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Abstract
The split feasibility problem (SFP) is finding a point in a given closed convex subset of
a Hilbert space such that its image under a bounded linear operator belongs to a
given closed convex subset of another Hilbert space. The most popular iterative
method is Byrne’s CQ algorithm. López et al. proposed a relaxed CQ algorithm for
solving SFP where the two closed convex sets are both level sets of convex functions.
This algorithm can be implemented easily since it computes projections onto
half-spaces and has no need to know a priori the norm of the bounded linear
operator. However, their algorithm has only weak convergence in the setting of
infinite-dimensional Hilbert spaces. In this paper, we introduce a new relaxed CQ
algorithm such that the strong convergence is guaranteed. Our result extends and
improves the corresponding results of López et al. and some others.
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1 Introduction
The split feasibility problem (SFP) was proposed by Censer and Elfving in []. It canmath-
ematically be formulated as the problem of finding a point x satisfying the property:

x ∈ C, Ax ∈Q, (.)

where A is a given M × N real matrix (where A∗ is the transpose of A), C and Q are
nonempty, closed and convex subsets in R

N and R
M , respectively. This problem has re-

ceived much attention [] due to its applications in signal processing and image recon-
struction, with particular progress in intensity-modulated radiation therapy [–], and
many other applied fields.
We assume the SFP (.) is consistent, and let S be the solution set, i.e.,

S = {x ∈ C : Ax ∈Q}.

It is easily seen that S is closed convex. Many iterative methods can be used to solve the
SFP (.); see [–]. Byrne [, ] was among others the first to propose the so-called CQ
algorithm, which is defined as follows:

xn+ = PC
(
xn – τnA∗(I – PQ)Axn

)
, (.)
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where τn ∈ (, 
‖A‖ ), and PC and PQ are the orthogonal projections onto the sets C and

Q, respectively. Compared with Censer and Elfving’ algorithm [], the Byrne’ algorithm
is easily executed since it only deal with orthogonal projections with no need to compute
matrix inverses.
The CQ algorithm (.) can be obtained from optimization. In fact, if we introduce the

(convex) objective function

f (x) =


∥∥(I – PQ)Ax

∥∥, (.)

and analyze the minimization problem

min
x∈C f (x), (.)

then the CQ algorithm (.) comes immediately as a special case of the gradient projection
algorithm (GPA)(For more details about the GPA, the reader is referred to []). Since the
convex objective f (x) is differentiable, and has a Lipschitz gradient, which is given by

∇f (x) = A∗(I – PQ)Ax, (.)

the GPA for solving the minimization problem (.) generates a sequence (xn) recursively
as

xn+ = PC
(
xn – τn∇f (xn)

)
, (.)

where the stepsize τn is chosen in the interval (, L ), where L is the Lipschitz constant
of ∇f .
Observe that in algorithms (.) and (.) mentioned above, in order to implement the

CQ algorithm, one has to compute the operator (matrix) norm ‖A‖, which is in general
not an easy work in practice. To overcome this difficulty, some authors proposed different
adaptive choices of selecting the stepsize τn (see [, , ]). For instance, very recently
López et al. introduced a new way of selecting the stepsize [] as follows:

τn :=
ρnf (xn)

‖∇f (xn)‖ ,  < ρn < . (.)

The computation of a projection onto a general closed convex subset is generally diffi-
cult. To overcome this difficulty, Fukushima [] suggested a so-called relaxed projection
method to calculate the projection onto a level set of a convex function by computing a
sequence of projections onto half-spaces containing the original level set. In the setting
of finite-dimensional Hilbert spaces, this idea was followed by Yang [], who introduced
the relaxed CQ algorithms for solving SFP (.) where the closed convex subsets C and Q
are level sets of convex functions.
Recently, for the purpose of generality, the SFP (.) is studied in a more general setting.

For instance, Xu [] and López et al. [] considered the SFP (.) in infinite-dimensional
Hilbert spaces (i.e., the finite-dimensional Euclidean spaces RN and R

M are replaced with
general Hilbert spaces). Very recently, López et al. proposed a relaxedCQ algorithmwith a
new adaptive way of determining the stepsize sequence (τn) for solving the SFP (.) where
the closed convex subsets C and Q are level sets of convex functions. This algorithm can
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be implemented easily since it computes projections onto half-spaces and has no need to
know a priori the norm of the bounded linear operator. However, their algorithm has only
weak convergence in the setting of infinite-dimensional Hilbert spaces. In this paper, we
introduce a new relaxed CQ algorithm such that the strong convergence is guaranteed in
infinite-dimensional Hilbert spaces. Our result extends and improves the corresponding
results of López et al. and some others.
The rest of this paper is organized as follows. Some useful lemmas are listed in Section .

In Section , the strong convergence of the new relaxed CQ algorithm of this paper is
proved.

2 Preliminaries
Throughout the rest of this paper, we denote by H or K a Hilbert space, A is a bounded
linear operator from H to K , and by I the identity operator on H or K . If f : H → R is a
differentiable function, then we denote by ∇f the gradient of the function f . We will also
use the notations:
• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) = {x | ∃{xnk } ⊂ {xn} such that xnk ⇀ x} denotes the weak ω-limit set of {xn}.
Recall that a mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈H .

T :H →H is said to be firmly nonexpansive if, for x, y ∈H ,

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥.

Recall that a function f :H →R is called convex if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ∀λ ∈ (, ),∀x, y ∈H .

A differentiable function f is convex if and only if there holds the inequality:

f (z) ≥ f (x) +
〈∇f (x), z – x

〉
, ∀z ∈H .

Recall that an element g ∈H is said to be a subgradient of f :H →R at x if

f (z) ≥ f (x) + 〈g, z – x〉, ∀z ∈H .

This relation is called the subdifferentiable inequality.
A function f :H →R is said to be subdifferentiable at x, if it has at least one subgradient

at x. The set of subgradients of f at the point x is called the subdifferentiable of f at x, and
it is denoted by ∂f (x). A function f is called subdifferentiable, if it is subdifferentiable at
all x ∈ H . If a function f is differentiable and convex, then its gradient and subgradient
coincide.
A function f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x

implies

f (x)≤ lim inf
n→∞ f (xn).

http://www.journalofinequalitiesandapplications.com/content/2013/1/197


He and Zhao Journal of Inequalities and Applications 2013, 2013:197 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/197

We know that the orthogonal projection PC from H onto a nonempty closed convex
subset C ⊂H is a typical example of a firmly nonexpansive mapping, which is defined by

PCx := argmin
y∈C ‖x – y‖, x ∈H . (.)

It is well known that PC is characterized by the inequality (for x ∈ H)

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C. (.)

The following lemma is not hard to prove (see [, ]).

Lemma . Let f be given as in (.). Then
(i) f is convex and differential.
(ii) ∇f (x) = A∗(I – PQ)Ax, x ∈H .
(iii) f is w-lsc on H .
(iv) ∇f is ‖A‖-Lipschitz: ‖∇f (x) –∇f (y)‖ ≤ ‖A‖‖x – y‖, x, y ∈H .

The following are characterizations of firmly nanexpansive mappings (see []).

Lemma . Let T :H →H be an operator. The following statements are equivalent.
(i) T is firmly nonexpansive.
(ii) ‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, x, y ∈H .
(iii) I – T is firmly nonexpansive.

Lemma . [] Assume (αn) is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + γnσn, n = , , , . . . ,

where (γn) is a sequence in (, ), and (σn) is a sequence in R such that
(i)

∑∞
n= γn = ∞.

(ii) lim supn→∞ σn ≤ , or
∑∞

n= |γnσn| < ∞.

Then limn→∞ αn = .

3 Iterative Algorithm
In this section, we turn to consider a new relaxed CQ algorithm in the setting of infinite-
dimensional Hilbert spaces for solving SFP (.) where the closed convex subsets C and Q
are of the particular structure, i.e. level sets of convex functions given as follows:

C =
{
x ∈H : c(x) ≤ 

}
and Q =

{
y ∈ K : q(y) ≤ 

}
, (.)

where c : H → R and q : K → R are convex functions. We assume that both c and q are
subdifferentiable onH and K , respectively, and that ∂c and ∂q are bounded operators (i.e.,
bounded on bounded sets). By the way, wemention that every convex function defined on
a finite-dimensional Hilbert space is subdifferentiable and its subdifferential operator is a
bounded operator (see []).
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Set

Cn =
{
x ∈ H : c(xn) ≤ 〈ξn,xn – x〉}, (.)

where ξn ∈ ∂c(xn), and

Qn =
{
y ∈ K : q(Axn) ≤ 〈ζn,Axn – y〉}, (.)

where ζn ∈ ∂q(Axn).
Obviously, Cn and Qn are half-spaces and it is easy to verify that Cn ⊃ C and Qn ⊃ Q

hold for every n≥  from the subdifferentiable inequality. In what follows, we define

fn(x) =


∥∥(I – PQn )Ax

∥∥, n≥ ,

where Qn is given as in (.). We then have

∇fn(x) = A∗(I – PQn )Ax.

Firstly, we recall the relaxed CQ algorithm of López et al. [] for solving the SFP (.)
where C and Q are given in (.) as follows.

Algorithm . Choose an arbitrary initial guess x. Assume xn has been constructed. If
∇fn(xn) = , then stop; otherwise, continue and construct xn+ via the formula

xn+ = PCn

(
xn – τn∇fn(xn)

)
,

where Cn is given as (.), and

τn =
ρnfn(xn)

‖∇fn(xn)‖ ,  < ρn < . (.)

López et al. proved that under some certain conditions the sequence (xn) generated by
Algorithm . converges weakly to a solution of the SFP (.). Since the projections onto
half-spacesCn andQn have closed forms and τn is obtained adaptively via the formula (.)
(no need to know a priori the norm of operator A), the above relaxed CQ algorithm . is
implementable. But the weak convergence is its a weakness. To overcome this weakness,
inspired by Algorithm ., we will introduce a new relaxed CQ algorithm for solving the
SFP (.) where C and Q are given in (.) so that the strong convergence is guaranteed.
It is well known that Halpern’s algorithm has a strong convergence for finding a fixed

point of a nonexpansive mapping [, ]. Then we are in a position to give our algorithm.
The algorithm given below is referred to as a Halpern-type algorithm [].

Algorithm . Let u ∈ H , and start an initial guess x ∈ H arbitrarily. Assume that the
nth iterate xn has been constructed. If ∇fn(xn) = , then stop (xn is a approximate solution
of SFP (.)). Otherwise, continue and calculate the (n + )th iterate xn+ via the formula:

xn+ = PCn

[
αnu + ( – αn)

(
xn – τn∇fn(xn)

)]
, (.)

where the sequence (αn) ⊂ (, ) and (τn) and (ρn) are given as in (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/197
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The convergence result of Algorithm . is stated in the next theorem.

Theorem . Assume that (αn) and (ρn) satisfy the assumptions:
(a) limn→∞ αn =  and

∑∞
n= αn = ∞.

(a) infn ρn( – ρn) > .
Then the sequence (xn) generated by Algorithm . converges in norm to PSu.

Proof We may assume that the sequence (xn) is infinite, that is, Algorithm . does not
terminate in a finite number of iterations. Thus ∇fn(xn) �=  for all n ≥ . Recall that S is
the solution set of the SFP (.),

S = {x ∈ C : Ax ∈ Q}.

In the consistent case of the SFP (.), S is nonempty, closed and convex. Thus, the metric
projection PS is well-defined.We set z = PSu. Since z ∈ S ⊂ Cn and the projection operator
PCn is nonexpansive, we obtain

‖xn+ – z‖ = ∥∥PCn

[
αnu + ( – αn)

(
xn – τn∇fn(xn)

)]
– z

∥∥

≤ ∥∥αn(u – z) + ( – αn)
(
xn – τn∇fn(xn) – z

)∥∥

≤ ( – αn)
∥∥xn – τn∇fn(xn) – z

∥∥ + αn〈u – z,xn+ – z〉.

Note that I –PQn is firmly nonexpansive and∇fn(z) = , it is deduced from Lemma . that

〈∇fn(xn),xn – z
〉
=

〈
(I – PQn )Axn,Axn –Az

〉
≥ ∥∥(I – PQn )Axn

∥∥

= fn(xn),

which implies that

∥∥xn – τn∇fn(xn) – z
∥∥ = ‖xn – z‖ + ∥∥τn∇fn(xn)

∥∥ – τn
〈∇fn(xn),xn – z

〉
≤ ‖xn – z‖ + τ 

n
∥∥∇fn(xn)

∥∥ – τnfn(xn)

≤ ‖xn – z‖ – ρn( – ρn)
f n (xn)

‖∇fn(xn)‖ .

Thus, we have

‖xn+ – z‖ ≤ ( – αn)
∥∥xn – τn∇fn(xn) – z

∥∥ + αn〈u – z,xn+ – z〉
≤ ( – αn)‖xn – z‖ + αn〈u – z,xn+ – z〉

– ( – αn)ρn( – ρn)
f n (xn)

‖∇fn(xn)‖ . (.)

Now we prove (xn) is bounded. Indeed, we have from (.) that

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn〈u – z,xn+ – z〉

≤ ( – αn)‖xn – z‖ + 


αn‖xn+ – z‖ + αn‖u – z‖,

http://www.journalofinequalitiesandapplications.com/content/2013/1/197
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and consequently

‖xn+ – z‖ ≤  – αn

 – 
αn

‖xn – z‖ +

αn

 – 
αn




‖u – z‖.

It turns out that

‖xn+ – z‖ ≤ max

{
‖xn – z‖, 


‖u – z‖

}
,

and inductively

‖xn – z‖ ≤ max

{
‖x – z‖, 


‖u – z‖

}
,

and this means that (xn) is bounded. Since αn → , with no loss of generality, we may
assume that there is σ >  so that ρn( – ρn)( – αn) ≥ σ for all n. Setting sn = ‖xn – z‖,
from the last inequality of (.), we get the following inequality:

sn+ – sn + αnsn +
σ f n (xn)

‖∇fn(xn)‖ ≤ αn〈u – z,xn+ – z〉. (.)

Now, following an idea in [], we prove sn →  by distinguishing two cases.
Case : (sn) is eventually decreasing (i.e. there exists k ≥  such that sn > sn+ holds for

all n≥ k). In this case, (sn) must be convergent, and from (.) it follows that

σ f n (xn)
‖∇fn(xn)‖ ≤ Mαn + (sn – sn+), (.)

whereM >  is a constant such that ‖xn+ – z‖‖u– z‖ ≤ M for all n ∈N. Using the condi-
tion (a), we have from (.) that f n (xn)

‖∇fn(xn)‖ → . Thus, to verify that fn(xn) → , it suffices
to show that (∇f (xn)) is bounded. In fact, it follows from Lemma . that (noting that
∇fn(z) =  due to z ∈ S)

∥∥∇fn(xn)
∥∥ =

∥∥∇fn(xn) –∇fn(z)
∥∥ ≤ ‖A‖‖xn – z‖.

This implies that ‖∇fn(xn)‖ is bounded and it yields fn(xn) → , namely ‖(I –
PQn )Axn‖ → .
Since ∂q is bounded on bounded sets, there exists a constant η >  such that ‖ζn‖ ≤ η

for all n ≥ . From (.) and the trivial fact that PQn (Axn) ∈Qn, it follows that

q(Axn) ≤
〈
ζn,Axn – PQn (Axn)

〉 ≤ η
∥∥(I – PQn )Axn

∥∥ → . (.)

If x∗ ∈ ωw(xn), and (xnk ) is a subsequence of (xn) such that xnk ⇀ x∗, then the w-lsc of q
and (.) imply that

q
(
Ax∗) ≤ lim inf

k→∞
q(Axnk ) ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/197
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It turns out that Ax∗ ∈ Q. Next, we turn to prove x∗ ∈ C. For convenience, we set yn :=
αnu + ( – αn)(xn – τn∇fn(xn)). In fact, since the PCn is firmly nonexpansive, it concludes
that

‖PCnxn – PCnz‖ ≤ ‖xn – z‖ – ∥∥(I – PCn )xn
∥∥. (.)

On the other hand, we have

‖xn+ – z‖ = ‖PCnyn – PCnz‖

= ‖PCnyn – PCnxn + PCnxn – PCnz‖

≤ ‖PCnxn – PCnz‖ + 〈PCnyn – PCnxn,xn+ – z〉, (.)

and

‖PCnyn – PCnxn‖ ≤ ‖yn – xn‖
=

∥∥αnu + ( – αn)
(
xn – τn∇fn(xn)

)
– xn

∥∥
≤ αn‖u – xn‖ + τn

∥∥∇fn(xn)
∥∥. (.)

Noting that (xn) is bounded, we have from (.)-(.) that

‖xn+ – z‖ ≤ ‖xn – z‖ – ∥∥(I – PCn )xn
∥∥ + 

(
αn‖u – xn‖ + τn

∥∥∇fn(xn)
∥∥)‖xn+ – z‖

≤ ‖xn – z‖ – ∥∥(I – PCn )xn
∥∥ +

(
αn +

fn(xn)
‖∇fn(xn)‖

)
M, (.)

whereM is some positive constant. Clearly, from (.), it turns out that

∥∥(I – PCn )xn
∥∥ ≤ sn – sn+ +

(
αn +

fn(xn)
‖∇fn(xn)‖

)
M. (.)

Thus, we assert that ‖(I –PCn )xn‖ →  due to the fact that sn – sn+ + (αn + fn(xn)
‖∇fn(xn)‖ )M → .

Moreover, by the definition of Cn, we obtain

c(xn)≤
〈
ξn,xn – PCn (xn)

〉 ≤ δ‖xn – PCnxn‖ →  (n→ ∞),

where δ is a constant such that ‖ξn‖ ≤ δ for all n ≥ . The w-lsc of c then implies that

c
(
x∗) ≤ lim inf

k→∞
c(xnk ) = .

Consequently, x∗ ∈ C, and hence ωw(xn) ⊂ S. Furthermore, due to (.), we get

lim sup
n→∞

〈u – z,xn – z〉 = max
w∈ωw(xn)

〈u – PSu,w – PSu〉 ≤ . (.)

Taking into account of (.), we have

sn+ ≤ ( – αn)sn + αn〈u – z,xn+ – z〉. (.)

Applying Lemma . to (.), we obtain sn → .

http://www.journalofinequalitiesandapplications.com/content/2013/1/197
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Case : (sn) is not eventually decreasing, that is, we can find an integer n such that
sn ≤ sn+. Now we define

Vn := {n ≤ k ≤ n : sk ≤ sk+}, n > n.

It is easy to see that Vn is nonempty and satisfies Vn ⊆ Vn+. Let

ψ(n) :=maxVn, n > n.

It is clear that ψ(n) → ∞ as n → ∞ (otherwise, (sn) is eventually decreasing). It is also
clear that sψ(n) ≤ sψ(n)+ for all n > n. Moreover,

sn ≤ sψ(n)+, n > n. (.)

In fact, if ψ(n) = n, then the inequity (.) is trivial; if ψ(n) < n, from the definition of
ψ(n), there exists some i ∈N such that ψ(n) + i = n, we deduce that

sψ(n)+ > sψ(n)+ > · · · > sψ(n)+i = sn,

and the inequity (.) holds again. Since sψ(n) ≤ sψ(n)+ for all n > n, it follows from (.)
that

σ f 
ψ(n)(xψ(n))

‖∇fψ(n)(xψ(n))‖ ≤ Mαψ(n) → ,

so that fψ(n)(xψ(n)) →  as n → ∞ (noting that ‖∇fψ(n)(xψ(n))‖ is bounded). By the same
argument to the proof in case , we have ωw(xψ(n)) ⊂ S. On the other hand, noting sψ(n) ≤
sψ(n)+ again, we have from (.) and (.) that

‖xψ(n) – xψ(n)+‖ ≤ ‖xψ(n) – PCψ(n)xψ(n)‖ + ‖PCψ(n)xψ(n) – PCψ(n)yψ(n)‖

≤
√

αψ(n) +
fψ(n)(xψ(n))

‖∇fψ(n)(xψ(n))‖

×
(√

αψ(n) +
fψ(n)(xψ(n))

‖∇fψ(n)(xψ(n))‖ + 
)
M,

whereM is a positive constant. Letting n → ∞ yields that

‖xψ(n) – xψ(n)+‖ → , (.)

from which one can deduce that

lim sup
n→∞

〈u – z,xψ(n)+ – z〉 = lim sup
n→∞

〈u – z,xψ(n) – z〉

= max
w∈ωw(xψ (n))

〈u – PSu,w – PSu〉 ≤ . (.)

Since sψ(n) ≤ sψ(n)+, it follows from (.) that

sψ (n) ≤ 〈u – z,xψ(n)+ – z〉, n > n. (.)
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Combining (.) and (.) yields

lim sup
n→∞

sψ(n) ≤ , (.)

and hence sψ(n) → , which together with (.) implies that

√sψ(n)+ ≤ ∥∥(xψ(n) – z) + (xψ(n)+ – xψ(n))
∥∥

≤ √sψ(n) + ‖xψ(n)+ – xψ(n)‖ → , (.)

which, together with (.), in turn implies that sn → , that is, xn → z. �

Remark . Since u can be chosen inH arbitrarily, one can compute theminimum-norm
solution of SFP (.) where C and Q are given in (.) by taking u =  in Algorithm .
whether  ∈ C or  /∈ C.
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