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Abstract
The purpose of this paper is to present some new versions of Hermite-Hadamard
type inequalities for operator convex functions. We give refinements of
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1 Introduction
Let f be a real-valued function defined on I ∈R. The function f is called convex if

f
(
λa + ( – λ)b

) ≤ λf (a) + ( – λ)f (b)

for all λ ∈ [, ] and a,b ∈ I . The function f is called concave if

f
(
λa + ( – λ)b

) ≥ λf (a) + ( – λ)f (b)

for all λ ∈ [, ] and a,b ∈ I . Let f : [a,b]→R be a convex function and a,b ∈R, with a < b,
then the inequality

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


, a,b ∈R, (.)

is known in the literature as the Hermite-Hadamard inequality for convex functions, see
[]. Such inequality is very useful in manymathematical contexts and contributes as a tool
for establishing some interesting estimations. Both inequalities in (.) hold in the reversed
direction if f is concave.
Let X be a vector space, x, y ∈ X, x �= y and [x, y] = {( – t)x + ty, t ∈ [, ]}. We consider

the function f : [x, y] →R and the associated function

g(x, y) : [, ] →R, g(x, y)(t) := f
[
( – t)x + ty

]
, t ∈ [, ].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [, ].
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For any convex function f defined on a segment [x, y] ⊂ X, we have the Hermite-
Hadamard integral inequality

f
(
x + y


)
≤

∫ 


f
[
( – t)x + ty

]
dt ≤ f (x) + f (y)


, (.)

which can be derived from the classical Hermite-Hadamard inequality (.) for the convex
function g(x, y) : [, ]→R.
On a finite-dimensional inner product space, a self-adjoint operator is an operator that

is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian
matrix is one which is equal to its own conjugate transpose.
A real-valued continuous function f on an interval I is said to be operator convex (op-

erator concave) if

f
(
( – λ)A + λB

) ≤ (≥)( – λ)f (A) + λf (B)

in the operator order for all λ ∈ [, ] and for every self-adjoint operator A and B on a
Hilbert space H whose spectra are contained in I . Notice that a function f is operator
concave if –f is operator convex.
In recent years many authors have been interested in giving some refinements and ex-

tensions of the Hermite-Hadamard inequality (.). For more about convex functions and
the Hermite-Hadamard inequality, see [–].
The author in [] presents the Hermite-Hadamard type inequality for convex functions

by sequences. But the inequality therein is established on n. In this paper, a new refine-
ment of the Hermite-Hadamard type inequality is presented. Our inequality is an im-
proved version of the inequality given in []. Namely, this inequality includes not only
n, but also all positive real numbers as the number of partition.
The author in [] shows some new integral inequalities analogous to the well-known

Hermite-Hadamard inequality. We give a general form of the first of these inequalities
and show that the inequalities therein are satisfied for operator convex functions.
View more results about operator convex functions and Hermite-Hadamard type in-

equalities in []. The authors in [] show further results analogous to the results in this
paper.
Dragomir proved the following theorem in [].

Theorem  Let f : I →R be an operator convex function on some interval I . Then, for any
self-adjoint operators A and B with spectra in I , we have the inequality

(
f
(
A + B


)
≤

)



[
f
(
A + B



)
+ f

(
A + B



)]

≤
∫ 


f
(
( – t)A + tB

)
dt

≤ 


[
f
(
A + B


)
+
f (A) + f (B)



](
≤ f (A) + f (B)



)
. (.)

Zabandan gave a refinement of the Hermite-Hadamard inequality for convex functions
in [].
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Theorem  Let f be a convex function on [a,b]. Then we have

f
(
a + b


)
= x ≤ 



[
f
(
a + b


)
+ f

(
a + b


)]

= x ≤ · · · ≤ xn ≤ · · · ≤ 
b – a

∫ b

a
f (x)dx≤ · · · ≤ yn

≤ · · · ≤ y =



[
f (a) + f

(
a + b


)
+ f (b)

]

≤ y =
f (a) + f (b)


, (.)

where

xn =

n

n∑
i=

f
(
a + i

b – a
n

–
b – a
n+

)
=


n

n∑
i=

f
(
a +

(
i –




)
b – a
n

)

and

yn =


n+

n∑
i=

f
((

 –
i
n

)
a +

i
n

b
)
+ f

((
 –

i – 
n

)
a +

i – 
n

b
)

=


n+

[
f (a) + f (b) + 

n–∑
i=

f
((

 –
i
n

)
a +

i
n

b
)]

.

Pachpatte gave some integral inequalities analogous to the well-known Hermite-
Hadamard inequality by using a fairly elementary analysis in [] as follows.

Theorem  Let f and g be real-valued, nonnegative and convex functions on [a,b]. Then

(i)


b – a

∫ b

a
f (x)g(x)dx≤ 


M(a,b) +



N(a,b), (.)

(ii) f
(
a + b


)
g
(
a + b


)
≤ 

b – a

∫ b

a
f (x)g(x)dx +



M(a,b) +



N(a,b), (.)

where M(a,b) = f (a)g(a) + f (b)g(b), N(a,b) = f (a)g(b) + f (b)g(a).

2 Main results
Theorem  Let f : I →R be an operator convex function on some interval I . Then for any
self-adjoint operators A and B with spectra in I , we have the inequality

(
f
(
A + B


)
≤

)

k

k–∑
i=

f
(
(k – i – )A + (i + )B

k

)

≤
∫ 


f
(
( – t)A + tB

)
dt

≤ 
k

[ k–∑
i=

f
(
(k – i)A + iB

k

)
+
f (A) + f (B)



](
≤ f (A) + f (B)



)
, (.)

where k is the number of steps.
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Proof The function f is continuous,
∫ 
 f (( – t)A + tB)dt exists for any self-adjoint oper-

ators A and B with spectra in I .
We can give two proofs of the theorem. The first using the definition of operator convex

functions and the second using the Hermite-Hadamard inequality for real-valued func-
tions.
. From the definition of operator convex functions, we have the inequalities

f
(
X + Y


)
= f

(
( – t)X + tY


+
( – t)Y + tX



)

≤ f (( – t)X + tY ) + f (( – t)Y + tX)


≤ f (X) + f (Y )


(.)

for any t ∈ [, ] and self-adjoint operators X and Y with spectra in I . If we integrate the
inequality (.) over t and take into account that

∫ 


f
(
( – t)X + tY

)
dt =

∫ 


f
(
tX + ( – t)Y

)
dt,

then we conclude the Hermite-Hadamard inequality for operator convex functions

f
(
X + Y


)
≤

∫ 


f
(
( – t)X + tY

)
dt

≤ f (X) + f (Y )


(.)

that holds for any self-adjoint operators X and Y with spectra in I . Utilizing the change of
variable u = kt, we have

∫ 
k


f
(
( – t)A + tB

)
dt =


k

∫ 


f
((

 –
u
k

)
A +

u
k
B
)
du

=

k

∫ 


f
(
A –

Au
k

+
Bu
k

)
du

=

k

∫ 


f
(
( – u)A + u

(k – )A + B
k

)
du

and by the change of variable u = kt – , we have

∫ 
k


k

f
(
( – t)A + tB

)
dt =


k

∫ 


f
((

 –
u + 
k

)
A +

u + 
k

B
)
du

=

k

∫ 


f
(
A –

Au
k

–
A
k
+
Bu
k

+
B
k

)
du

=

k

∫ 


f
(
( – u)

(k – )A + B
k

+ u
(k – )A + B

k

)
du.

http://www.journalofinequalitiesandapplications.com/content/2013/1/262


Bacak and Türkmen Journal of Inequalities and Applications 2013, 2013:262 Page 5 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/262

We can change the variables until the variable u = kt – (k –) by using the same procedure
above. By the change of variable u = kt – (k – ), we get

∫ 

k–
k

f
(
( – t)A + tB

)
dt =


k

∫ 


f
((

 –
u + k – 

k

)
A +

u + k – 
k

B
)
du

=

k

∫ 


f
(
A –

Au
k

–A +
A
k
+
Bu
k

+ B –
B
k

)
du

=

k

∫ 


f
(
( – u)

A + (k – )B
k

+ uB
)
du.

Using the Hermite-Hadamard inequality in (.), we have

f
(A + (k–)A+B

k


)
= f

(
(k – )A + B

k

)

≤
∫ 


f
(
( – u)A + u

(k – )A + B
k

)
du

≤ 


[
f (A) + f

(
(k – )A + B

k

)]
, (.)

f
( (k–)A+B

k + (k–)A+B
k



)
= f

(
(k – )A + B

k

)

≤
∫ 


f
(
( – u)

(k – )A + B
k

+ u
(k – )A + B

k

)
du

≤ 


[
f
(
(k – )A + B

k

)
+ f

(
(k – )A + B

k

)]
, (.)

f
( (k–)A+B

k + (k–)A+B
k



)

= f
(
(k – )A + B

k

)

≤
∫ 


f
(
( – u)

(k – )A + B
k

+ u
(k – )A + B

k

)
du

≤ 


[
f
(
(k – )A + B

k

)
+ f

(
(k – )A + B

k

)]
, (.)

...

By induction we have

f
( A+(k–)B

k + B


)
= f

(
A + (k – )B

k

)

≤
∫ 


f
(
( – u)

A + (k – )B
k

+ uB
)
du

≤ 


[
f
(
A + (k – )B

k

)
+ f (B)

]
. (.)
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By summing (.), (.), (.), (.) and the other inequalities between (.) and (.), we
have

f
(A + (k–)A+B

k


)
+ f

( (k–)A+B
k + (k–)A+B

k


)

+ f
( (k–)A+B

k + (k–)A+B
k



)
+ · · · + f

( A+(k–)B
k + B


)

≤ k
∫ 


f
(
( – t)A + tB

)
dt

≤ 


[
f (A) + f

(
(k – )A + B

k

)
+ f

(
(k – )A + B

k

)
+ · · ·

+ f
(
A + (k – )B

k

)
+ f (B)

]
. (.)

When regulating the inequality (.), we get the desired inequality in (.). It is obvious
from the left-hand side of the inequality (.) for k = , we get f (A+B ), and it is obvious the
right-hand side of the inequality (.) is provided for k = .
. Let x ∈ H , ‖x‖ =  and let A and B be two self-adjoint operators with spectra in I .

Define the real-valued function ϕx,A,B : [, ]→R by ϕx,A,B(t) = 〈f (( – t)A + tB)x,x〉. Since
f is operator convex, then for any t, t ∈ [, ] and α,β ≥  with α + β = , we have

ϕx,A,B(αt + βt) =
〈
f
((
 – (αt + βt)

)
A + (αt + βt)B

)
x,x

〉
=

〈
f
(
α
[
( – t)A + tB

]
+ β

[
( – t)A + tB

])
x,x

〉
≤ α

〈
f
([
( – t)A + tB

])
x,x

〉
+ β

〈
f
(
β
[
( – t)A + tB

])
x,x

〉
= αϕx,A,B(t) + βϕx,A,B(t)

showing that ϕx,A,B is a convex function on [, ]. Now we can use the Hermite-Hadamard
inequality for real-valued functions

g
(
a + b


)
≤ 

b – a

∫ b

a
g(s)ds≤ g(a) + g(b)



to get that

ϕx,A,B

(

k

)
≤ k

∫ 
k


ϕx,A,B(t)dt ≤ ϕx,A,B() + ϕx,A,B(/k)


,

ϕx,A,B

(

k

)
≤ k

∫ 
k


k

ϕx,A,B(t)dt ≤ ϕx,A,B( k ) + ϕx,A,B( k )


,

...

ϕx,A,B

(
k – 
k

)
≤ k

∫ 

k–
k

ϕx,A,B(t)dt ≤ ϕx,A,B( k–k ) + ϕx,A,B()


.
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By summing the inequalities above and multiplying with 
k , we get


k

[
ϕx,A,B

(

k

)
+ ϕx,A,B

(

k

)
+ · · · + ϕx,A,B

(
k – 
k

)]

≤
∫ 


ϕx,A,B(t)dt

≤ 
k

[
ϕx,A,B() + ϕx,A,B()


+ ϕx,A,B

(

k

)
+ ϕx,A,B

(

k

)
+ · · · + ϕx,A,B

(
k – 
k

)]
.

Thus, we can write


k

〈[
f
((

 –

k

)
A +


k

B
)
+ f

((
 –


k

)
A +


k

B
)
+ · · ·

+ f
((

 –
k – 
k

)
A +

k – 
k

B
)]

x,x
〉

≤
∫ 



〈
f
(
( – t)A + tB

)
x,x

〉
dt

≤ 
k

〈[
f (A) + f (B)


+ f

((
 –


k

)
A +


k
B
)
+ f

((
 –


k

)
A +


k
B
)
+ · · ·

+ f
((

 –
k – 
k

)
A +

k – 
k

B
)]

x,x
〉
.

By regulating these inequalities above, we get


k

〈[ k–∑
i=

f
(
(k – i – )A + (i + )B

k

)]
x,x

〉

≤
∫ 



〈
f
(
( – t)A + tB

)
x,x

〉
dt

≤ 
k

〈[
f (A) + f (B)


+

k–∑
i=

f
(
(k – i)A + iB

k

)]
x,x

〉
. (.)

Finally, since by the continuity of the function f , we have

∫ 



〈
f
(
( – t)A + tB

)
x,x

〉
dt =

〈∫ 


f
(
( – t)A + tB

)
dtx,x

〉

for any x ∈H , and any two self-adjoint operators A and B with spectra in I , from (.) we
get the desired result in (.). �

Remark  Our result for operator convex functions in Theorem  is more general than
the inequality in Theorem . In the inequality (.) if we take k = , we get the inequality
in (.).

Remark  Our result for operator convex functions in Theorem  is more general than
the inequality in Theorem . In the inequality (.), if we take k = n, we get the inequal-
ity in (.). In Theorem , there are no cases of k ∈ N�{n,n = , , , . . .}. But our result
involves these statements.
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Theorem  Let f , g : I → R be an operator convex function on some interval I . Then for
any self-adjoint operators A and B with spectra in I , we have the inequality

∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤ 

M(A,B) +



N(A,B), (.)

where

M(A,B) =
〈
f (A)x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g(B)x,x

〉
,

N(A,B) =
〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉
.

Proof Let x ∈ H , ‖x‖ =  and let A and B be two self-adjoint operators with spectra in I .
Define the real-valued functions ϕx,A,B : [, ] → R by ϕx,A,B(t) = 〈f (( – t)A + tB)x,x〉 and
ψx,A,B : [, ] → R by ψx,A,B(t) = 〈g(( – t)A + tB)x,x〉. Since f and g are operator convex
functions, then for every t ∈ [, ], we have

〈
f
(
( – t)A + tB

)
x,x

〉 ≤ ( – t)
〈
f (A)x,x

〉
+ t

〈
f (B)x,x

〉
, (.)〈

g
(
( – t)A + tB

)
x,x

〉 ≤ ( – t)
〈
g(A)x,x

〉
+ t

〈
g(B)x,x

〉
. (.)

From (.) and (.), we obtain

〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
≤ ( – t)

〈
f (A)x,x

〉〈
g(A)x,x

〉
+ t

〈
f (B)x,x

〉〈
g(B)x,x

〉
+ t( – t)

(〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉)
. (.)

Since ϕx,A,B(t) and ψx,A,B(t) are operator convex on [, ], they are integrable on [, ] and
consequently ϕx,A,B(t)ψx,A,B(t) is also integrable on [, ]. Integrating both sides of the in-
equality (.) over [, ], we get

∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤ 〈
f (A)x,x

〉〈
g(A)x,x

〉 ∫ 


( – t) dt +

〈
f (B)x,x

〉〈
g(B)x,x

〉 ∫ 


t dt

+
(〈
f (A)x,x

〉〈
g(B)x,x

〉
+

〈
f (B)x,x

〉〈
g(A)x,x

〉) ∫ 


t( – t)dt.

It can be easily controlled that

∫ 


( – t) dt =

∫ 


t dt =



,

∫ 


t( – t)dt =



.

When above equalities are taken into account, the proof is complete. �

Remark  In the inequality (.), if we take x = ( – t)A + tB, a =  and b = , we get the
inequality (.).
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Theorem  Let f , g : I → R be an operator convex function on some interval I . Then, for
any self-adjoint operators A and B with spectra in I , we have the inequality

∫ 



〈
f
(
( – t)A + tB

)
x,x

〉〈
g
(
( – t)A + tB

)
x,x

〉
dt

≤ 
k

(〈
f (A)x,x

〉〈
g(A)x,x

〉
+

〈
f (B)x,x

〉〈
g(B)x,x

〉)

+

k

k–∑
i=

f
〈(

A(k – i) + iB
k

)
x,x

〉〈
g
(
A(k – i) + iB

k

)
x,x

〉

+

k

k–∑
i=

[〈
f
(
A(k – i) + iB

k

)
x,x

〉〈
g
(
A(k – i – ) + (i + )B

k

)
x,x

〉]

+

k

k–∑
i=

[〈
f
(
A(k – i – ) + (i + )B

k

)
x,x

〉〈
g
(
A(k – i) + iB

k

)
x,x

〉]
, (.)

where k is the number of steps.

Proof The proof is obvious from the proof of Theorem  and Theorem . �

Remark  The inequality (.) is a general form of the inequality (.). When k =  in
the inequality (.), we get the inequality (.).
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