Some geometric properties of the metric space $V[\lambda, p]$

Muhammed Çinar¹, Murat Karakaş²* and Mikail Et ${ }^{3}$

"Correspondence:
m.karakas33@hotmail.com
${ }^{2}$ Department of Statistics, Bitlis Eren University, Bitlis, 13000, Turkey Full list of author information is available at the end of the article

Abstract

In this study, we consider the space $V[\lambda, p]$ with an invariant metric. Then, we examine some geometric properties of the linear metric space $V[\lambda, p]$ such as property (β), property (H) and k-NUC property. MSC: 40A05; 46A45; 46B20 Keywords: linear metric space; Luxemburg norm; de la Vallée-Poussin mean; k-NUC property; property (H)

1 Introduction

Let X be a vector space over the scalar field of real numbers and d be an invariant metric on X. We denote $B_{d}(X)$ and $S_{d}(X)$ as follows:

$$
\begin{aligned}
& B_{d}(X)=\{x \in X: d(x, \mathbf{0}) \leq r\} \quad \text { and } \\
& S_{d}(X)=\{x \in X: d(x, \mathbf{0})=r\} .
\end{aligned}
$$

Let (X, d) be a linear metric space and $B_{d}(X)$ (resp., $S_{d}(X)$) be a closed unit ball (resp., the unit sphere) of X. A linear metric space (X, d) has property (β) if and only if for each $r>0$ and $\varepsilon>0$, there exists $\delta>0$ such that for each element $x \in B_{d}(0, r)$ and each sequence $\left(x_{n}\right)$ in $B_{d}(0, r)$ with $\operatorname{sep}\left(x_{n}\right) \geq \varepsilon$, there is an index k for which $d\left(\frac{x+x_{k}}{2}, \mathbf{0}\right) \leq 1-\delta$, where $\operatorname{sep}\left(x_{n}\right)=\inf \left\{d\left(x_{n}, x_{m}\right): n \neq m\right\}>\varepsilon[1]$. If for each $x \in S_{d}(0, r)$ and $\left(x_{n}\right) \subset S_{d}(0, r), x_{n} \xrightarrow{w} x$ implies $x_{n} \rightarrow x$, a linear metric space (X, d) is said to have property (H). Let $k \geq 2$ be an integer. A linear metric space (X, d) is said to be k-nearly uniform convex (k-NUC) if for every $\varepsilon>0$ and $r>0$, there exists $\delta>0$ such that for any sequence $\left(x_{n}\right) \subset B_{d}(0, r)$ with $\operatorname{sep}\left(x_{n}\right) \geq \varepsilon$, there are $s_{1}, s_{2}, \ldots, s_{k}$ such that $d\left(\frac{x_{s_{1}}+x_{s_{2}}+\cdots+x_{s_{k}}}{k}, \mathbf{0}\right) \leq r-\delta$ [2]. These properties have been studied by Mongkolkeha and Pumam [3], Sanhan and Suantai [4], Cui et al. [5] and Cui and Hudzik [6].
Ahuja et al. [7] introduced the notions of strict convexity and U.C.I (uniform convexity) in linear metric spaces which are generalizations of the corresponding concepts in linear normed spaces. Later, Sastry and Naidu [8] introduced the notions of U.C.II and U.C.III in linear metric spaces and showed that these three forms are not always equivalent. Further, Junde et al. $[9,10]$ showed that if a linear metric space is complete and U.C.I, then it is reflexive.

In summability theory, de la Vallée-Poussin mean was first used to define the (V, λ)summability by Leindler [11]. (V, λ)-summable sequences have been studied by many au-
thors including Et et al. [12, 13], Savas [14-18], Savas and Malkowsky [19] and Șimsek et al. [20,21]. Let $\Lambda=\left(\lambda_{k}\right)$ be a nondecreasing sequence of positive real numbers tending to infinity and let $\lambda_{1}=1$ and $\lambda_{k+1} \leq \lambda_{k}+1$. The generalized de la Vallée-Poussin mean is defined by $t_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} x_{k}$, where $I_{n}=\left[n-\lambda_{n}+1, n\right]$ for $n=1,2, \ldots$. A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number ℓ if $t_{n}(x) \rightarrow \ell$ as $n \rightarrow \infty$. If $\lambda_{n}=n$, then (V, λ) summability is reduced to Cesàro summability.

Let w be the space of all real sequences. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Șimșek et al. [20] defined the space $V[\lambda, p]$ as follows:

$$
V[\lambda, p]=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}<\infty\right\} .
$$

If $\lambda_{k}=k$, then $V[\lambda, p]=\operatorname{ces}(p)$ [22]. If $\lambda_{k}=k$ and $p_{k}=p$ for all $k \in \mathrm{~N}$, then $V[\lambda, p]=$ ces_{p} [23]. Paranorm on $V[\lambda, p]$ is given by

$$
h(x)=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right)^{\frac{1}{M}}
$$

where $M=\max \{1, H\}$ and $H=\sup p_{k}$. If $p_{k}=p$ for all $k \in \mathrm{~N}$, the notation $V_{p}(\lambda)$ is used in place of $V[\lambda, p]$ and the norm on $V_{p}(\lambda)$ is as follows:

$$
\|x\|_{V_{p}(\lambda)}=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p}\right)^{\frac{1}{p}}
$$

$\rho: V_{\rho}[\lambda, p] \rightarrow[0, \infty], \rho(x)=\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{j}\right|\right)^{p_{k}}\right)$ is a modular on $V_{\rho}[\lambda, p]$ and the Luxemburg norm on $V_{\rho}[\lambda, p]$ is defined by $\|x\|_{L}=\inf \left\{\sigma>0: \rho\left(\frac{x}{\sigma}\right) \leq 1\right\}$ for all $x \in V_{\rho}[\lambda, p]$. The Amemiya norm on the space $V_{\rho}[\lambda, p]$ can be similarly introduced as follows:

$$
\|x\|_{A}=\inf _{\sigma>0} \frac{1}{\sigma}(1+\rho(\sigma x)) \quad \text { for all } x \in V_{\rho}[\lambda, p] .
$$

2 Main results

In this part of the paper, our main purpose is to define a metric on $V[\lambda, p]$ and show that $V[\lambda, p]$ possesses property (β), property (H) and k-NUC property. Let $p=\left(p_{k}\right)$ be a bounded sequence of real numbers with $p_{k}>1$ for all $k \in \mathrm{~N}$. The mapping $d(x, y)=$ $\left(\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)-y(j)|\right)^{p_{k}}\right)^{1 / H}$ is a metric on the space $V[\lambda, p]$, where $M=\max (1, H=$ $\left.\sup p_{k}\right)$ and $m=\inf p_{k}$ since the function $|t|^{p}$ is convex for $p>1$. First, we will show that the space $V[\lambda, p]$ has property (β) under the above metric. To do this, we need the following two lemmas. To prove these lemmas, we use the technique given in Sanhan and Mongkolkeha [1].

Lemma 2.1 Let $y, z \in(V[\lambda, p], d)$. If $\beta \in(0,1)$, then

$$
(d(y+z, \mathbf{0}))^{M} \leq(d(y, \mathbf{0}))^{M}+2^{M} \beta(d(y, \mathbf{0}))^{M}+\frac{2^{M}}{\beta^{M-1}}(d(z, \mathbf{0}))^{M}
$$

Proof Let $y, z \in(V[\lambda, p], d)$ and $0<\beta<1$. Then

$$
\begin{aligned}
(d(y+z, \mathbf{0}))^{M}= & \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)+z(j)|\right)^{p_{k}} \\
\leq & \sum_{k=1}^{\infty}\left((1-\beta) \frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|+\beta \frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|y(j)+\frac{z(j)}{\beta}\right|\right)^{p_{k}} \\
\leq & (1-\beta) \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|\right)^{p_{k}}+\beta \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|y(j)+\frac{z(j)}{\beta}\right|\right)^{p_{k}} \\
\leq & \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|\right)^{p_{k}}+2^{M} \beta \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|\right)^{p_{k}} \\
& +2^{M} \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{z(j)}{\beta}\right|\right)^{p_{k}} \\
\leq & \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|\right)^{p_{k}}+2^{M} \beta \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|y(j)|\right)^{p_{k}} \\
& +\frac{2^{M}}{\beta^{M-1}} \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|z(j)|\right)^{p_{k}} \\
= & (d(y, \mathbf{0}))^{M}+2^{M} \beta(d(y, \mathbf{0}))^{M}+\frac{2^{M}}{\beta^{M-1}}(d(z, \mathbf{0}))^{M} .
\end{aligned}
$$

Lemma 2.2 Let $y, z \in(V[\lambda, p], d)$. Then for any $\varepsilon>0$ and $L>0$, there exists $\delta>0$ such that

$$
\left|(d(y+z, \mathbf{0}))^{M}-(d(y, \mathbf{0}))^{M}\right|<\varepsilon
$$

where $(d(y, \mathbf{0}))^{M} \leq L$ and $(d(z, \mathbf{0}))^{M} \leq \delta$.
Proof Let $\varepsilon>0$ and $L>0$. For $\beta=\frac{\varepsilon}{2^{M+1}(L+\varepsilon)}$, we take $\delta=\frac{\varepsilon \beta^{M-1}}{2^{M+1}}$. From Lemma 2.1, we have

$$
\begin{align*}
(d(y+z, \mathbf{0}))^{M} & \leq(d(y, \mathbf{0}))^{M}+2^{M} \beta(d(y, \mathbf{0}))^{M}+\frac{2^{M}}{\beta^{M-1}}(d(z, \mathbf{0}))^{M} \\
& \leq(d(y, \mathbf{0}))^{M}+2^{M} \beta L+\frac{2^{M}}{\beta^{M-1}} \delta \\
& \leq(d(y, \mathbf{0}))^{M}+2^{M} \frac{\varepsilon}{2^{M+1}} \frac{L}{L+\varepsilon}+\frac{2^{M}}{\beta^{M-1}} \frac{\varepsilon \beta^{M-1}}{2^{M+1}} \\
& \leq(d(y, \mathbf{0}))^{M}+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& \leq(d(y, \mathbf{0}))^{M}+\varepsilon \tag{2.1}
\end{align*}
$$

and

$$
\begin{aligned}
(d(y, \mathbf{0}))^{M} & \leq(d(y+z, \mathbf{0}))^{M}+2^{M} \beta(d(y+z, \mathbf{0}))^{M}+\frac{2^{M}}{\beta^{M-1}}(d(-z, \mathbf{0}))^{M} \\
& \leq(d(y+z, \mathbf{0}))^{M}+2^{M} \beta\left((d(y, \mathbf{0}))^{M}+\varepsilon\right)+\frac{2^{M}}{\beta^{M-1}} \delta
\end{aligned}
$$

$$
\begin{align*}
& \leq(d(y+z, \mathbf{0}))^{M}+2^{M} \beta(L+\varepsilon)+\frac{2^{M}}{\beta^{M-1}} \frac{\varepsilon \beta^{M-1}}{2^{M+1}} \\
& =(d(y+z, \mathbf{0}))^{M}+2^{M} \frac{\varepsilon}{2^{M+1}(L+\varepsilon)}(L+\varepsilon)+\frac{\varepsilon}{2} \\
& =(d(y+z, \mathbf{0}))^{M}+\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =(d(y+z, \mathbf{0}))^{M}+\varepsilon . \tag{2.2}
\end{align*}
$$

From (2.1) and (2.2), we obtain that $\left|(d(y+z, \mathbf{0}))^{M}-(d(y, \mathbf{0}))^{M}\right|<\varepsilon$.

Theorem 2.3 The space $(V[\lambda, p], d)$ has property (β).

Proof Let $\varepsilon>0$ and $\left(x_{n}\right) \subset B(V[\lambda, p], d)$ such that $\operatorname{sep}\left(x_{n}\right) \geq \varepsilon$ and $x \in B(V[\lambda, p], d)$. We take $y^{N}=\left(0,0, \ldots, 0, \sum_{k=1}^{N} y(k), y(N+1), y(N+2), \ldots\right)$. By using the diagonal method, we can find a subsequence $\left(x_{n_{r}}\right)$ of $\left(x_{n}\right)$ for each $N \in \mathrm{~N}$ such that $\left(x_{n_{r}}(k)\right)$ converges for each $k \in \mathrm{~N}$ with $1 \leq k \leq N$, since $\left(x_{n}(k)\right)_{k=1}^{\infty}$ is bounded for each $k \in \mathrm{~N}$. Therefore, there is $t_{N} \in \mathrm{~N}$ for each $N \in \mathrm{~N}$ such that $\operatorname{sep}\left(\left(x_{n}^{N}\right)_{r>t_{N}}\right) \geq \varepsilon$. So, there is a sequence of positive integers $\left(t_{N}\right)_{N=1}^{\infty}$ with $t_{1}<t_{2}<t_{3} \cdots$ such that $d\left(x_{t_{N}}^{N}, \mathbf{0}\right) \geq \frac{\varepsilon}{2}$ for all $N \in \mathrm{~N}$. Then there exists $\kappa>0$ such that for all $N \in \mathrm{~N}$,

$$
\begin{equation*}
\sum_{k=N}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{t_{N}}\right|\right)^{p_{k}} \geq \kappa . \tag{2.3}
\end{equation*}
$$

By Lemma 2.2, there exists δ_{0} such that

$$
\begin{equation*}
\left|(d(y+z, \mathbf{0}))^{M}-(d(y, \mathbf{0}))^{M}\right|<\frac{\kappa}{2^{m}}, \tag{2.4}
\end{equation*}
$$

where $(d(y, \mathbf{0}))^{M}<j^{M}$ and $(d(z, \mathbf{0}))^{M} \leq \delta_{0}$. There exists $N_{1} \in \mathrm{~N}$ such that $\left(d\left(x^{N_{1}}, \mathbf{0}\right)\right)^{M} \leq \delta_{0}$ if $x \in B(V[\lambda, p])$ and $(d(x, \mathbf{0}))^{M} \leq \delta_{0}$. Let us take $y=x_{t_{N_{1}}}^{N_{1}}$ and $z=x^{N_{1}}$. Hence, we have

$$
\begin{equation*}
\sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x(j)+x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}} \leq \sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}}+\frac{\kappa}{2^{m}} \tag{2.5}
\end{equation*}
$$

From (2.3), (2.4), (2.5) and by using the convexity of the function $f(t)=|t|^{p_{k}}$ for all $k \in \mathrm{~N}$, we obtain that

$$
\begin{aligned}
\left(d\left(\frac{y+z}{2}, \mathbf{0}\right)\right)^{M} & =\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x(j)+x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}} \\
& =\sum_{k=1}^{N_{1}-1}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x(j)+x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}}+\sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x(j)+x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}} \\
& \leq \sum_{k=1}^{N_{1}-1}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x(j)+x_{t_{N_{1}}}(j)}{2}\right|\right)^{p_{k}}+\sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x_{t_{N_{1}}}(k)}{2}\right|\right)^{p_{k}}+\frac{\kappa}{2^{m}} \\
& \leq \frac{1}{2} \sum_{k=1}^{N_{1}-1}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}+\frac{1}{2} \sum_{k=1}^{N_{1}-1}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{t_{N_{1}}}(j)\right|\right)^{p_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2^{m}} \sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{t_{N_{1}}}(j)\right|\right)^{p_{k}}+\frac{\kappa}{2^{m}} \\
\leq & \frac{1}{2} \sum_{k=1}^{N_{1}-1}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}|x(j)|\right)^{p_{k}}+\frac{1}{2} \sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{t_{N_{1}}}(j)\right|\right)^{p_{k}} \\
& -\frac{2^{m}-2}{2^{m+1}} \sum_{k=N_{1}}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{t_{N_{1}}}(j)\right|\right)^{p_{k}}+\frac{\kappa}{2^{m}} \\
< & \frac{j^{M}}{2}+\frac{j^{M}}{2}-\frac{2^{m}-2}{2^{m+1}} \kappa+\frac{\kappa}{2^{m}} \\
= & j^{M}-\frac{\kappa}{2} .
\end{aligned}
$$

Therefore, we have $d\left(\frac{y+z}{2}, \mathbf{0}\right)<\left(j^{M}-\frac{\kappa}{2}\right)^{1 / M}<j-\delta$ whenever $\delta \in\left(0, j-\left(j^{M}-\frac{\kappa}{2}\right)^{1 / M}\right)$. Consequently, the space $(V[\lambda, p], d)$ possesses property (β).

Now, we will show that the space $(V[\lambda, p], d)$ has k-NUC property.
Theorem 2.4 The space $V[\lambda, p]$ is k-NUC for any integer $k \geq 2$.
Proof Let $\varepsilon>0$ and $\left(x_{n}\right) \subset B_{d}(V[\lambda, p])$ with $\operatorname{sep}\left(x_{n}\right) \geq \varepsilon$. For each $m \in \mathrm{~N}$, let

$$
\begin{equation*}
x_{n}^{m}=\left(0,0, \ldots, x_{n}(m), x_{n}(m+1), \ldots\right) . \tag{2.6}
\end{equation*}
$$

Since the sequence $\left(x_{n}(i)\right)_{i=1}^{\infty}$ is bounded for each $i \in \mathrm{~N}$, by using the diagonal method, we can find a subsequence $\left(x_{n_{l}}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{n_{l}}(k)\right)$ converges for each $k \in \mathrm{~N}$. Therefore, there is an increasing sequence t_{m} with $\operatorname{sep}\left(\left(x_{n_{l}}^{m} l_{\Delta t_{m}}\right) \geq \varepsilon\right.$. Hence, there exists a sequence of positive integers $\left(r_{m}\right)_{m=1}^{\infty}$ with $r_{1}<r_{2}<r_{3}<\cdots$ such that $d\left(x_{r_{m}}^{m}, \mathbf{0}\right) \geq \frac{\varepsilon}{2}$ for all $m \in \mathrm{~N}$. Then there is $\zeta>0$ such that

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{r_{m}}\right|\right)^{p_{k}} \geq \zeta . \tag{2.7}
\end{equation*}
$$

Let $\alpha>0$ such that $1<\alpha<\lim _{k \rightarrow \infty} \inf p_{k}$. Let $\varepsilon_{1}=\frac{n^{\alpha-1}-1}{(n-1) n^{\alpha}} \frac{\xi}{2}$ for $k \geq 2$. From Lemma 2.2, there is a $\delta>0$ such that

$$
\begin{equation*}
\left|(d(y+z, \mathbf{0}))^{M}-(d(y, \mathbf{0}))^{M}\right|<\varepsilon_{1}, \tag{2.8}
\end{equation*}
$$

where $(d(y, \mathbf{0}))^{M}<r^{M}$ and $(d(z, \mathbf{0}))^{M} \leq \delta$. Then there exist positive integers $m_{i}(i=$ $1,2, \ldots, n-1)$ with $m_{1}<m_{2}<\cdots<m_{n-1}$ such that $d\left(x_{i}^{m_{i}}, \mathbf{0}\right) \leq \delta$. Now, define $m_{n}=m_{n-1}+1$. Then we have $d\left(x_{r_{m_{n}}}^{m_{n}}, \mathbf{0}\right) \geq \zeta$ for all $m \in \mathrm{~N}$. For $1 \leq i \leq n-1$, let $s_{i}=i$ and $s_{n}=r_{m_{n}}$. By using (2.6), (2.7), (2.8) and the convexity of the function $f_{i}(u)=|u|^{p_{i}}(i \in \mathrm{~N})$, we obtain

$$
\begin{aligned}
& \left(d\left(\frac{x_{s_{1}}+x_{s_{2}}+\cdots+x_{s_{n}}}{n}, \mathbf{0}\right)\right)^{M} \\
& =\sum_{k=1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{1}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m_{1}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x_{s_{1}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+\sum_{k=m_{1}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{1}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}} \\
& \leq \sum_{k=1}^{m_{1}}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{1}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+\sum_{k=m_{1}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in \epsilon_{k}}\left|\frac{x_{s_{1}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+\varepsilon_{1} \\
& \leq \sum_{k=1}^{m_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{i}}(j)\right|\right)^{p_{k}}+\sum_{k=m_{1}+1}^{m_{2}}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{2}}(j)+x_{s_{3}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}} \\
& +\sum_{k=m_{2}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{3}}(j)+x_{s_{4}}(j)+\cdots+x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+2 \varepsilon_{1} \\
& \leq \sum_{k=1}^{m_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{i}}(j)\right|\right)^{p_{k}}+\sum_{k=m_{1}+1}^{m_{2}} \frac{1}{n} \sum_{i=2}^{n}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{i}}(j)\right|\right)^{p_{k}} \\
& +\sum_{k=m_{2}+1}^{m_{3}} \frac{1}{n} \sum_{i=3}^{n}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{i}}(j)\right|\right)^{p_{k}}+\cdots+\sum_{k=m_{n-1}+1}^{m_{n}} \frac{1}{n} \sum_{i=n-1}^{n}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{i}}(j)\right|\right)^{p_{k}} \\
& +\sum_{k=m_{n}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+(n-1) \varepsilon_{1} \\
& \leq\left(\frac{\left(d\left(x_{s_{1}}, \theta\right)\right)^{M}+\left(d\left(x_{s_{2}}, \theta\right)\right)^{M}+\cdots+\left(d\left(x_{s_{n}}, \theta\right)\right)^{M}}{n}\right)+\frac{1}{n} \sum_{k=1}^{m_{n}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{n}}(j)\right|\right)^{p_{k}} \\
& +\sum_{k=m_{n}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|\frac{x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+(n-1) \varepsilon_{1} \\
& \leq \frac{n-1}{n} r^{M}+\frac{1}{n} \sum_{k=1}^{m_{n}}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{n}}(j)\right|\right)^{p_{k}}+\frac{1}{n^{\alpha}} \sum_{k=m_{n}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+(n-1) \varepsilon_{1} \\
& \leq r^{M}-\frac{r^{M}}{n}+\frac{1}{n}\left(r^{M}-\sum_{k=m_{n}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in I_{k}}\left|x_{s_{n}}(j)\right|\right)^{p_{k}}\right) \\
& +\frac{1}{n^{\alpha}} \sum_{k=m_{n}+1}^{\infty}\left(\frac{1}{\lambda_{k}} \sum_{j \in l_{k}}\left|\frac{x_{s_{n}}(j)}{n}\right|\right)^{p_{k}}+(n-1) \varepsilon_{1} \\
& \leq r^{M}+(n-1) \varepsilon_{1}-\left(\frac{n^{\alpha-1}-1}{n^{\alpha}}\right) \zeta \\
& \leq r^{M}+(n-1) \frac{n^{\alpha-1}-1}{n^{\alpha}(n-1)}\left(\frac{\zeta}{2}\right)-\left(\frac{n^{\alpha-1}-1}{n^{\alpha}}\right) \zeta \\
& =r^{M}-\left(\frac{n^{\alpha-1}-1}{n^{\alpha}}\right)\left(\frac{\zeta}{2}\right) \text {. }
\end{aligned}
$$

Thus, we have $d\left(\frac{x_{s_{1}}(j)+x_{s_{2}}(j)+\ldots+x_{s_{n}}(j)}{n}, \mathbf{0}\right)<\left(r^{M}-\left(\frac{n^{\alpha-1}-1}{n^{\alpha}}\right) \frac{\xi}{2}\right)^{1 / M}<r-\delta$ for $\delta \in\left(0, r-\left(r^{M}-\right.\right.$ $\left.\left.\left(\frac{n^{\alpha-1}-1}{n^{\alpha}}\right) \frac{\zeta}{2}\right)^{1 / M}\right)$. Hence, $(V[\lambda, p], d)$ is k-NUC.

Since k-NUC implies NUC and NUC implies property (H), by using the previous theorem, we can give the following result.

Corollary 2.5 The space ($V[\lambda, p], d)$ has property (H).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

$M C, M K$ and ME have contributed to all parts of the article. All authors read and approved the final manuscript.

Author details

Department of Mathematics, Muş Alparslan University, Muş, 49100, Turkey. ${ }^{2}$ Department of Statistics, Bitlis Eren University, Bitlis, 13000, Turkey. ${ }^{3}$ Department of Mathematics, Firat University, Elazig, 23119, Turkey.

Received: 18 September 2012 Accepted: 26 December 2012 Published: 22 January 2013

References

1. Sanhan, W, Mongkolkeha, C: A locally uniform rotund and property (β) of generalized Cesàro ($\operatorname{ces}(p), d)$ metric space. Int. J. Math. Anal. 5(9-12), 549-558 (2011)
2. Junde, W, Narang, TD: H-property, normal structure and fixed points of nonexpansive mappings in metric linear spaces. Acta Math. Vietnam. 25(1), 13-18 (2000)
3. Mongkolkeha, C, Kumam, P: Some geometric properties of lacunary sequence spaces related to fixed point property. Abstr. Appl. Anal. 2011, Article ID 903736 (2011)
4. Sanhan, W, Suantai, S: On k-nearly uniform convex property in generalized Cesàro sequence spaces. Int. J. Math. Math. Sci. 57, 3599-3607 (2003)
5. Cui, Y, Hudzik, H, Ping, W: On k-nearly uniform convexity in Orlicz spaces. Perspectives in mathematical analysis. Rev R. Acad. Cienc. Exactas Fís. Nat. 94(4), 461-466 (2000) (Spanish)
6. Cui, Y, Hudzik, H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect. Math. 50(3), 277-288 (1999)
7. Ahuja, GC, Narang, TD, Trehan, S: Best approximation on convex sets in metric linear spaces. Math. Nachr. 78, 125-130 (1977)
8. Sastry, KPR, Naidu, SVR: Convexity conditions in metric linear spaces. Math. Semin. Notes 7, 235-251 (1979)
9. Junde, W, Lianchang, C: Reflexivity of uniform convexity in metric linear spaces and its applications. Adv. Math. (China) 23, 439-444 (1994)
10. Junde, W, Dehai, Y, Wenbo, Q: The uniform convexity and reflexivity in metric linear spaces. Math. Appl., Chin. Ser. 8, 322-324 (1995)
11. Leindler, L: Über die verallgemeinerte de la Vallee-Poussinsche summierbarkeit allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 16, 375-387 (1965)
12. Et, M: Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space. Taiwan. J. Math. 10, 865-879 (2006)
13. Güngör, M, Et, M, Altin, Y: Strongly ($\left.V_{\sigma}, \lambda, q\right)$-summable sequences defined by Orlicz functions. Appl. Math. Comput. 157, 561-571 (2004)
14. Savas, E, Savas, R: Some $\boldsymbol{\lambda}$-sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 34, 1673-1680 (2003)
15. Savas, E: Strong almost convergence and almost λ-statistical convergence. Hokkaido Math. J. 29(3), 531-536 (2000)
16. Savas, E: On asymptotically λ-statistical equivalent sequences of fuzzy numbers. New Math. Nat. Comput. 3(3), 301-306 (2007)
17. Savas, E: On $\boldsymbol{\lambda}$-statistically convergent double sequences of fuzzy numbers. J. Inequal. Appl. 2008, Article ID 147827 (2008)
18. Savas, E: $\bar{\lambda}$-double sequence spaces of fuzzy real numbers defined by Orlicz function. Math. Commun. 14(2), 287-297 (2009)
19. Savas, E, Malkowsky, E: Some $\boldsymbol{\lambda}$-sequence spaces defined by a modulus. Arch. Math. 36(3), 219-228 (2000)
20. Simsek, N, Savas, E, Karakaya, V: Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 12, 768-779 (2010)
21. Simsek, N: On some geometric properties of sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 13, 565-573 (2011)
22. Suantai, S: On the H-property of some Banach sequence spaces. Arch. Math. 39, 309-316 (2003)
23. Shiue, JS: On the Cesàro sequence space. Tamkang J. Math. 2, 19-25 (1970)

doi:10.1186/1029-242X-2013-28

Cite this article as: Çinar et al.: Some geometric properties of the metric space $V[\lambda, p]$. Journal of Inequalities and Applications 2013 2013:28.

