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Abstract
In this paper we prove several integral inequalities and we find an upper bound of the
Hermite-Hadamard inequality for a convex function on a bounded area from the
plane in special cases.

1 Introduction
Let f be a convex function on [a,b]. Then we have the following inequality, which is called
Hermite-Hadamard inequality:

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


. (.)

There are many extensions, generalizations and similar results of inequality (.). In [],
Fejer established the following weighted generalization of inequality (.).

Theorem . If f : [a,b]→R is a convex function, then the inequality

f
(
a + b


)∫ b

a
w(x)dx≤

∫ b

a
f (x)w(x)dx≤ f (a) + f (b)



∫ b

a
w(x)dx (.)

holds, where w : [a,b]→ R is non-negative, integrable and symmetric about a+b
 .

In [], Yang and Tseng proved the following theorem which refines inequality (.).

Theorem . Let f and w be defined as in Theorem .. If P : [a,b]→R is defined by

P(t) =
∫ b

a
f
[
tx + ( – t)

a + b


]
w(x)dx,

then P is convex, increasing on [, ] and for all t ∈ [, ],

f
(
a + b


)∫ b

a
w(x)dx = P() ≤ P(t) ≤ P() =

∫ b

a
f (x)w(x)dx.
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In this paper, we find an upper bound for
∫ b
a f (x)g(x)dx, where f is a convex function on

[a,b] and g is non-negative increasing (or decreasing) on [a,b], and
∫ b
a g(t)dt = . Finally,

in Section  we find an upper bound for the following integral:

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx.

2 Integral inequalities
Theorem . Let f : [a,b] → R be a differentiable convex function and g : [a,b] → [,∞]
be a continuous function.

(i) If g is decreasing on [a,b], then

∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx≤ f (a) + f (b)


.

(ii) If g is increasing on [a,b], then

f
(
a + b


)
≤ ∫ b

a g(x)dx

∫ b

a
f (x)g(x)dx.

Proof (i) Denote

H(x) =
∫ x

a
f (t)g(t)dt –



(
f (a) + f (x)

)∫ x

a
g(t)dt.

We will show that H ′(x)≤ . We have

H ′(x) = f (x)g(x) –


f ′(x)

∫ x

a
g(t)dt –



(
f (a) + f (x)

)
g(x)

=



[
g(x)

(
f (x) – f (a)

)
– f ′(x)

∫ x

a
g(t)dt

]
.

By the extended mean value theorem (Cauchy’s theorem), we have

f (x) – f (a)∫ x
a g(t)dt

=
f ′(ζ )
g(ζ )

(a < ζ < x).

On the other hand, by the convexity of f and decreasing of g , we obtain

f (x) – f (a)∫ x
a g(t)dt

=
f ′(ζ )
g(ζ )

≤ f ′(x)
g(x)

.

Since g is non-negative,

H ′(x) =



[(
f (x) – f (a)

)
g(x) – f ′(x)

∫ x

a
g(t)dt

]
≤ ,

which implies that H is decreasing. Hence, H(b)≤ H(a) = . The proof is complete.
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(ii) Denote

H(x) = f
(
a + x


)∫ x

a
g(t)dt –

∫ x

a
f (t)g(t)dt.

Then we have

H ′(x) =


f ′

(
a + x


)∫ x

a
g(t)dt + f

(
a + x


)
g(x) – f (x)g(x)

=


f ′

(
a + x


)∫ x

a
g(t)dt – g(x)

(
f (x) – f

(
a + x


))
.

By the mean value theorem (Lagrange’s theorem), there exist ζ ∈ ( a+x ,x) and ζ ∈ (a,x)
such that

f (x) – f ( a+x )
x – a+x


= f ′(ζ) and

∫ x
a g(t)dt – 

x – a
= g(ζ).

Hence,

(f (x) – f ( a+x ))∫ x
a g(t)dt

=
f ′(ζ)
g(ζ)

.

By the convexity of f and increasing of g , we obtain

(f (x) – f ( a+x ))∫ x
a g(t)dt

=
f ′(ζ)
g(ζ)

≥ f ′( a+x )
g(x)

.

So,

H ′(x) =


f ′

(
a + x


)∫ x

a
g(t)dt – g(x)

(
f (x) – f

(
a + x


))
≤ .

Therefore, H is decreasing and H(b)≤ H(a) = . The proof is complete. �

Theorem . Let f : [a,b] → R be a convex function and P : [a,b] → [,∞) be an inte-
grable function such that

∫ b
a P(x)dx = . Then

∫ b

a
f (x)P(x)dx≤ bf (a) – af (b)

b – a
+
f (b) – f (a)

b – a

∫ b

a
xP(x)dx.

Proof We have


b – a

∫ b

a
f (x)P(x)dx =

∫ 


f
(
tb + ( – t)a

)
P
(
tb + ( – t)a

)
dt

≤ f (b)
∫ 


tP

(
bt + ( – t)a

)
dt + f (b)

∫ 


( – t)P

(
bt + ( – t)a

)
dt

= f (b)
∫ b

a

x – a
b – a

P(x)
dx
b – a

+ f (a)
∫ b

a

b – x
b – a

P(x)
dx
b – a
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=
f (b)

(b – a)

[∫ b

a
xP(x) – a

∫ b

a
P(x)dx

]

+
f (a)

(b – a)

[
b
∫ b

a
P(x)dx –

∫ b

a
xP(x)dx

]

=
f (b)

(b – a)

[∫ b

a
xP(x)dx – a

]
+

f (a)
(b – a)

[
b –

∫ b

a
xP(x)dx

]
.

So, we get

∫ b

a
f (x)P(x)dx≤ bf (a) – af (b)

b – a
+
f (b) – f (a)

b – a

∫ b

a
xP(x)dx. �

Corollary . Let f : [a,b] → R be a convex function and g be a non-negative integrable
function. Then

∫ b

a
f (x)dx≤ f (a) + f (b)



and

∫ b
a f (x)g(x)dx∫ b

a g(x)dx
≤ bf (a) – af (b)

b – a
+
f (b) – f (a)

b – a

∫ b
a xg(x)dx∫ b
a g(x)dx

.

The proof is similar to the proof of theorem.

3 Right bidimensional Hermite-Hadamard inequality
Let us consider the bidimensional interval� = [a,b]× [c,d] inR

. Recall that themapping
f :� →R is convex on � if

f
(
λx + ( – λ)z,λy + ( – λ)w

) ≤ λf (x, y) + ( – λ)f (z,w)

holds for all (x, y), (z,w) ∈ � and λ ∈ [, ]. A function f : � → R is called co-ordinated
convex on � if the partial mappings fy : [a,b]→R, fy(u) = f (u, y) and fx : [c,d]→ R, fx(v) =
f (x, v) are convex for all y ∈ [c,d] and x ∈ [a,b]. Note that every convex function f : � →R

is co-ordinated convex, but the converse is not generally true; see [].
Dragomir in [] established the following similar inequality of the Hermite-Hadamard

inequality for a co-ordinated convex function on a rectangle from the plane R.

Theorem . Suppose that f : � = [a,b] × [c,d] → R is co-ordinated convex on �. Then
one has the inequalities

f
(
a + b


,
c + d


)
≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ f (a, c) + f (a,d) + f (b, c) + f (b,d)


.

Now, let � be a convex area from the plane R, bounded by a convex function y = h(x)
and a concave function y = g(x) and x = a, x = b, such that for any x ∈ [a,b], g(x) ≥ h(x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/27
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Also, let F be a two-variable convex function on �. In [] and [], the following inequality
is proved:

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≥ F
(∫ b

a t(g(t) – h(t))dt∫ b
a (g(t) – h(t))dt

,


∫ b
a (g

(t) – h(t))dt∫ b
a (g(t) – h(t))dt

)
.

In this paper, we want to find an upper bound for the integral

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx. (.)

For this purpose, we reach to the following integral:

∫ b
a (g(x) – h(x))dx

∫ b

a

[
F
(
x, g(x)

)
+ F

(
x,h(x)

)](
g(x) – h(x)

)
dx.

It is well known that if F(x, y) is increasing relative to y and y = h(x) is convex on [a,b], then
F(x,h(x)) is convex on [a,b], but we have no information about the convexity of F(x,h(x))
generally. So, in special cases, we will find an upper bound for the integral (.).

Theorem . Let � be a bounded area by a convex function y = h(x) and a concave func-
tion y = g(x) on [a,b] such that for any x ∈ [a,b], g(x)≥ h(x) and g –h is increasing on [a,b].
Also, let F be a two-variable convex function on � such that F(x, g(x)) and F(x,h(x)) are
convex on [a,b]. Then one has the inequality

∫ b
a (g(t) – h(t))dt

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≤ 


[
F
(
a, g(a)

)
+ F

(
a,h(a)

)
+ F

(
b, g(b)

)
+ F

(
b,h(b)

)]
.

Proof Since F is convex on �, hence F is co-ordinated convex on �. So, Fx : [h(x), g(x)]→
R, Fx(y) = F(x, y) is convex on [h(x), g(x)] for all x ∈ [a,b]. By the right-hand side of
Hermite-Hadamard inequality (.), we have

∫ g(x)

h(x)
F(x, y)dy≤ (

g(x) – h(x)
)[F(x, g(x)) + F(x,h(x))



]
.

Integrating this inequality on [a,b], we obtain

∫ b
a (g(t) – h(t))dt

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≤ 

∫ b
a (g(t) – h(t))dt

∫ b

a

(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))
dx.

http://www.journalofinequalitiesandapplications.com/content/2013/1/27
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Since g – h is increasing and F(x, g(x)), F(x,h(x)) are convex on [a,b], by Theorem .(i),
we have

∫ b
a (g(t) – h(t))dt

∫ b

a

(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))
dx

≤ 

[
F
(
a, g(a)

)
+ F

(
a,h(a)

)
+ F

(
b, g(b)

)
+ F

(
b,h(b)

)]
.

The proof is complete. �

Theorem. Let� be a bounded area by a convex function h and a concave function g on
[a,b] such that for any x ∈ [a,b], g(x) ≥ h(x). Also, let F be a two-variable convex function
on � such that F(x, g(x)) and F(x,h(x)) are convex on [a,b]. Then one has the inequality

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≤ 


[
b – α(b)
b – a

(
F
(
a, g(a)

)
+ F

(
a,h(a)

))
+

α(b) – a
b – a

(
F
(
b, g(b)

)
+ F

(
b,h(b)

))]

where α(b) =
∫ b
a t(g(t)–h(t))dt∫ b
a (g(t)–h(t))dt

.

Proof By a similar way to the proof of Theorem ., we have

∫ b
a (g(t) – h(t))dt

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≤ 


∫ b
a (g(x) – h(x))dx

∫ b

a

(
g(x) – h(x)

)[
F
(
x, g(x)

)
+ F

(
x,h(x)

)]
dx.

Since F(x, g(x)) + F(x,h(x)) is convex, by Theorem . (P(x) = g(x)–h(x)∫ b
a (g(x)–h(x))dx

), we obtain




∫ b
a (g(x) – h(x))dx

∫ b

a

(
g(x) – h(x)

)[
F
(
x, g(x)

)
+ F

(
x,h(x)

)]
dx

≤ 

b[F(a, g(a)) + F(a,h(a))] – a[F(b, g(b)) + F(b,h(b))]

b – a

+


[F(b, g(b)) + F(b,h(b))] – [F(a, g(a)) + F(a,h(a))]

b – a

× ∫ b
a (g(x) – h(x))dx

∫ b

a
x
(
g(x) – h(x)

)
dx

=



[
b – α(b)
b – a

[
F
(
a, g(a)

)
+ F

(
a,h(a)

)]
+

α(b) – a
b – a

[
F
(
b, g(b)

)
+ F

(
b,h(b)

)]]
.

The proof is complete. �

In the following theorem, we prove the assertion of Theorem . with weak conditions.

http://www.journalofinequalitiesandapplications.com/content/2013/1/27
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Theorem . Let �, g and h be defined as in Theorem .. Also, let F be a two-variable
convex function on � such that

∂F(x, g(x))
∂g

(
g(x) – g(a)

x – a
– g ′(x)

)
+

∂F(x,h(x))
∂h

(
h(x) – h(a)

x – a
– h′(x)

)
≤ ,

then we have

∫ b
a (g(x) – h(x))dx

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx

≤ 


[
(b – α(b))(F(a, g(a)) + F(a,h(a))) + (α(b) – a)(F(b, g(b)) + F(b,h(b)))

b – a

]
,

where α(b) =
∫ b
a t(g(t)–h(t))dt∫ b
a (g(t)–h(t))

.

Proof Denote

H(x) =
∫ x

a

∫ g(x)

h(x)
f (t, y)dydt –



K(x)

∫ x

a

(
g(t) – h(t)

)
dt,

where

K(x) =
(
x – α(x)
x – a

)[
F
(
a, g(a)

)
+ F

(
a,h(a)

)]
+

(
α(x) – a
x – a

)[
F
(
x, g(x)

)
+ F

(
x,h(x)

)]
.

Then we have

H ′(x) =
∫ g(x)

h(x)
F(x, y)dy –



K(x)

(
g(x) – h(x)

)
–


K ′(x)

∫ x

a

(
g(t) – h(t)

)
dt.

Since F is convex, so it is co-ordinated convex. Hence, by the right-hand side of the
Hermite-Hadamard inequality, we obtain

H ′(x) ≤ 

(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))

–


K(x)

(
g(x) – h(x)

)
–


K ′(x)

∫ x

a

(
g(t) – h(t)

)
dt.

So,

H ′(x)≤ 


[(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

)
–K(x)

)
–K ′(x)

∫ x

a

(
g(t) – h(t)

)
dt

]
.

On the other hand, we have

[
x – α(x)
x – a

F
(
a, g(a)

)
+

α(x) – a
x – a

F
(
x,h(x)

)]′

=
( – α′(x))(x – a) – x + α(x)

(x – a)
F
(
a, g(a)

)

+
α′(x)(x – a) – α(x) + a

(x – a)
F
(
x, g(x)

)
+ F ′(x, g(x))α(x) – a

x – a
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/27
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Now, multiplying each term by

∫ x

a

(
g(t) – h(t)

)
dt

and using the fact

∫ x

a

(
g(t) – h(t)

)
dtα(x) =

∫ x

a
t
(
g(t) – h(t)

)
dt,

we obtain

∫ x

a

(
g(t) – h(t)

)
dtα′(x) =

(
g(x) – h(x)

)(
x – α(x)

)
.

Therefore,

∫ x

a

(
g(t) – h(t)

)
dt

[
x – α(x)
x – a

F
(
a, g(a)

)
+

α(x) – a
x – a

F
(
x,h(x)

)]′

=
[
–
(g(x) – h(x))(x – α(x))

x – a
+

α(x) – a
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]
F
(
a, g(a)

)

+
[
(g(x) – h(x))(x – α(x))

x – a
+
a – α(x)
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]
F
(
x, g(x)

)

+
∫ x

a

(
g(t) – h(t)

)
dtF ′(x, g(x))α(x) – a

x – a
.

By a similar way, we obtain

∫ x

a

(
g(t) – h(t)

)
dt

[
x – α(x)
x – a

F
(
a,h(a)

)
+

α(x) – a
x – a

F
(
x,h(x)

)]′

=
[
–
(g(x) – h(x))(x – α(x))

x – a
+

α(x) – a
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]
F
(
a,h(a)

)

+
[
(g(x) – h(x))(x – α(x))

x – a
+
a – α(x)
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]
F
(
x,h(x)

)

+
∫ x

a

(
g(t) – h(t)

)
dtF ′(x,h(x))

(
α(x) – a
x – a

)
.

Thus,

∫ x

a

(
g(t) – h(t)

)
dtK ′(x)

=
(g(x) – h(x))(x – α(x))

x – a
[
F
(
x, g(x)

)
– F

(
a, g(a)

)
+ F

(
x,h(x)

)
– F

(
a,h(a)

)]

–
(

α(x) – a
(x – a)

)∫ x

a

(
g(t) – h(t)

)
dt

[
F
(
x, g(x)

)
– F

(
a, g(a)

)
+ F

(
x,h(x)

)
– F

(
a,h(a)

)]

+
(

α(x) – a
x – a

)∫ x

a

(
g(t) – h(t)

)
dt

[
F ′(x, g(x)) + F ′(x,h(x))].

http://www.journalofinequalitiesandapplications.com/content/2013/1/27
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So,

H ′(x) ≤ 


[(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

)
–K(x)

)
–K ′(x)

∫ x

a

(
g(t) – h(t)

)
dt

]

=


(
g(x) – h(x)

)x – α(x)
x – a

[
F
(
x, g(x)

)
+ F

(
x,h(x)

)
– F

(
a, g(a)

)
– F

(
a,h(a)

)]

–



[
(g(x) – h(x))(x – α(x))

x – a
–

α(x) – a
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]

× [
F
(
x, g(x)

)
+ F

(
x,h(x)

)
– F

(
a, g(a)

)
– F

(
a,h(a)

)]

–



∫ x

a

(
g(t) – h(t)

)
dt

(
α(x) – a
x – a

)(
F ′(x, g(x)) + F ′(x,h(x))).

Then it follows that

H ′(x) ≤ 

[
F
(
x, g(x)

)
+ F

(
x,h(x)

)
– F

(
a, g(a)

)
– F

(
a,h(a)

)]

×
[(
g(x) – h(x)

)x – α(x)
x – a

–
(g(x) – h(x))(x – α(x))

x – a

+
α(x) – a
(x – a)

∫ x

a

(
g(t) – h(t)

)
dt

]

–



∫ x

a

(
g(t) – h(t)

)
dt

(
α(x) – a
x – a

)(
F ′(x, g(x)) + F ′(x,h(x))).

Thus,

H ′(x) ≤ 


(
α(x) – a
x – a

)∫ x

a

(
g(t) – h(t)

)
dt

×
[
F(x, g(x)) – F(a, g(a))

x – a
+
F(x,h(x)) – F(x, g(x))

x – a
– F ′(x, g(x)) – F ′(x,h(x))

]
.

Now, notice that if F(x, g(x)), F(x,h(x)) were convex on [a,b], we can deduce the assertion
of Theorem .. Since F is convex on �, we have

F
(
x, g(x)

)
– F

(
a, g(a)

) ≤ ∂F(x, g(x))
∂x

(x – a) +
∂F(x, g(x))

∂g
(
g(x) – g(a)

)

or

F(x, g(x)) – F(a, g(a))
x – a

≤ ∂F(x, g(x))
∂x

+
∂F(x, g(x))

∂g
(g(x) – g(a))

x – a
.

By a similar way, we have

F(x,h(x)) – F(a,h(a))
x – a

≤ ∂F(x,h(x))
∂x

+
∂F(x,h(x))

∂h
h(x) – h(a)

x – a
.
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Note that

F ′(x, g(x)) = ∂F(x, g(x))
∂x

+
∂F(x, g(x))

∂g
g ′(x)

and

F ′(x,h(x)) = ∂F(x,h(x))
∂x

+
∂F(x,h(x))

∂h
h′(x).

So,

H ′(x) ≤ 


α(x) – a
x – a

∫ x

a

(
g(t) – h(t)

)
dt

[
∂F(x, g(x))

∂x

+
∂F(x, g(x))

∂g
g(x) – g(a)

x – a
+

∂F(x,h(x))
∂x

+
∂F(x,h(x))

∂h
h(x) – h(a)

x – a
–

∂F(x, g(x))
∂x

–
∂F(x, g(x))

∂g
g ′(x) –

∂F(x,h(x))
∂x

–
∂F(x,h(x))

∂h
h′(x)

]
.

Thus,

H ′(x) ≤ 


α(x) – a
x – a

∫ x

a

(
g(t) – h(t)

)
dt

[
∂F(x, g(x))

∂g

(
g(x) – g(a)

x – a
– g ′(x)

)

+
∂F(x,h(x))

∂x

(
h(x) – h(a)

x – a
– h′(x)

)]
≤ .

Note that α(x)≥ a. Therefore, H is decreasing and

H(b)≤ H(a) = .

The proof is complete. �

Remark . Notice that since g is concave and h is convex on [a,b], so g ′ is decreasing
and h′ is increasing on [a,b]. By the mean value theorem, we have

g(x) – g(a)
x – a

– g ′(x) ≥  and
h(x) – h(a)

x – a
– h′(x) ≤ .

In particular, if we have g(x) =mx + n, then g(x)–g(a)
x–a – g ′(x) = . So, if ∂F(x,h(x))

∂h ≥ , then

∂F(x, g(x))
∂g

[
g(x) – g(a)

x – a
– g ′(x)

]
+

∂F(x,h(x))
∂x

[
h(x) – h(a)

x – a
– h′(x)

]

=
∂F(x,h(x))

∂x

[
h(x) – h(a)

x – a
– h′(x)

]
≤ .

In the following theorem, we find an upper bound of the Hermite-Hadamard inequality
for a co-ordinated convex function.
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Theorem . Let �, g and h be defined as in Theorem .. Also, let F be a convex function
only relative to y, that is, Fx : [h(x), g(x)] → R, Fx(v) = F(x, v) is convex for all x ∈ [a,b]. If
F ′(x, g(x)) + F ′(x,h(x))≥ , then

∫ b
a (g(t) – h(t))dt

∫ b

a

∫ g(x)

h(x)
F(x, y)dydx ≤ 


[
F
(
b, g(b)

)
+ F

(
b,h(b)

)]
.

Proof Denote

H(x) =
∫ x

a

∫ g(x)

h(x)
F(t, y)dydt –




∫ x

a

(
g(t) – h(t)

)
dt

[
F
(
x, g(x)

)
+ F

(
x,h(x)

)]
.

We have

H ′(x) =
∫ g(x)

h(x)
F(x, y)dy –



(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))

–



∫ x

a

(
g(t) – h(t)

)
dt

(
F ′(x, g(x)) + F ′(x,h(x))).

Since F is convex relative to y, by the right-hand side of the Hermite-Hadamard inequality,
we obtain

H ′(x) ≤ 

(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))

–


(
g(x) – h(x)

)(
F
(
x, g(x)

)
+ F

(
x,h(x)

))

–



∫ x

a

(
g(t) – h(t)

)
dt

(
F ′(x, g(x)) + F ′(x,h(x)))

= –



∫ x

a

(
g(t) – h(t)

)
dt

(
F ′(x, g(x)) + F ′(x,h(x)))

≤ .

So, H is decreasing on [a,b]. That is, H(b) ≤ H(a) = . �

4 Examples
Example . Let F(x, y) = x + y and � be bounded by g(x) =

√
 – x, h(x) = x –  on

[, ]. Then g(x)–h(x) =
√
 – x –x+ is decreasing on [, ] and F(x, g(x)) = , F(x,h(x)) =

x + (x – ) are convex on [, ]. By Theorem ., we have

∫ 
 (

√
 – x – x + )dx

∫ 



∫ √
–x

x–

(
x + y

)
dydx

≤ 


[
F
(
, g()

)
+ F

(
,h()

)
+ F

(
, g()

)
+ F

(
,h()

)]
.

By easy calculation, we see that

∫ 



(√
 – x – x + 

)
dx =

π


+


=

π + 
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and


π + 

∫ 



∫ √
–x

x–

(
x + y

)
dydx ≤ .

Example . Let F , g and h be defined as in Example .. By Theorem ., we have

α() =
∫ 
 t(

√
 – t – t + )dt∫ 

 (
√
 – t – t + )dt

=



π
 + 



=


(π + )
∫ 

 (
√
 – t – t + )dt

∫ 



∫ √
–x

x–

(
x + y

)
dydx

≤ 


[
π – 
(π + )

(
F
(
, g()

)
+ F

(
,h()

))
+


(π + )

(
F
(
, g()

)
+ F

(
,h()

))]
.

So,


π + 

∫ 



∫ √
–x

x–

(
x + y

)
dydx ≤ .

Example . Let F(x, y) = x + y and � be bounded by g(x) = x + , h(x) = x on [–, ].
Then g –h is not decreasing on [–, ] and also F(x,h(x)) = x + x is not convex on [–, ].
So, g , h and F do not hold in the hypothesis of Theorems . and .. But we have

g(x) – g(–)
x + 

– g ′(x) =
x + 
x + 

–  = ,
h(x) – h(–)

x + 
– h′(x) = –x –  ≤ 

and

∂F(x, g(x))
∂g

= (x + ),
∂F(x,h(x))

∂h
= x.

So,

∂F(x, g(x))
∂g

[
g(x) – g(–)

x + 
– g ′(x)

]
+

∂F(x,h(x))
∂h

[
h(x) – h(–)

x + 
– h′(x)

]

= x(–x – ) = –x(x + ) ≤ .

Thus, we can apply Theorem .

∫ 
–(x +  – x)dx

∫ 

–

∫ x+

x

(
x + y

)
dydx

≤ 


[
( – α())(F(–, g(–)) + F(–,h(–))) + (α() + )(F(, g()) + F(,h()))

 – (–)

]
,

α() =
∫ 
– t(t +  – t)dt∫ 
–(t +  – t)dt

=




=


,

g(–) = h(–) = , g() = h() = .
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Hence,




∫ 

–

∫ x+

x

(
x + y

)
dydx ≤ .

Example . Let F(x, y) = xy and � be bounded by g(x) = x + , and h(x) = x on [–, ].
Then F is not convex on �, but it is convex relative to y, we have

F
(
x, g(x)

)
= x + x and F

(
x,h(x)

)
= x.

So,

F ′(x, g(x)) + F ′(x,h(x)) = x +  + x > .

Hence, by Theorem ., we have

∫ 
–(x +  – x)dx

∫ 

–

∫ x+

x
xydydx ≤ 


[
F
(
, g()

)
+ F

(
,h()

)]
.

Hence,




∫ 

–

∫ x+

x
xydydx ≤ .
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