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Abstract
We study the ideal of all bounded linear operators between any arbitrary Banach
spaces whose sequence of approximation numbers belong to the generalized Cesáro
sequence space and Orlicz sequence space �M, whenM(t) = tp, 0 < p <∞; our results
coincide with that known for the classical sequence space �p.
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1 Introduction
By L(X,Y ), we denote the space of all bounded linear operators from a normed space X
into a normed space Y . The set of natural numbers will denote by N = {, , , . . .} and the
real numbers by R. By ω, we denote the space of all real sequences. A map which assigns
to every operator T ∈ L(X,Y ) a unique sequence (sn(T))∞n= is called an s-function and the
number sn(T) is called the nth s-numbers of T if the following conditions are satisfied:
(a) ‖T‖ = s(T) ≥ s(T) ≥ · · · ≥ , for all T ∈ L(X,Y ).
(b) sn+m(T + T) ≤ sn(T) + ‖T‖, for all T,T ∈ L(X,Y ).
(c) sn(RST)≤ ‖R‖sn(S)‖T‖, for all T ∈ L(X,X), S ∈ L(X,Y ) and R ∈ L(Y ,Y).
(d) sn(λT) = |λ|sn(T), for all T ∈ L(X,Y ), λ ∈R.
(e) rank(T)≤ n If sn(T) = , for all T ∈ L(X,Y ).
(f ) sr(In) =

{
 for r < n,
 for r ≥ n, where In is the identity operator on the Euclidean space �n .

Example of s-numbers, we mention approximation number αr(T), Gelfand numbers
cr(T), Kolmogorov numbers dr(T) and Tichomirov numbers d∗

n(T) defined by:
(I) αr(T) = inf{‖T –A‖ : A ∈ L(X,Y ) and rank(A) ≤ r}.
(II) cr(T) = ar(JYT), where JY is a metric injection (a metric injection is a one to

one operator with closed range and with norm equal one) from the space Y
into a higher space �∞(�) for suitable index set �.

(III) dn(T) = infdimY≤n sup‖x‖≤ infy∈Y ‖Tx – y‖.
(IV) d∗

r (T) = dr(JYT).
All of these numbers satisfy the following condition:

(g) sn+m(T + T) ≤ sn(T) + sm(T) for all T,T ∈ L(X,Y ).
An operator ideal U is a subclass of L = {L(X,Y );X,Y are Banach spaces} such that its

components {U(X,Y );X,Y are Banach spaces} satisfy the following conditions:
(i) IK ∈U , where K denotes the -dimensional Banach space, where U ⊂ L.
(ii) If T,T ∈U(X,Y ), then λT + λT ∈U(X,Y ) for any scalars λ, λ.
(iii) If V ∈ L(X,X), T ∈U(X,Y ), R ∈ L(Y ,Y) then RTV ∈U(X,Y). See [–].
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An Orlicz function is a function M : [,∞[→ [,∞[ which is continuous, non-
decreasing and convex with M() =  and M(x) >  for x > , and M(x) → ∞ as x → ∞.
See [, ].
If convexity of Orlicz functionM is replaced byM(x+ y) ≤ M(x) +M(y). Then this func-

tion is called modulus function, introduced by Nakano []; also, see [, ] and []. An Or-
licz functionM is said to satisfy �-condition for all values of u, if there exists a constant
k > , such thatM(u) ≤ kM(u) (u≥ ). The�-condition is equivalent toM(lu) ≤ klM(u)
for all values of u and for l > . Lindentrauss and Tzafriri [] used the idea of Orlicz func-
tion to construct Orlicz sequence space

�M =

{
x ∈ ω :

∞∑
n=

M
( |xn|

ρ

)
< ∞, for some ρ > 

}
,

which is a Banach space with respect to the norm

‖x‖ = inf

{
ρ >  :

∞∑
n=

M
( |xn|

ρ

)
≤ 

}
.

For M(t) = tp,  ≤ p < ∞ the space �M coincides with the classical sequence space �p.
Recently, different classes of sequences have been introduced by using an Orlicz function.
See [] and [].

Remark . LetM be an Orlicz function thenM(λx)≤ λM(x) for all λ with  < λ < .

For a sequence p = (pn) of positive real numbers with pn ≥ , for all n ∈N the generalized
Cesáro sequence space is defined by

Ces(pn) =
{
x = (xk) ∈ ω : ρ(λx) < ∞ for some λ > 

}
,

where

ρ(x) =
∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

.

The space Ces(pn) is a Banach space with the norm

‖x‖ = inf

{
λ >  : ρ

(
x
λ

)
≤ 

}
.

If p = (pn) is bounded, we can simply write

Ces(pn) =

{
x ∈ ω :

∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

<∞
}
.

Also, some geometric properties of Ces(pn) are studied by Sanhan and Suantai [].
Throughout this paper, the sequence (pn) is a bounded sequence of positive real num-

bers, we denote ei = (, , . . . , , , , . . .) where  appears at ith place for all i ∈ N. Different
classes of paranormed sequence spaces have been introduced and their different proper-
ties have been investigated. See [–] and [].
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For any bounded sequence of positive numbers (pk), we have the following well-known
inequality |ak + bk|pk ≤ h–(|ak|pk + |bk|pk ),h = supn pn, and pk ≥  for all k ∈N. See [].

2 Preliminary and notation
Definition . A class of linear sequence spaces E, called a special space of sequences
(sss) having the following conditions:
() E is a linear space and en ∈ E, for each n ∈N.
() If x ∈ ω, y ∈ E and |xn| ≤ |yn|, for all n ∈N, then x ∈ E ‘i.e. E is solid’,
() if (xn)∞n= ∈ E, then (x[ n ])

∞
n= = (x,x,x,x,x,x, . . .) ∈ E, where [ n ] denotes the

integral part of n
 .

We call such space Eρ a pre modular special space of sequences if there exists a function
ρ : E → [o,∞[, satisfies the following conditions:

(i) ρ(x)≥  ∀x ∈ Eρ and ρ(θ ) = , where θ is the zero element of E,
(ii) there exists a constant l ≥  such that ρ(λx)≤ l|λ|ρ(x) for all values of x ∈ E and

for any scalar λ,
(iii) for some numbers k ≥ , we have the inequality ρ(x + y) ≤ k(ρ(x) + ρ(y)), for all

x, y ∈ E,
(iv) if |xn| ≤ |yn|, for all n ∈N then ρ((xn)) ≤ ρ((yn)),
(v) for some numbers k ≥  we have the inequality ρ((xn)) ≤ ρ((x[ n ])) ≤ kρ((xn)),
(vi) for each x = (x(i))∞i= ∈ E there exists s ∈N such that ρ(x(i))∞i=s <∞. This means the

set of all finite sequences is ρ-dense in E.
(vii) for any λ >  there exists a constant ζ >  such that

ρ(λ, , , , . . .) ≥ ζλρ(, , , , . . .).
It is clear that from condition (ii) that ρ is continuous at θ . The function ρ defines ametriz-
able topology in E endowed with this topology is denoted by Eρ .

Example . �p is a pre-modular special space of sequences for  < p < ∞, with ρ(x) =∑∞
n= |xn|p.

Example . cesp is a pre-modular special space of sequences for  < p < ∞, with ρ(x) =∑∞
n=(


n+

∑n
k= |xn|)p.

Definition .

Uapp
E :=

{
Uapp

E (X,Y );X,Y are Banach spaces
}
,

where

Uapp
E (X,Y ) :=

{
T ∈ L(X,Y ) :

(
αn(T)

)∞
n= ∈ E

}
.

3 Main results
Theorem . Uapp

E is an operator ideal if E is a special space of sequences (sss).

Proof To prove Uapp
E is an operator ideal:

(i) let A ∈ F(X,Y ) and rank(A) =m for all m ∈N, since E is a linear space and en ∈ E
for each n ∈ N, then (αn(A))∞n= = (α(A),α(A), . . . ,αm–(A), , , , . . .) =∑m–

i= αi(A)ei ∈ E; for that A ∈Uapp
E (X,Y ), which implies F(X,Y )⊂Uapp

E (X,Y ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/186
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(ii) Let T,T ∈Uapp
E (X,Y ) and λ,λ ∈R then from Definition . condition () we get

(α[ n ](T))∞n= ∈ E and (α[ n ](T))∞n= ∈ E, since n≥ [ n ],αn(T) is a decreasing
sequence and from the definition of approximation numbers we get

αn(λT + λT) ≤ α[ n ](λT + λT)≤ α[ n ](λT) + α[ n ](λT)

≤ |λ|α[ n ](T) + |λ|α[ n ](T) for each n ∈N.

Since E is a linear space and from Definition . condition () we get
(αn(λT + λT))∞n= ∈ E, hence λT + λT ∈ Uapp

E (X,Y ).
(iii) If V ∈ L(X,X), T ∈Uapp

E (X,Y ) and R ∈ L(Y ,Y), then we get (αn(T))∞n= ∈ E and
since αn(RTV ) ≤ ‖R‖αn(T)‖V‖, from Definition . conditions () and () we get
(αn(RTV ))∞n= ∈ E, then RTV ∈ Uapp

E (X,Y). �

Theorem . Uapp
�M

is an operator ideal, if M is an Orlicz function satisfying �-condition
and there exists a constant l ≥  such that M(x + y) ≤ l(M(x) +M(y)).

Proof
(-i) Let x, y ∈ �M , sinceM is non-decreasing, we get∑∞

n=M(|xn + yn|) ≤ l[
∑∞

n=M(|xn|) +∑∞
n=M(|yn|)] <∞, then x + y ∈ �M .

(-ii) λ ∈R, x ∈ �M sinceM satisfies �-condition, we get∑∞
n=M(|λxn|) ≤ |λ|l∑∞

n=M(|xn|) < ∞, for that λx ∈ �M , then from (-i) and
(-ii) �M is a linear space over the field of numbers. Also en ∈ �M for each n ∈ N

since
∑∞

i=M(|en(i)|) =M() <∞.
() Let |xn| ≤ |yn| for each n ∈N, (yn)∞n= ∈ �M , sinceM is none decreasing, then we

get
∑∞

n=M(|xn|) ≤ ∑∞
n=M(|yn|) <∞, then (xn)∞n= ∈ �M .

() Let (xn)∞n= ∈ �M ,
∑∞

n=M(|x[ n ]|) ≤ 
∑∞

n=M(|xn|) < ∞, then (x[ n ])
∞
n= ∈ �M .

Hence, from Theorem ., it follows that Uapp
�M

is an operator ideal. �

Theorem . Uapp
ces(pn) is an operator ideal, if (pn) is an increasing sequence of positive real

numbers, limn→∞ suppn < ∞ and limn→∞ infpn > .

Proof
(-i) Let x, y ∈ ces(pn) since

∞∑
n=

(


n + 

n∑
k=

|xk + yk|
)pn

≤ h–
( ∞∑

n=

(


n + 

n∑
k=

|xk|
)pn

+
∞∑
n=

(


n + 

n∑
k=

|yk|
)pn)

,

h = sup
n

pn,

then x + y ∈ ces(pn).
(-ii) Let λ ∈R, x ∈ ces(pn), then

∞∑
n=

(


n + 

n∑
k=

|λxk|
)pn

≤ sup
n

|λ|pn
∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

< ∞,

we get λx ∈ ces(pn), from (-i) and (-ii) ces(pn) is a linear space.
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To show that em ∈ ces(pn) for each m ∈ N, since limn→∞ infpn >  we have
∑∞

n=(


n+ )
pn <

∞. Thus, we get

ρ(em) =
∞∑
n=m

(


n + 

n∑
k=

∣∣em(k)∣∣
)pn

=
∞∑
n=m

(


n + 

)pn
<∞.

Hence em ∈ ces(pn).
() Let |xn| ≤ |yn| for each n ∈ N, then

∞∑
n=

(


n + 

n∑
k=

|λxk|
)pn

≤ sup
n

|λ|pn
∞∑
n=

(


n + 

n∑
k=

|yk|
)pn

< ∞,

since y ∈ ces(pn). Thus, x ∈ ces(pn).
() Let (xn) ∈ ces(pn), then we have

∞∑
n=

(


n + 

n∑
k=

|x[ k ]|
)pn

=
∞∑
n=

(


n + 

n∑
k=

|x[ k ]|
)pn

+
∞∑
n=

(


n + 

n+∑
k=

|x[ k ]|
)pn+

=
∞∑
n=

(


n + 

(( n∑
k=

|xk|
)
+ |xn|

))pn

+
∞∑
n=

(


n + 

( n∑
k=

|xk|
))pn

≤ h–
( ∞∑

n=

(


n + 

(


n∑
k=

|xk|
))pn

+
∞∑
n=

(


n + 

n∑
k=

|xk|
)pn)

+
∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

≤ h–
(
h + 

) ∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

+
∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

≤ (
h– + h– + 

) ∞∑
n=

(


n + 

n∑
k=

|xk|
)pn

<∞.

Hence, (x[ n ])
∞
n= ∈ ces(pn). Hence, from Theorem . it follows that Uapp

ces(pn) is an
operator ideal.

�

Theorem . Let M be an Orlicz function. Then the linear space F(X,Y ) is dense in
Uapp

�M
(X,Y ).

Proof Define ρ(x) =
∑∞

n=M(|xn|) on �M . First we prove that every finite mapping T ∈
F(X,Y ) belongs to Uapp

�M
(X,Y ). Since em ∈ �M for eachm ∈N and �M is a linear space then

for every finite mapping T ∈ F(X,Y ) the sequence (αn(T))∞n= contains only finitely many
numbers different from zero. To prove that Uapp

�M
(X,Y ) ⊆ F(X,Y ), let T ∈ Uapp

�M
(X,Y ), we

get (αn(T))∞n= ∈ �M , and since
∑∞

n=M(αn(T)) < ∞, let ε ∈ ], ] then there exists a nat-
ural number s >  such that

∑∞
n=s M(αn(T)) < ε

 , since ρ is none decreasing and αn(T) is

http://www.journalofinequalitiesandapplications.com/content/2013/1/186
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decreasing for each n ∈N, we get

sM
(
αs(T)

) ≤
s∑

n=s+

M
(
αn(T)

) ≤
∞∑
n=s

M
(
αn(T)

)
<

ε


,

then there exists A ∈ Fs(X,Y ), rank(A) ≤ s with M(‖T –A‖) < ε
s , and by using the con-

ditions ofM we get

d(T ,A) = ρ
(
αn(T –A)

)∞
n= =

∞∑
n=

M
(
αn(T –A)

)

=
s–∑
n=

M
(
αn(T –A)

)
+

∞∑
n=s

M
(
αn(T –A)

)

≤
s–∑
n=

M
(‖T –A‖) + ∞∑

n=s

M
(
αn(T –A)

)

≤ sM
(‖T –A‖) + ∞∑

n=s
M

(
αn+s(T –A)

)

≤ sM
(‖T –A‖) + ∞∑

n=s
M

(
αn(T)

)
< ε. �

Corollary . If  < p < ∞ andM(t) = tp, we get Uapp
�p (X,Y ) = F(X,Y ). See [].

Theorem . The linear space F(X,Y ) is dense in Uapp
ces(pn) (X,Y ), if (pn) is an increasing

sequence of positive real numbers with limn→∞ suppn <∞ and limn→∞ infpn > .

Proof First we prove that every finite mapping T ∈ F(X,Y ) belongs to Uapp
ces(pn) (X,Y ). Since

em ∈ ces(pn) for each m ∈ N and ces(pn) is a linear space, then for every finite map-
ping T ∈ F(X,Y ) i.e. the sequence (αn(T))∞n= contains only finitely many numbers dif-
ferent from zero. Now we prove that Uapp

ces(pn) (X,Y ) ⊆ F(X,Y ). Since limn→∞ infpn > ,
we have

∑∞
n=(


n+ )

pn < ∞, let T ∈ Uapp
ces(pn) (X,Y ) we get (αn(T))∞n= ∈ ces(pn), and since

ρ((αn(T))∞n=) < ∞, let ε ∈ ], ] then there exists a natural number s >  such that
ρ((αn(T))∞n=s) <

ε

h+δc for some c ≥ , where δ = max{,∑∞
n=s(


n+ )

pn}, since αn(T) is de-
creasing for each n ∈N, we get

s∑
n=s+

(


n + 

n∑
k=

αs(T)

)pn

≤
s∑

n=s+

(


n + 

n∑
k=

αn(T)

)pn

≤
∞∑
n=s

(


n + 

n∑
k=

αk(T)

)pn

<
ε

h+δc
, ()

then there exists A ∈ Fs(X,Y ),

rank(A) ≤ s with
s∑

n=s+

(


n + 

n∑
k=

‖T –A‖
)pn

≤
s∑

n=s+

(


n + 

n∑
k=

‖T –A‖
)pn

<
ε

h+δc
, ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/186


Mohamed and Bakery Journal of Inequalities and Applications 2013, 2013:186 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/186

and

∞
sup
n=s

( s∑
k=

‖T –A‖
)pn

<
ε

h+δ
, ()

since αn(T) = inf{‖T –A‖ : A ∈ L(X,Y ) and rank(A) ≤ n}. Then there exists a natural num-
ber N > , AN with rank(AN ) ≤ N and ‖T – AN‖ ≤ αN (T). Since αn(T)

n→∞−→ , then
‖T –AN‖ N→∞−→ , so we can take

s∑
n=

(


n + 

n∑
k=

‖T –A‖
)pn

<
ε

h+δc
, ()

since (pn) is an increasing sequence and by using (), (), () and (), we get

d(T ,A) = ρ
(
αn(T –A)

)∞
n=

=
s–∑
n=

(


n + 

n∑
k=

αk(T –A)

)pn

+
∞∑
n=s

(


n + 

n∑
k=

αk(T –A)

)pn

≤
s∑
n=

(


n + 

n∑
k=

‖T –A‖
)pn

+
∞∑
n=s

(


n + 

n+s∑
k=

αk(T –A)

)pn+s

≤ 
s∑

n=

(


n + 

n∑
k=

‖T –A‖
)pn

+
∞∑
n=s

(


n + 

s–∑
k=

αk(T –A) +


n + 

n+s∑
k=s

αk(T –A)

)pn

≤ 
s∑

n=

(


n + 

n∑
k=

‖T –A‖
)pn

+ h–
( ∞∑

n=s

(


n + 

s–∑
k=

αk(T –A)

)pn

+
∞∑
n=s

(


n + 

n+s∑
k=s

αk(T –A)

)pn)

≤ 
s∑

n=

(


n + 

n∑
k=

‖T –A‖
)pn

+ h–
( ∞∑

n=s

(


n + 

s–∑
k=

‖T –A‖
)pn

+
∞∑
n=s

(


n + 

n∑
k=

αk+s(T –A)

)pn)

≤ 
s∑

n=

(


n + 

n∑
k=

‖T –A‖
)pn

+ h–
(

∞
sup
n=s

( s∑
k=

‖T –A‖
)pn) ∞∑

n=s

(


n + 

)pn

+ h–
∞∑
n=s

(


n + 

n∑
k=

αk(T)

)pn

< ε. �

Theorem. Let X be a normed space, Y a Banach space and Eρ be a premodular special
space of sequences (sss), then Uapp

Eρ
(X,Y ) is complete.

http://www.journalofinequalitiesandapplications.com/content/2013/1/186
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Proof Let (Tm) be a Cauchy sequence inUapp
Eρ

(X,Y ), then by using Definition . condition
(vii) and since Uapp

Eρ
(X,Y )⊆ L(X,Y ), we have

ρ
((

αn(Ti – Tj)
)∞
n=

) ≥ ρ
(
α(Ti – Tj), , , , . . .

)
= ρ

(‖Ti – Tj‖, , , , . . .
) ≥ ζ‖Ti – Tj‖ρ(, , , , . . .),

then (Tm) is also Cauchy sequence in L(X,Y ). Since the space L(X,Y ) is a Banach space,
then there exists T ∈ L(X,Y ) such that ‖Tm – T‖ m→∞−→  and since (αn(Tm))∞n= ∈ E for all
m ∈N, ρ is continuous at θ and using Definition .(iii), we have

ρ
(
αn(T)

)∞
n= = ρ

(
αn(T – Tm + Tm)

)∞
n= ≤ kρ

(
α[ n ](Tm – T)

)∞
n= + kρ

(
α[ n ](Tm)

)∞
n=

≤ kρ
((‖Tm – T‖)∞

n=

)
+ kρ

(
αn(Tm)

)∞
n= < ε, for some k ≥ .

Hence (αn(T))∞n= ∈ E as such T ∈Uapp
Eρ

(X,Y ). �

Corollary . Let X be a normed space, Y a Banach space and M be an Orlicz function
such thatM satisfies�-condition. ThenM is continuous at θ = (, , , . . .) and Uapp

�M
(X,Y )

is complete.

Corollary . Let X be a normed space, Y a Banach space and (pn) be an increasing
sequence of positive real numbers with limn→∞ suppn < ∞ and limn→∞ infpn > , then
Uapp

ces(pn) (X,Y ) is complete.
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