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Abstract
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1 Introduction
Let X be a vector space over the scalar field of real numbers and d be an invariant metric
on X. We denote Bd(X) and Sd(X) as follows:

Bd(X) =
{
x ∈ X : d(x,)≤ r

}
and

Sd(X) =
{
x ∈ X : d(x,) = r

}
.

Let (X,d) be a linear metric space and Bd(X) (resp., Sd(X)) be a closed unit ball (resp., the
unit sphere) of X. A linear metric space (X,d) has property (β) if and only if for each r > 
and ε > , there exists δ >  such that for each element x ∈ Bd(, r) and each sequence
(xn) in Bd(, r) with sep(xn) ≥ ε, there is an index k for which d( x+xk ,) ≤  – δ, where
sep(xn) = inf{d(xn,xm) : n �= m} > ε []. If for each x ∈ Sd(, r) and (xn) ⊂ Sd(, r), xn

w→ x
implies xn → x, a linear metric space (X,d) is said to have property (H). Let k ≥  be an
integer. A linear metric space (X,d) is said to be k-nearly uniform convex (k-NUC) if for
every ε >  and r > , there exists δ >  such that for any sequence (xn) ⊂ Bd(, r) with
sep(xn) ≥ ε, there are s, s, . . . , sk such that d( xs +xs+···+xsk

k ,) ≤ r – δ []. These properties
have been studied by Mongkolkeha and Pumam [], Sanhan and Suantai [], Cui et al. []
and Cui and Hudzik [].
Ahuja et al. [] introduced the notions of strict convexity and U.C.I (uniform convexity)

in linear metric spaces which are generalizations of the corresponding concepts in linear
normed spaces. Later, Sastry and Naidu [] introduced the notions of U.C.II and U.C.III in
linear metric spaces and showed that these three forms are not always equivalent. Further,
Junde et al. [, ] showed that if a linear metric space is complete and U.C.I, then it is
reflexive.
In summability theory, de la Vallée-Poussin mean was first used to define the (V ,λ)-

summability by Leindler []. (V ,λ)-summable sequences have been studied by many au-
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thors including Et et al. [, ], Savas [–], Savas and Malkowsky [] and Şimsek et
al. [, ]. Let � = (λk) be a nondecreasing sequence of positive real numbers tending
to infinity and let λ =  and λk+ ≤ λk + . The generalized de la Vallée-Poussin mean is
defined by tn(x) = 

λn

∑
k∈In xk , where In = [n–λn + ,n] for n = , , . . . . A sequence x = (xk)

is said to be (V ,λ)-summable to a number � if tn(x) → � as n → ∞. If λn = n, then (V ,λ)-
summability is reduced to Cesàro summability.
Let w be the space of all real sequences. Let p = (pk) be a bounded sequence of positive

real numbers. Şimşek et al. [] defined the space V [λ,p] as follows:

V [λ,p] =

{
x = (xk) ∈ ω :

∞∑
k=

(

λk

∑
j∈Ik

|xj|
)pk

< ∞
}
.

If λk = k, then V [λ,p] = ces(p) []. If λk = k and pk = p for all k ∈ N, then V [λ,p] =
cesp []. Paranorm on V [λ,p] is given by

h(x) =

( ∞∑
k=

(

λk

∑
j∈Ik

|xj|
)pk

) 
M
,

where M =max{,H} and H = suppk . If pk = p for all k ∈ N, the notation Vp(λ) is used in
place of V [λ,p] and the norm on Vp(λ) is as follows:

‖x‖Vp(λ) =

( ∞∑
k=

(

λk

∑
j∈Ik

|xj|
)p

) 
p
.

ρ : Vρ[λ,p] → [,∞], ρ(x) = (
∑∞

k=(

λk

∑
j∈Ik |xj|)pk ) is a modular on Vρ[λ,p] and the Lux-

emburg norm on Vρ[λ,p] is defined by ‖x‖L = inf{σ >  : ρ( x
σ
) ≤ } for all x ∈ Vρ[λ,p]. The

Amemiya norm on the space Vρ[λ,p] can be similarly introduced as follows:

‖x‖A = inf
σ>


σ

(
 + ρ(σx)

)
for all x ∈ Vρ[λ,p].

2 Main results
In this part of the paper, our main purpose is to define a metric on V [λ,p] and show
that V [λ,p] possesses property (β), property (H) and k-NUC property. Let p = (pk) be
a bounded sequence of real numbers with pk >  for all k ∈ N. The mapping d(x, y) =
(
∑∞

k=(

λk

∑
j∈Ik |x(j) – y(j)|)pk )/H is a metric on the space V [λ,p], where M = max(,H =

suppk) and m = infpk since the function |t|p is convex for p > . First, we will show that
the space V [λ,p] has property (β) under the above metric. To do this, we need the fol-
lowing two lemmas. To prove these lemmas, we use the technique given in Sanhan and
Mongkolkeha [].

Lemma . Let y, z ∈ (V [λ,p],d). If β ∈ (, ), then

(
d(y + z,)

)M ≤ (
d(y,)

)M + Mβ
(
d(y,)

)M +
M

βM–

(
d(z,)

)M.
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Proof Let y, z ∈ (V [λ,p],d) and  < β < . Then

(
d(y + z,)

)M =
∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j) + z(j)
∣∣)pk

≤
∞∑
k=

(
( – β)


λk

∑
j∈Ik

∣∣y(j)∣∣ + β

λk

∑
j∈Ik

∣∣∣∣y(j) + z(j)
β

∣∣∣∣
)pk

≤ ( – β)
∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j)∣∣)pk
+ β

∞∑
k=

(

λk

∑
j∈Ik

∣∣∣∣y(j) + z(j)
β

∣∣∣∣
)pk

≤
∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j)∣∣)pk
+ Mβ

∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j)∣∣)pk

+ M
∞∑
k=

(

λk

∑
j∈Ik

∣∣∣∣z(j)β

∣∣∣∣
)pk

≤
∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j)∣∣)pk
+ Mβ

∞∑
k=

(

λk

∑
j∈Ik

∣∣y(j)∣∣)pk

+
M

βM–

∞∑
k=

(

λk

∑
j∈Ik

∣∣z(j)∣∣)pk

=
(
d(y,)

)M + Mβ
(
d(y,)

)M +
M

βM–

(
d(z,)

)M. �

Lemma . Let y, z ∈ (V [λ,p],d). Then for any ε >  and L > , there exists δ >  such that

∣∣(d(y + z,)
)M –

(
d(y,)

)M∣∣ < ε,

where (d(y,))M ≤ L and (d(z,))M ≤ δ.

Proof Let ε >  and L > . For β = ε

M+(L+ε) , we take δ = εβM–

M+ . From Lemma ., we have

(
d(y + z,)

)M ≤ (
d(y,)

)M + Mβ
(
d(y,)

)M +
M

βM–

(
d(z,)

)M
≤ (

d(y,)
)M + MβL +

M

βM– δ

≤ (
d(y,)

)M + M
ε

M+
L

L + ε
+

M

βM–
εβM–

M+

≤ (
d(y,)

)M +
ε


+

ε



≤ (
d(y,)

)M + ε (.)

and

(
d(y,)

)M ≤ (
d(y + z,)

)M + Mβ
(
d(y + z,)

)M +
M

βM–

(
d(–z,)

)M
≤ (

d(y + z,)
)M + Mβ

((
d(y,)

)M + ε
)
+

M

βM– δ
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≤ (
d(y + z,)

)M + Mβ(L + ε) +
M

βM–
εβM–

M+

=
(
d(y + z,)

)M + M
ε

M+(L + ε)
(L + ε) +

ε



=
(
d(y + z,)

)M +
ε


+

ε



=
(
d(y + z,)

)M + ε. (.)

From (.) and (.), we obtain that |(d(y + z,))M – (d(y,))M| < ε. �

Theorem . The space (V [λ,p],d) has property (β).

Proof Let ε >  and (xn) ⊂ B(V [λ,p],d) such that sep(xn) ≥ ε and x ∈ B(V [λ,p],d).We take
yN = (, , . . . , ,

∑N
k= y(k), y(N +), y(N +), . . .). By using the diagonalmethod, we can find

a subsequence (xnr ) of (xn) for eachN ∈N such that (xnr (k)) converges for each k ∈Nwith
 ≤ k ≤ N , since (xn(k))∞k= is bounded for each k ∈ N. Therefore, there is tN ∈ N for each
N ∈ N such that sep((xNn )r>tN ) ≥ ε. So, there is a sequence of positive integers (tN )∞N= with
t < t < t · · · such that d(xNtN ,) ≥ ε

 for all N ∈ N. Then there exists κ >  such that for
all N ∈N,

∞∑
k=N

(

λk

∑
j∈Ik

|xtN |
)pk

≥ κ . (.)

By Lemma ., there exists δ such that

∣∣(d(y + z,)
)M –

(
d(y,)

)M∣∣ < κ

m
, (.)

where (d(y,))M < jM and (d(z,))M ≤ δ. There exists N ∈ N such that (d(xN ,))M ≤ δ

if x ∈ B(V [λ,p]) and (d(x,))M ≤ δ. Let us take y = xN
tN

and z = xN . Hence, we have

∞∑
k=N

(

λk

∑
j∈Ik

∣∣∣∣x(j) + xtN (j)


∣∣∣∣
)pk

≤
∞∑

k=N

(

λk

∑
j∈Ik

∣∣∣∣xtN (j)

∣∣∣∣
)pk

+
κ

m
. (.)

From (.), (.), (.) and by using the convexity of the function f (t) = |t|pk for all k ∈ N,
we obtain that

(
d
(
y + z


,
))M

=
∞∑
k=

(

λk

∑
j∈Ik

∣∣∣∣x(j) + xtN (j)


∣∣∣∣
)pk

=
N–∑
k=

(

λk

∑
j∈Ik

∣∣∣∣x(j) + xtN (j)


∣∣∣∣
)pk

+
∞∑

k=N

(

λk

∑
j∈Ik

∣∣∣∣x(j) + xtN (j)


∣∣∣∣
)pk

≤
N–∑
k=

(

λk

∑
j∈Ik

∣∣∣∣x(j) + xtN (j)


∣∣∣∣
)pk

+
∞∑

k=N

(

λk

∑
j∈Ik

∣∣∣∣xtN (k)

∣∣∣∣
)pk

+
κ

m

≤ 


N–∑
k=

(

λk

∑
j∈Ik

∣∣x(j)∣∣)pk
+



N–∑
k=

(

λk

∑
j∈Ik

∣∣xtN (j)∣∣
)pk
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+

m

∞∑
k=N

(

λk

∑
j∈Ik

∣∣xtN (j)∣∣
)pk

+
κ

m

≤ 


N–∑
k=

(

λk

∑
j∈Ik

∣∣x(j)∣∣)pk
+



∞∑
k=

(

λk

∑
j∈Ik

∣∣xtN (j)∣∣
)pk

–
m – 
m+

∞∑
k=N

(

λk

∑
j∈Ik

∣∣xtN (j)∣∣
)pk

+
κ

m

<
jM


+
jM


–
m – 
m+ κ +

κ

m

= jM –
κ


.

Therefore, we have d( y+z ,) < (jM – κ
 )

/M < j – δ whenever δ ∈ (, j – (jM – κ
 )

/M). Conse-
quently, the space (V [λ,p],d) possesses property (β). �

Now, we will show that the space (V [λ,p],d) has k-NUC property.

Theorem . The space V [λ,p] is k-NUC for any integer k ≥ .

Proof Let ε >  and (xn) ⊂ Bd(V [λ,p]) with sep(xn)≥ ε. For eachm ∈N, let

xmn =
(
,, . . . ,xn(m),xn(m + ), . . .

)
. (.)

Since the sequence (xn(i))∞i= is bounded for each i ∈ N, by using the diagonal method, we
can find a subsequence (xnl ) of (xn) such that (xnl (k)) converges for each k ∈N. Therefore,
there is an increasing sequence tm with sep((xmnl )l>tm ) ≥ ε. Hence, there exists a sequence of
positive integers (rm)∞m= with r < r < r < · · · such that d(xmrm ,) ≥ ε

 for all m ∈ N. Then
there is ζ >  such that

∞∑
k=m

(

λk

∑
j∈Ik

|xrm |
)pk

≥ ζ . (.)

Let α >  such that  < α < limk→∞ infpk . Let ε = nα––
(n–)nα

ζ

 for k ≥ . From Lemma .,
there is a δ >  such that

∣∣(d(y + z,)
)M –

(
d(y,)

)M∣∣ < ε, (.)

where (d(y,))M < rM and (d(z,))M ≤ δ. Then there exist positive integers mi (i =
, , . . . ,n– ) withm <m < · · · <mn– such that d(xmi

i ,) ≤ δ. Now, definemn =mn– + .
Then we have d(xmn

rmn
,) ≥ ζ for all m ∈ N. For  ≤ i ≤ n – , let si = i and sn = rmn . By

using (.), (.), (.) and the convexity of the function fi(u) = |u|pi (i ∈ N), we obtain

(
d
(
xs + xs + · · · + xsn

n
,

))M

=
∞∑
k=

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk
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=
m∑
k=

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

+
∞∑

k=m+

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

≤
m∑
k=

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

+
∞∑

k=m+

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

+ ε

≤
m∑
k=


n

n∑
i=

(

λk

∑
j∈Ik

∣∣xsi (j)∣∣
)pk

+
m∑

k=m+

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

+
∞∑

k=m+

(

λk

∑
j∈Ik

∣∣∣∣xs (j) + xs (j) + · · · + xsn (j)
n

∣∣∣∣
)pk

+ ε

≤
m∑
k=


n

n∑
i=

(

λk

∑
j∈Ik

∣∣xsi (j)∣∣
)pk

+
m∑

k=m+


n

n∑
i=

(

λk

∑
j∈Ik

∣∣xsi (j)∣∣
)pk

+
m∑

k=m+


n

n∑
i=

(

λk

∑
j∈Ik

∣∣xsi (j)∣∣
)pk

+ · · · +
mn∑

k=mn–+


n

n∑
i=n–

(

λk

∑
j∈Ik

∣∣xsi (j)∣∣
)pk

+
∞∑

k=mn+

(

λk

∑
j∈Ik

∣∣∣∣xsn (j)n

∣∣∣∣
)pk

+ (n – )ε

≤
(
(d(xs , θ ))M + (d(xs , θ ))M + · · · + (d(xsn , θ ))M

n

)
+

n

mn∑
k=

(

λk

∑
j∈Ik

∣∣xsn (j)∣∣
)pk

+
∞∑

k=mn+

(

λk

∑
j∈Ik

∣∣∣∣xsn (j)n

∣∣∣∣
)pk

+ (n – )ε

≤ n – 
n

rM +

n

mn∑
k=

(

λk

∑
j∈Ik

∣∣xsn (j)∣∣
)pk

+

nα

∞∑
k=mn+

(

λk

∑
j∈Ik

∣∣∣∣xsn (j)n

∣∣∣∣
)pk

+ (n – )ε

≤ rM –
rM

n
+

n

(
rM –

∞∑
k=mn+

(

λk

∑
j∈Ik

∣∣xsn (j)∣∣
)pk

)

+

nα

∞∑
k=mn+

(

λk

∑
j∈Ik

∣∣∣∣xsn (j)n

∣∣∣∣
)pk

+ (n – )ε

≤ rM + (n – )ε –
(
nα– – 

nα

)
ζ

≤ rM + (n – )
nα– – 
nα(n – )

(
ζ



)
–

(
nα– – 

nα

)
ζ

= rM –
(
nα– – 

nα

)(
ζ



)
.

Thus, we have d( xs (j)+xs (j)+···+xsn (j)
n ,) < (rM – ( nα––

nα ) ζ

 )
/M < r – δ for δ ∈ (, r – (rM –

( nα––
nα ) ζ

 )
/M). Hence, (V [λ,p],d) is k-NUC. �

Since k-NUC implies NUC and NUC implies property (H), by using the previous theo-
rem, we can give the following result.

Corollary . The space (V [λ,p],d) has property (H).
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