞‖f ∗B uqn – f ‖p,q = .

(ii) We have, for all x ∈Rq,+,

∣∣f ∗B uqn (x) – f (x)
∣∣ ≤ 

 – q

∫ +∞


uqn (y)

∣∣Ty,q(f )(x) – f (x)
∣∣ydqy.

Thus

‖f ∗B uqn – f ‖∞,q ≤ 
 – q

∫ +∞


uqn (y)

∥∥Ty,q(f ) – f
∥∥∞,qydqy.

By the change of variables t = y
qn , we have

‖f ∗B uqn – f ‖∞,q ≤ 
 – q

∫ +∞


u(t)

∥∥Tqnt,q(f ) – f
∥∥∞,qt dqt.

Thus, the dominated convergence theorem, Corollary  and Proposition  give

lim
n→+∞‖f ∗B uqn – f ‖∞,q = . �
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5 The q-analogue of the heat semi-group
In this section, we are concerned with the q-analogue of the heat semi-group associated
with the third Jackson q-Bessel function of order zero and we define it on Lq(Rq,+,xdqx)
by the following.

Definition 

Pt,q(f )(x) =
(
G

(·, t;q) ∗B f
)
(x) =


 – q

∫ ∞


Tx,qG

(
y, t;q

)
f (y)ydqy, ()

where t > , G(·, t;q) is the q-Gaussian kernel of Pt,q defined by

G
(
x, t;q

)
=


( – q)t

eq
(

–x

( – q)t

)
, ()

and

eq(x) =


(( – q)x;q)∞
, |x| < 

 – q
. ()

Proposition  The q-Gaussian kernel satisfies the following properties:
()

G
(
x, t;q

)
=Fq

(
eq

(
–t(·)))(x). ()

()

Fq
(
G

(·, t;q))(x) = eq
(
–tx

)
. ()

Proof () On the one hand, we have

Fq
(
eq

(
–t(·)))(x) = 

 – q

∫ ∞


eq

(
–ty

)
J

(
xy;q

)
ydqy

=


 – q

∫ ∞


eq

(
–ty

) ∞∑
k=

(–)kqk(k+)xkyk

(q;q)k
ydqy

=


 – q

∞∑
k=

(–)kqk(k+)xk

(q;q)k

∫ ∞


eq

(
–ty

)
yk+ dqy.

On the other hand, we have

∫ ∞


eq

(
–ty

)
yk+ dqy = ( – q)

∞∑
n=–∞

y(k+)n

(–( – q)tqn;q)∞

=
 – q

(–( – q)t;q)∞

∞∑
n=–∞

(
–
(
 – q

)
t;q

)
n

(
y(k+)

)n.
But, by using the Ramanujan identity (see []), we obtain

∞∑
n=

(
–
(
 – q

)
t;q

)
n

(
y(k+)

)n = (q, –( – q)tq(k+), q–k
–(–q)t ;q

)∞

( q
–(–q)t ,q

k+;q)∞
.
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This gives

∫ ∞


eq

(
–ty

)
yk+ dqy = ( – q)

(
q;q

)
k

(


( – q)t

)k+

q–k
–k .

Thus

Fq
(
eq

(
–ty

))
(x) =

∞∑
k=

(–)kxk

(q;q)k

(


( – q)t

)k+

=


( – q)t
eq

(
–x

( – q)t

)

= G
(
x, t;q

)
.

() By the use of Plancherel formula and Theorem , we obtain

Fq
(
G

(·, t;q))(x) = eq
(
–tx

)
. �

Using this second equality and equalizing terms by terms, we obtain the following
lemma.

Lemma ∫ ∞


G

(·, t;q)(y)yn+ dqy = ( – q)
(
q;q

)
n

(
 – q

)ntnq–n–n. ()

Now, we are in a situation to state some properties of the heat semi-group Pt,q.

Proposition  The following properties hold:
() For all f ∈ S∗q(Rq,+),

Pt,q(f )(x) = eq (t�qf )(x). ()

() For all f ∈ S∗q(Rq,+) such that f ≥  and t > , we have

Pt,qf ≥ . ()

Proof () From the definition of Pt,q, the properties of the q-generalized translation and
Lemma , we have

Pt,q(f )(x) =


 – q

∫ ∞


Tx,qG

(·, t;q)(y)f (y)ydqy = 
 – q

∫ ∞


G

(·, t;q)(y)Tx,qf (y)ydqy

=


 – q

+∞∑
n=

qn+n

(q;q)n

(∫ ∞


G

(·, t;q)(y)yn+ dqy)(
�n

qf
)
(x)

=
+∞∑
n=

tn( – q)n�n
qf (x)

(q;q)n
= eq (t�qf )(x).

() Follows from the positivity of the q-generalized translation and the fact that
G(x, t;q) ≥ . �
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Since G(·, t;q) ∈ S∗q(Rq,+), then Proposition  implies that Pq,t can be extended to
Lpq(Rq,+,xdqx),  ≤ p < ∞ and we have the following.

Proposition  For all f ∈ Lpq(Rq,+,xdqx),  ≤ p < ∞, Pq,t f ∈ Lpq(Rq,+,xdqx) and

‖Pq,t f ‖p,q ≤ ‖f ‖p,q. ()

Proof Using Lemma , we have

∥∥G(·, t;q)∥∥,q =
∫ ∞


G

(
y, t;q

)
ydqy = ( – q).

So, the result follows by using this equality and Proposition . �

Now, for f (x) =
∑∞

n= anxn, t, t′ ∈R, we note

f
([
t + t′

]
q

)
=

∞∑
n=

an
[
t + t′

]n
q ,

where [t + t′]nq = (t + t′)(t + qt′) · · · (t + qn–t′) if n �=  and [t + t′]q =  (see []).
It is clear that f (t) = f ([t + ]q) and we have

lim
q→

[
t + t′

]n
q =

(
t + t′

)n. ()

On the other hand, we have (see [])

eq
([
t + t′

]
q

)
=

eq (t)
eq (–t′)

. ()

Using this equality and Proposition , one can state the following result.

Proposition  For f ∈ S∗q(Rq,+), and t > –t′ > , we have

P–t′ ,q(f ) · P[t+t′]q ,q(f ) = Pt,q(f ). ()

Remarks
() From the relation () and the fact that eq is a q-analogue of the classical

exponential function, we can see that (Pt,q)t> as a q-analogue of the classical heat
semi-group.

() For two formal q-commuting variables t and t′ (tt′ = qt′t), we have

Pt+t′ ,q(f ) = Pt,q(f )Pt′ ,q(f ),

which proves that Pt,q is a q-analogue of the classical heat semi-group.
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6 The q-analogue of theWiener algebra
In this section, we attempt to study the following q-analogue of the Wiener algebra:

A(Rq,+) =
{
f ∈ Lq(Rq,+,xdqx);Fq(f ) ∈ Lq(Rq,+,xdqx)

}
. ()

Note that

S∗q(Rq,+)⊂A(Rq,+) ⊂ Lq(Rq,+).

We begin by the following results which are useful in the sequel.

Proposition  For all function C∗q,b(R̃q,+), we have

lim
n→+∞


 – q

∫ +∞


f (x)Gqn

(·, t;q)(x)xdqx = f (), ()

where Gqn (·, t;q) is defined in ().

Proof It follows from the fact that


 – q

∫ +∞


G

(
x, t;q

)
xdqx = 

and the following lemma. �

Lemma  Let u ∈ Lq(Rq,+,xdqx) be such that
∫ +∞
 u(x)xdqx = , then for all function f ∈

C∗q,b(R̃q,+), we have

lim
n→+∞

∫ +∞


f (x)uqn (x)xdqx = f (). ()

Proof [(of the lemma)]

∣∣∣∣
∫ +∞


f (x)uqn (x)xdqx – f ()

∣∣∣∣ =
∣∣∣∣
∫ +∞


f (x)uqn (x)xdqx –

∫ +∞


f ()u(x)xdqx

∣∣∣∣
=

∣∣∣∣
∫ +∞


f (x)


qn

u
(

x
qn

)
xdqx –

∫ +∞


f ()u(x)xdqx

∣∣∣∣
=

∣∣∣∣
∫ +∞



(
f
(
qnx

)
– f ()

)
u(x)xdqx

∣∣∣∣
≤

∫ +∞



∣∣f (qnx) – f ()
∣∣∣∣u(x)∣∣xdqx.

Finally, the dominated convergence theorem achieves the proof. �

Theorem  Let f ∈ Lpq(Rq,+,xdqx),  ≤ p < ∞, then we have

lim
n→+∞

∥∥f – f ∗B Gqn
(·, t,q)∥∥p,q = . ()
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Proof The result follows from Theorem  and the fact that


 – q

∫ +∞


G

(
x, t;q

)
xdqx = . �

Theorem  For f ∈ Lq(Rq,+,xdqx) such that Fq(f ) ∈ Lq(Rq,+,xdqx), then

f (x) =


 – q

∫ ∞


Fq(f )(y)J

(
xy;q

)
ydqy. ()

Proof Using the inequality

( – q)x
∣∣f (x) – f ∗B Gqn

(·, t,q)(x)∣∣ ≤ ∥∥f – f ∗B Gqn
(·, t,q)∥∥,q, ∀x ∈Rq,+, ()

and Theorem , we have

f (x) = lim
n→+∞ f ∗B Gqn

(·, t,q)(x).
Furthermore, using the fact that f ∗B Gqn (·, t,q) ∈ S∗q(Rq,+) and the Plancherel formula,

we have

f ∗B Gqn
(·, t,q)(x) = F–

q Fq
(
f ∗B Gqn

(·, t,q))(x) =Fq
(
Fq(f )Fq

(
Gqn

(·, t,q)))(x)
=


 – q

∫ ∞


Fq(f )(y)Fq

(
Gqn

(·, t,q))(y)J(xy;q)ydqy.
On the other hand, we have

Fq
(
Gqn

(·, t,q))(y) = 
 – q

∫ ∞


Gqn

(·, t,q)(u)J(uy;q)udqu
=


qn( – q)

∫ ∞


G

(
u
qn

, t,q
)
J

(
uy;q

)
udqu

=


 – q

∫ ∞


G

(
u, t;q

)
J

(
qnuy;q

)
udqu

= Fq
(
G

(·, t;q))(qny)
= eq

(
–tqny

)
.

This gives

f ∗B Gqn
(·, t,q)(x) = 

 – q

∫ ∞


Fq(f )(y)eq

(
–tqny

)
J

(
xy;q

)
ydqy.

Thus, the dominated convergence theorem leads to

f (x) =


 – q
lim

n→+∞

∫ ∞


Fq(f )(y)eq

(
–tqny

)
J

(
xy;q

)
ydqy

=


 – q

∫ ∞


Fq(f )(y)J

(
xy;q

)
ydqy. �

In the following result, we summarize some of its density properties.
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Proposition  We have
()

A(Rq,+)⊂ Lpq(Rq,+,xdqx) and A(Rq,+) = Lpq(Rq,+,xdqx). ()

()

A(Rq,+)⊂ C∗q,(Rq,+) and A(Rq,+) = C∗q,(Rq,+). ()

Proof Let f ∈ A(Rq,+), then f ∈ Lq(Rq,+,xdqx) and Fq(f ) ∈ Lq(Rq,+,xdqx).
By Theorem  and the fact that |J(x;q)| ≤  (see[]) , we have |f | ≤ 

–q‖Fq(f )‖,q and

‖f ‖pp,q ≤
(


 – q

∥∥Fq(f )
∥∥
,q

)p–

‖f ‖,q.

Thus, A(Rq,+) ⊂ Lpq(Rq,+,xdqx).
On the other hand, we have by Theorem , f = Fq(Fq(f )) and Fq(f ) ∈ Lq(Rq,+,xdqx).

Then, by Proposition , f ∈ C∗q,(Rq,+). Thus

A(Rq,+) ⊂ C∗q,(Rq,+)

() Let f ∈ Lpq(Rq,+,xdqx). For ε > , there exists an hε = h ∈ Lpq(Rq,+,xdqx) with compact
support in [qk ,q–k] such that ‖f – h‖p,q < ε. By using Theorem , we have

lim
n→+∞

∥∥h – h ∗B Gqn
(·, t,q)∥∥p,q = .

Let us show that hn = h ∗B Gqn ∈ A(Rq,+). We have

‖hn‖,q ≤ 
 – q

‖h‖,q
∥∥Gqn

(·, t,q)∥∥,q,

which gives hn ∈ Lq(Rq,+,xdqx). Furthermore, we have

∣∣Fq(hn)(t)
∣∣ = ∣∣Fq(h)(t)eq

(
–tqnu

)∣∣ ≤ Ceq
(
–tqnu

)
,

with C is some constant.
Since t �→ eq (–tqnu) belongs to Lq(Rq,+,dqx) (see [] ), we have Fq(hn) ∈ Lq(Rq,+,

xdqx).
() Let f ∈ C∗q,(Rq,+). For ε > , there exists an hε = h ∈ Lpq(Rq,+,xdqx) with compact

support in [qk ,q–k] such that ‖f – h‖∞,q < ε.
Using the inequality

(
( – q)x

) 
p
∣∣h(x) – hn(x)

∣∣ ≤ ‖h – hn‖p,q

and (), we obtain

lim
n→+∞ sup

x≥qk

∣∣h(x) – hn(x)
∣∣ = .
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Now, for all x < qk , we have

hn(x) – h(x) = hn(x) =
k∑

i=–k

qih
(
qi

)
Tx,qGqn

(·, t,q)(qi).
On the other hand, we have

Tx,qGqn
(·, t,q)(qi) = 

 – q

∫ ∞


Fq

(
Gqn

(·, t,q))(u)J(ux;q)J(uqi;q)udqu
=


 – q

∫ ∞


eq

(
–tqnu

)
J

(
ux;q

)
J

(
uqi;q

)
udqu.

Therefore, there exists kn ≥ k +  such that

sup
x<qk

Tx,qGqn
(·, t,q)(qi) = Tqkn ,qGqn

(·, t,q)(qi).
qkn ∈ {qj}j≥k+∪{} is a compact subset in R̃q,+, then there exists a convergent subsequence
(qϕ(n)) of (qkn ).
- If (qϕ(n)) tends to ql , then

lim
n→+∞Tqϕ(n),qGqn

(·, t,q)(qi) = 
 – q

∫ ∞


J

(
uql;q

)
J

(
uqi;q

)
udqu

=

ql+i

+∞∑
j=–∞

ql+iJ
(
ql+j;q

)
J

(
qi+j;q

)
qj = .

- If (qϕ(n)) tends to , then

lim
n→+∞Tqϕ(n),qGqn

(·, t,q)(qi) = 
 – q

∫ ∞


J

(
uqi;q

)
udqu

=


 – q
lim

b→+∞

∫ b


J

(
uqi;q

)
udqu

= –


 – q
lim

b→+∞

∫ b




qi

�q
(
J

(
uqi;q

))
udqu

= –
 – q
qi

lim
b→+∞

∫ b


Dq

[
uD+

q
(
J

(
uqi;q

))]
dqu

= –
 – q
qi

lim
b→+∞

[
uD+

q
(
J

(
uqi;q

))]b


= –

qi

lim
b→+∞

(
J

(
bqi–;q

)
– J

(
bqi;q

))
= .

This gives

lim
n→∞ sup

x∈Rq,+

∣∣h(x) – hϕ(n)(x)
∣∣ = . �

Theorem  For f ∈ Lq(Rq,+,xdqx), then

∥∥Fq(f )
∥∥
,q = ‖f ‖,q. ()
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Proof For f ∈ Lq(Rq,+,xdqx) and fn = f ∗B Gqn(·,t,q), we have

Fq(fn)(u) = eq
(
–tqnu

)
Fq(f )(u).

On the other hand, using the fact that fn ∈ S∗q(Rq,+), Theorem  gives

fn(x) =


 – q

∫ ∞


Fq(fn)(u)J

(
xu;q

)
udqu,

which gives

∫ ∞


f (x)fn(x)xdqx =

∫ ∞


Fq(fn)(x)Fq(f )(x)xdqx

=
∫ ∞



(
Fq(f )(x)

)eq(–tqnx)xdqx.
By using Theorem , we obtain

lim
n→+∞

∫ ∞



(
Fq(f )(x)

)eq(–tqnx)xdqx = ‖f ‖,q.

Since the sequence eq (–tqnx) is increasing, the use of Fatou Beppo-Levi theorem
achieves the result. �

Theorem  Let  < p ≤  and 
p +


p′ = . If f ∈ Lpq(Rq,+,xdqx), then Fq(f ) ∈ Lp

′
q (Rq,+,xdqx)

and

∥∥Fq(f )
∥∥
p′ ,q ≤ Bp,q‖f ‖p,q, ()

where

Bp,q =
(


 – q

)(–+ 
p )

. ()

Proof We have, by Theorem ,

Fq : Lq(Rq,+,xdqx)→ Lq(Rq,+,xdqx)

is a linear isomorphism with norm .
On the other hand, we have

∣∣Fq(f )(λ)
∣∣ ≤ 

 – q

∫ ∞



∣∣f (x)∣∣xdqx, λ ∈Rq,+,

which gives

∥∥Fq(f )
∥∥∞,q ≤ 

 – q
‖f ‖,q.
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So,

Fq : Lq(Rq,+,xdqx)→ L∞
q (Rq,+,xdqx)

is with norm bounded by 
–q .

Finally, the use of the Riesz-Thorin theorem gives the result (see []). �

Proposition  Let  < p,p′, r ≤  be such that 
p + 

p′ –  = 
r and 

r + 
r′ = . If f ∈

Lpq(Rq,+,xdqx) and g ∈ Lp
′

q (Rq,+,xdqx), then f ∗B g ∈ Lrq(Rq,+,xdqx)

f ∗B g =Fq
(
Fq(f )Fq(g)

)
()

and

‖f ∗B g‖r,q ≤ Bp,qBp′ ,qBr′ ,q‖f ‖p,q‖g‖p′ ,q, ()

where Bp,q, Bp′ ,q and Br′ ,q are defined by ().

Proof (i) If f and g belong to S∗q(Rq,+) the result is clear.
(ii) If f ∈ Lpq(Rq,+,xdqx) and g ∈ Lp

′
q (Rq,+,xdqx), we consider two sequences (fn)n≥ and

(gn)n≥ in S∗q(Rq,+) which converge to f and g respectively in Lpq(Rq,+,xdqx) and Lp
′

q (Rq,+).
From i) we have fn ∗B gn =Fq(Fq(fn)Fq(gn)).
Wehave 

p
+ 

p′

=  with p = p

p– and p
′
 =

p′
p′– the dual exponents of p and p

′ respectively,
which belong to [,+∞[. From Theorem  and the Holder inequality, we have

∥∥Fq(fn)Fq(gn) –Fq(f )Fq(g)
∥∥
r′ ,q

≤ ∥∥Fq(f )
∥∥
p,q

∥∥Fq(gn) –Fq(g)
∥∥
p′
,q

+
∥∥Fq(g)

∥∥
p′
,q

∥∥Fq(fn) –Fq(f )
∥∥
p,q

+
∥∥Fq(fn) –Fq(f )

∥∥
p,q

∥∥Fq(gn) –Fq(g)
∥∥
p′,q

.

We deduce that the sequence (Fq(fn)Fq(gn))n≥ converges toFq(f )Fq(g) in Lr′q (Rq,+,xdqx).
Theorem  implies that the sequence(Fq(Fq(fn)Fq(gn)))n≥ converges to Fq(Fq(f )Fq(g))
in Lrq(Rq,+,xdqx).
On the other hand, from Propositions  and , we have

‖fn ∗B gn – f ∗B g‖r,q ≤ 
 – q

‖f ‖p,q‖gn – g‖p′ ,q +


 – q
‖g‖p′ ,q‖fn – f ‖p,q

+


 – q
‖fn – f ‖p,q‖gn – g‖p′ ,q.

Thus, the sequence (fn ∗B gn)n≥ converges to f ∗B g in Lrq(Rq,+,xdqx). And so

f ∗B g =Fq
(
Fq(f )Fq(g)

)
.
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To prove the inequality, we have, by the use of Theorem ,

‖f ∗B g‖r,q ≤ ∥∥Fq
(
Fq(f )Fq(g)

)∥∥
r,q ≤ Br′ ,q

∥∥Fq(f )Fq(g)
∥∥
r′ ,q

≤ Br′ ,q
∥∥Fq(f )

∥∥
p,q

∥∥Fq(g)
∥∥
p′,q

.

Thus

‖f ∗B g‖r,q ≤ Bp,qBp′ ,qBr′ ,q‖f ‖p,q‖g‖p′ ,q. �

From the last propositionwe deduce the hypercontractivity of the q-analogue of the heat
semi-group Pt,q.

Theorem  Let f ∈ Lq(Rq,+,xdqx) and t ∈Rq,+. Then

‖Pt,q‖r,q ≤ Bp,qBr′ ,qt
– 
p α(p,q)‖f ‖p,q, ()

where 
p –


p

= 
r ,


r +


r′ = , Pt,q is given by () and α(p,q) = ‖eq (–(·))‖p,q.

Proof By Theorem () we have

‖Pq,t‖r,q ≤ Bp,qBp′ ,qBr′ ,q‖f ‖p,q‖Gqn(·,t,q)‖p′ ,q,

where 
p′ + 

p
= .

By Theorem () and (), we have

∥∥Gqn
(·, t,q)∥∥p′ ,q =

∥∥Fq
(
Fq

(
Gqn

(·, t,q)))∥∥p′ ,q

≤ Bp,q
∥∥eq( – t(·))∥∥p,q

.

The result follows from the fact that Bp,qBp′ ,q =  and ‖eq (–t(·))‖p,q = t–


p α(p,q). �
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