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Abstract
Let y1, y2, y3,a1,a2,a3 ∈ (0,∞) be such that y1y2y3 = a1a2a3 and

y1 + y2 + y3 ≥ a1 + a2 + a3, y1y2 + y2y3 + y1y3 ≥ a1a2 + a2a3 + a1a3.

Then

(log y1)2 + (log y2)2 + (log y3)2 ≥ (loga1)2 + (loga2)2 + (loga3)2.

This can also be stated in terms of real positive definite 3× 3-matrices P1, P2: If their
determinants are equal, detP1 = detP2, then

trP1 ≥ trP2 and tr CofP1 ≥ tr CofP2 �⇒ ‖logP1‖2F ≥ ‖logP2‖2F ,

where log is the principal matrix logarithm and ‖P‖2F =
∑3

i,j=1 P
2
ij denotes the

Frobenius matrix norm. Applications in matrix analysis and nonlinear elasticity are
indicated.
MSC: 26D05; 26D07
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1 Introduction
Convexity is a powerful source for obtaining new inequalities; see, e.g., [, ]. In applica-
tions coming from nonlinear elasticity, we are faced, however, with variants of the squared
logarithm function; see the last section. The function (log(x)) is neither convex nor con-
cave. Nevertheless, the sum of squared logarithms inequality holds. We will proceed as
follows: In the first section, we will give several equivalent formulations of the inequality,
for example, in terms of the coefficients of the characteristic polynomial (Theorem ), in
terms of elementary symmetric polynomials (Theorem ), in terms of means (Theorem )
or in terms of the Frobenius matrix norm (Theorem ). A proof of the inequality will be
given in Section , and some counterexamples for slightly changed variants of the inequal-
ity are discussed in Section . In the last section, an application of the sum of squared loga-
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rithms inequality in matrix analysis and in the mathematical theory of nonlinear elasticity
is indicated.

2 Formulations of the problem
All theorems in this section are equivalent.

Theorem  For n =  or n =  let P,P ∈ R
n×n be positive definite real matrices. Let the

coefficients of the characteristic polynomials of P and P satisfy

trP ≥ trP and trCofP ≥ trCofP and detP = detP.

Then

‖logP‖F ≥ ‖logP‖F .

For n = , we will now give equivalent formulations of this statement. The case n =  can
be treated analogously. For its proof, see Remark . By orthogonal diagonalization of P

and P, the inequalities can be rewritten in terms of the eigenvalues y, y, y and a, a,
a, respectively.

Theorem  Let the real numbers a,a,a >  and y, y, y >  be such that

y + y + y ≥ a + a + a,

yy + yy + yy ≥ aa + aa + aa, ()

yyy = aaa.

Then

(log y) + (log y) + (log y) ≥ (loga) + (loga) + (loga). ()

The elementary symmetric polynomials, see, e.g., [, p.]

e(y, y, y) = ,

e(y, y, y) = y + y + y,

e(y, y, y) = yy + yy + yy,

e(y, y, y) = yyy

are known to have the Schur-concavity property (i.e., –ek is Schur-convex) [, ]; see ().
It is possible to express the problem in terms of these elementary symmetric polynomials
as follows.

Theorem  Let a,a,a >  and y, y, y >  satisfy

e(y, y, y) ≥ e(a,a,a), e(y, y, y) ≥ e(a,a,a),

e(y, y, y) = e(a,a,a).

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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Then

e
(
(log y), (log y), (log y)

) ≥ e
(
(loga), (loga), (loga)

)
.

Because yyy = aaa > , we have

yy + yy + yy ≥ aa + aa + aa ⇔ 
y

+

y

+

y

≥ 
a

+

a

+

a

.

Thus, we obtain the following theorem.

Theorem  Let the real numbers a,a,a >  and y, y, y >  be such that

y + y + y ≥ a + a + a,


y

+

y

+

y

≥ 
a

+

a

+

a

, ()

yyy = aaa.

Then

(log y) + (log y) + (log y) ≥ (loga) + (loga) + (loga). ()

The conditions () are also simple expressions in terms of arithmetic, harmonic and
geometric and quadratic mean

A(y, y, y) =
y + y + y


, H(y, y, y) =



y
+ 

y
+ 

y

,

G(y, y, y) = √yyy, Q(y, y, y) =
√


(
y + y + y

)
.

Theorem  Let a,a,a >  and y, y, y > . Then A(y, y, y) ≥ A(a,a,a), H(a,a,
a) ≥ H(y, y, y) (‘reverse!’) and G(y, y, y) =G(a,a,a) imply

Q(log y, log y, log y) ≥ Q(loga, loga, loga).

We denote by

ai =: d
i , yi =: xi

and arrive at

Theorem  Let the real numbers di and xi be such that d,d,d > , x,x,x >  and

x + x + x ≥ d
 + d

 + d
,

xx

 + xx


 + xx


 ≥ d

d

 + d

d

 + d

d

, ()

xxx = ddd.
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Then

(logx) + (logx) + (logx) ≥ (logd) + (logd) + (logd). ()

If we again view xi and di as eigenvalues of positive definite matrices, an equivalent
formulation of the problem can be given in terms of their Frobenius matrix norms:

Theorem  For n ∈ {, }, let P,P ∈ Rn×n be positive definite real matrices. Let

‖P‖F ≥ ‖P‖F and ‖P–
 ‖F ≥ ‖P–

 ‖F and detP = detP.

Then

‖logP‖F ≥ ‖logP‖F .

Let us reconsider the formulation from Theorem . If we denote

ci := logai, zi := log yi,

from H(a,a,a)≥ H(y, y, y), we obtain

e–z + e–z + e–z ≥ e–c + e–c + e–c .

Theorem  Let the real numbers c, c, c and z, z, z be such that

ez + ez + ez ≥ ec + ec + ec ,

e–z + e–z + e–z ≥ e–c + e–c + e–c , ()

z + z + z = c + c + c.

Then

z + z + z ≥ c + c + c. ()

In order to prove Theorem , one can assume without loss of generality that

z + z + z = c + c + c = . ()

Thus, we have the equivalent formulation

Theorem  Let the real numbers c̄, c̄, c̄ and z̄, z̄, z̄ be such that

ez̄ + ez̄ + ez̄ ≥ ec̄ + ec̄ + ec̄ ,

e–z̄ + e–z̄ + e–z̄ ≥ e–c̄ + e–c̄ + e–c̄ , ()

z̄ + z̄ + z̄ = c̄ + c̄ + c̄ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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Then

z̄ + z̄ + z̄ ≥ c̄ + c̄ + c̄. ()

Let us prove that Theorem  can be reformulated as Theorem . Indeed, let us assume
that Theorem  is valid and show that the statement of Theorem  also holds true. We
denote by s the sum s = z + z + z = c + c + c and we designate

z̄i = zi –
s

, c̄i = ci –

s


(i = , , ).

Then the real numbers z̄i and c̄i satisfy the hypotheses of Theorem  and we obtain z̄ +
z̄ + z̄ ≥ c̄ + c̄ + c̄. This inequality is equivalent to

∑
i=

(
zi –

s


)

≥
∑
i=

(
ci –

s


)

,

which, by virtue of the condition (), reduces to

z + z + z ≥ c + c + c.

Thus, Theorem  is also valid.
By virtue of the logical equivalence

(A∧ B ⇒ C) ⇔ (¬C ⇒ ¬A∨ ¬B)

for any statements A, B, C, we can formulate the inequality () (i.e., Theorem ) in the
following equivalent manner.

Theorem  Let the real numbers c, c, c and z, z, z be such that

z + z + z = c + c + c =  and z + z + z < c + c + c. ()

Then one of the following inequalities holds:

ez + ez + ez < ec + ec + ec or

e–z + e–z + e–z < e–c + e–c + e–c .
()

We use the statement of Theorem  for the proof.
Before continuing, let us show that our new inequality is not a consequence of majoriza-

tion and Karamata’s inequality []. Consider z = (z, . . . , zn) ∈ R
n
+ and c = (c, . . . , cn) ∈ R

n
+

arranged already in decreasing order z ≥ z ≥ · · · ≥ zn and c ≥ c ≥ · · · ≥ cn. If

k∑
i=

zi ≥
k∑
i=

ci ( ≤ k ≤ n – ),
n∑
i=

zi =
n∑
i=

ci, ()
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we say that z majorizes c, denoted by z  c. The following result is well known [, p.],
[, ]. If f :R →R is convex, then

z  c ⇒
n∑
i=

f (zi)≥
n∑
i=

f (ci). ()

A function g :Rn �→ R which satisfies

z  c ⇒ g(z, . . . , zn) ≥ g(c, . . . , cn) ()

is called Schur-convex. In Theorem , the convex function to be considered would be
f (t) = t. Do conditions () (upon rearrangement of z, c ∈ R


+ if necessary) yield already

majorization z  c? This is not the case, as we explain now. Let the real numbers z ≥ z ≥
z and c ≥ c ≥ c be such that

ez + ez + ez ≥ ec + ec + ec ,

e–z + e–z + e–z ≥ e–c + e–c + e–c , ()

z + z + z = c + c + c.

These conditions do not imply the majorization z  c,

z ≥ c, z + z ≥ c + c, z + z + z = c + c + c. ()

Therefore, our inequality (i.e., z + z + z ≥ c + c + c) does not follow frommajorization
in disguise.
Indeed, let

z =


+
.

√

, z =



+
.

√

, z = – –

.√


and

c =


+



√

, c = –



+



√

, c = –

√

.

Then we have z > z > z and c > c > c, together with

ez + ez + ez = . . . . > . . . . = ec + ec + ec ,

e–z + e–z + e–z = . . . . > . . . . = e–c + e–c + e–c ,

z + z + z = c + c + c = ,

but the majorization inequalities () are not satisfied, since z < c.

3 Proof of the inequality
Of course, wemay assumewithout loss of generality that c ≥ c ≥ c and z ≥ z ≥ z (and
the same for ai, di, xi, yi).

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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The proof begins with the crucial lemma.

Lemma  Let the real numbers a ≥ b≥ c and x≥ y ≥ z be such that

a + b + c = x + y + z = , a + b + c = x + y + z. ()

Then the inequality

ea + eb + ec ≤ ex + ey + ez ()

is satisfied if and only if the relation

a ≤ x ()

holds, or equivalently, if and only if

c≤ z ()

holds.

Proof Let us denote by r :=
√


 (a + b + c) > . Then, from (), it follows

b + c = –a, b + c =


r – a,

y + z = –x, y + z =


r – x,

and we find

b =


(
–a +

√

(
r – a

))
, c =



(
–a –

√

(
r – a

))
,

y =


(
–x +

√

(
r – x

))
, z =



(
–x –

√

(
r – x

))
.

()

In view of () and a ≥ b ≥ c, x ≥ y≥ z, one can show that

a,x ∈
[
r

, r

]
, b, y ∈

[
–
r

,
r


]
, c, z ∈

[
–r, –

r


]
. ()

Indeed, let us verify the relations (). We have

r


≤ a≤ r ⇔ 


(
a + b + c

) ≤ a ≤ 

(
a + b + c

)
⇔ b + c ≤ a and a ≤ 

(
b + c

)
⇔ b + (a + b) ≤ a and (b + c) ≤ 

(
b + c

)
⇔ a – ab – b ≥  and b + c ≥ bc

⇔ (a – b)(a + b) ≥  and (b – c) ≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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which hold true since a≥ b and a + b≥ a + b + c = . Similarly, we have

–
r


≤ b≤ r


⇔ b ≤ r


⇔ b ≤ 


(
a + b + c

) ⇔ b ≤ a + c

⇔ b ≤ a + (a + b) ⇔ a + ab – b ≥ 

⇔ (a – b)(a + b)≥ ,

which holds true since a ≥ b and a + b≥ a + b + c = . Also, we have

–r ≤ c≤ –
r


⇔ r ≥ c ≥ r


⇔ 


(
a + b + c

) ≥ c ≥ 


(
a + b + c

)
⇔ 

(
a + b

) ≥ c and c ≥ a + b

⇔ 
(
a + b

) ≥ (a + b) and (a + b) ≥ a + b

⇔ (a – b) ≥  and a + ab + b ≥ 

⇔ (a – b) ≥  and (a + b)(a + b)≥ ,

which hold true since a + b ≥ a + b + c =  and a + b ≥ a + b + c = . One can show in
the same way that x ∈ [ r , r], y ∈ [– r

 ,
r
 ], z ∈ [–r, – r

 ], so that () has been verified.
Weprove now that the inequality () holds if and only if () holds. Indeed, using (),

and () we get

c≤ z ⇔ –a –
√

(
r – a

) ≤ –x –
√

(
r – x

)

⇔ a
r
+

√

(
 –

(
a
r

))
≥ x

r
+

√

(
 –

(
x
r

))
⇔ a ≤ x,

since the function t �→ t +
√
( – t) is decreasing for t ∈ [  , ].

Let us prove next that the inequalities () and () are equivalent. To accomplish this,
we introduce the function f : [ r , r] →R by

f (x) = ex + e
(
–x+

√
(r–x)

)
/ + e

(
–x–

√
(r–x)

)
/. ()

Taking into account () and (), the inequality () can be written equivalently as

f (a)≤ f (x), ()

which is equivalent to

a ≤ x,

since the function f defined by () is monotone increasing on [ r , r], as we show next. To
this aim, we denote by

cosϕ :=
x
r

∈
[


, 

]
, i.e. ϕ := arccos

(
x
r

)
∈

[
,

π



]
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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Then the function () can be written as

f (x) = h(r,ϕ), where h : (,∞)×
[
,

π



]
→R,

h(r,ϕ) = er cosϕ + er cos(ϕ+π/) + er cos(ϕ–π/).
()

We have to show that h(r,ϕ) is decreasing with respect to ϕ ∈ [, π
 ]. We compute the first

derivative

∂

∂ϕ
h(r,ϕ)

= –r
[
er cosϕ sinϕ + er cos(ϕ+π/) sin

(
ϕ +

π


)
+ er cos(ϕ–π/) sin

(
ϕ –

π


)]
. ()

The function () has the same sign as the function

F(r,ϕ) :=

r
e–r cosϕ

∂

∂ϕ
h(r,ϕ), ()

i.e., the function F : (,∞)× [, π
 ] →R given by

F(r,ϕ) = – sinϕ – e–r
√
 sin(ϕ+π/) sin

(
ϕ +

π


)
– er

√
 sin(ϕ–π/) sin

(
ϕ –

π


)
. ()

In order to show that F(r,ϕ) ≤  for all (r,ϕ) ∈ (,∞) × [, π
 ], we remark that

limr↘ F(r,ϕ) =  for fixed ϕ ∈ [, π
 ] and we compute

∂

∂r
F(r,ϕ) =

√

[
e–r

√
 sin(ϕ+π/) sin

(
ϕ +

π



)
sin

(
ϕ +

π


)

– er
√
 sin(ϕ–π/) sin

(
ϕ –

π



)
sin

(
ϕ –

π


)]

=
√

[
e–r

√
 sin(ϕ+π/) 



(
– cos(ϕ + π ) + cos

π



)

– er
√
 sin(ϕ–π/) 



(
– cos(ϕ – π ) + cos

–π



)]

=
√



(
cosϕ +




)[
e–r

√
 sin(ϕ+π/) – er

√
 sin(ϕ–π/)] ≤ ,

since ϕ ∈ [, π
 ] implies cosϕ ≥ – 

 and – sin(ϕ + π
 ) ≤ sin(ϕ – π

 ).
Consequently, the function F(r,ϕ) is decreasing with respect to r and for any (r,ϕ) ∈

(,∞)× [, π
 ] we have that

F(r,ϕ)≤ lim
r↘

F(r,ϕ) = . ()

From () and (), it follows that h(r,ϕ) is decreasing with respect to ϕ ∈ [, π
 ]. This

means that f (x) is increasing as a function of x ∈ [ r , r], i.e., the relation () is indeed
equivalent to a ≤ x and the proof is complete. �
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Consequence  Let the real numbers a≥ b ≥ c and x ≥ y≥ z be such that

a + b + c = x + y + z = , a + b + c = x + y + z.

Then one of the following inequalities holds:

ea + eb + ec ≤ ex + ey + ez, ()

or

e–a + e–b + e–c ≤ e–x + e–y + e–z. ()

The inequalities () and () are satisfied simultaneously if and only if a = x, b = y and
c = z.

Proof According to Lemma , the inequality () is equivalent to

a ≤ x, ()

while the inequality () is equivalent to

–a ≤ –x. ()

Since one of the relations () and () must hold, we have proved that one of the inequal-
ities () and () is satisfied. They are simultaneously satisfied if and only if both () and
() hold true, i.e., a = x (and consequently b = y, c = z). �

Consequence  Let the real numbers a≥ b ≥ c and x ≥ y≥ z be such that

a + b + c = x + y + z = , a + b + c = x + y + z

and ea + eb + ec = ex + ey + ez.

Then we have a = x, b = y and c = z.

Proof Since by hypothesis ea+eb+ec ≤ ex+ey+ez holds, we can apply Lemma  to deduce
a ≤ x and c ≤ z.
On the other hand, by virtue of the inverse inequality ex + ey + ez ≤ ea + eb + ec and

Lemma , we obtain x≤ a and z ≤ c. In conclusion, we get a = x, c = z and b = y. �

Proof of Theorem  In order to prove (), we define the real numbers

ti = kzi (i = , , ), where k =

√
c + c + c
z + z + z

> . ()

Then we have

t + t + t = c + c + c =  and t + t + t = c + c + c. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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If we apply the Consequence  for the numbers c ≥ c ≥ c and t ≥ t ≥ t, then we
obtain that

et + et + et ≤ ec + ec + ec or

e–t + e–t + e–t ≤ e–c + e–c + e–c .
()

In what follows, let us show that

ez + ez + ez < et + et + et . ()

Using the notations ρ :=
√


 (z


 + z + z) and

cos ζ :=
z
ρ

∈
[


, 

]
, i.e., ζ := arccos

(
z
ρ

)
∈

[
,

π



]
,

we have kρ :=
√


 (t


 + t + t) and cos ζ = t

kρ . With the help of the function h defined in
(), we can write the inequality () in the form

eρ cos ζ + eρ cos(ζ+π/) + eρ cos(ζ–π/) < ekρ cos ζ + ekρ cos(ζ+π/) + ekρ cos(ζ–π/), or

h(ρ, ζ ) < h(kρ, ζ ), ∀(ρ, ζ ) ∈ (,∞)×
[
,

π



]
, k > .

()

The relation () asserts that the function h defined in () is increasing with respect to
the first variable r ∈ (,∞). To show this, we compute the derivative

∂

∂r
h(r,ϕ) = er cosϕ cosϕ + er cos(ϕ+π/) cos

(
ϕ +

π


)
+ er cos(ϕ–π/) cos

(
ϕ –

π


)
. ()

By virtue of the Chebyshev’s sum inequality, we deduce from () that

∂

∂r
h(r,ϕ) > . ()

Indeed, the Chebyshev’s sum inequality [, .] asserts that: if a ≥ a ≥ · · · ≥ an and
b ≥ b ≥ · · · ≥ bn then

n
n∑
k=

akbk ≥
( n∑

k=

ak

)( n∑
k=

bk

)
.

In our case, we derive the following result: for any real numbers x, y, z such that x+y+z = ,
the inequality

xex + yey + zez ≥ 

(x + y + z)

(
ex + ey + ez

)
= , ()

holds true, with equality if and only if x = y = z = .
Applying the result () to the function (), we deduce the relation (). This means

that h(r,ϕ) is an increasing function of r, i.e. the inequality () holds, and hence, we have
proved ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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One can show analogously that the inequality

e–z + e–z + e–z < e–t + e–t + e–t ()

is also valid. From (), () and (), it follows that the assertion () holds true. Thus,
the proof of Theorem  is complete. �

Since the statements of the Theorems  and  are equivalent, we have proved also the
inequality ().

Remark  The inequality () becomes an equality if and only if zi = ci, i = , , .

Proof Indeed, assume that z +z +z = c +c +c. Thenwe can apply the Consequence 
and we deduce that

ez + ez + ez ≤ ec + ec + ec or e–z + e–z + e–z ≤ e–c + e–c + e–c . ()

Taking into account (), in conjunction with (), we find

ez + ez + ez = ec + ec + ec or e–z + e–z + e–z = e–c + e–c + e–c . ()

By virtue of (), we can apply the Consequence  to derive z = c, and consequently
z = c, z = c. �

Let us prove the following version of the inequality () for two pairs of numbers d, d
and x, x:

Remark  If the real numbers d ≥ d >  and x ≥ x >  are such that

x + x ≥ d
 + d

 and xx = dd = , ()

then the inequality

(logx) + (logx) ≥ (logd) + (logd) ()

holds true. Note that the additional condition


x

+

x

≥ 
d

+


d


is automatically fulfilled.

Proof Since xx = dd =  and d ≥ d > , x ≥ x > , we have x ≥ , d ≥  and

logx = – logx ≥ , logd = – logd ≥ ,

so that the inequality () is equivalent to logx ≥ logd, i.e., we have to show that x ≥ d.

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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Indeed, if we insert x = 
x

and d = 
d

into the inequality () then we find

x +

x

≥ d
 +


d

,

which means that x ≥ d since the function t �→ t + 
t is increasing for t ∈ [,∞). This

completes the proof. �

Alternative proof of Remark  Let x = d = . Then () implies x +x +x ≥ d
 +d

 +d


and xxx = ddd =  as well as

xx

 + xx


 + xx


 =  + x + x ≥  + d

 + d
 = d

d

 + d

d

 + d

d

, ()

because xx =  = d
d

, and Theorem  provides the assertion. �

4 Some counterexamples for weakened assumptions
Example  Unlike in the D case in Remark , for two triples of numbers the second
condition () of Theorem , namely yy + yy + yy ≥ aa + aa + aa, cannot be
removed. Let

y = e, y = , y = e–, a = e, a = e, a = e–.

Then yyy = aaa =  and

y + y + y > e ≥ ee > e > a + a + a,

but

(log y) + (log y) + (log y) =  +  + 

<  +  +  = (loga) + (loga) + (loga).

Example  The condition yyy = aaa cannot be weakened to yyy ≥ aaa. In-
deed, let y = y = a = a = , y = e, a = e–. Then

y + y + y = e +  + ≥  +  + e– = a + a + a,

yy + yy + yy = e + e +  ≥  + e– + e– = aa + aa + aa,

yyy = e≥ e– = aaa.

But nevertheless

(log y) + (log y) + (log y) =  +  +  <  +  +  = (loga) + (loga) + (loga).

A counterexample for the two variable case can be constructed analogously.

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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Example  Even with an analogous condition, the inequality () does not hold for n = 
numbers (without further assumptions). Indeed, let

y = e, y = y = e, y = e–, a = a = e, a = e, a = e–.

Then yyyy = aaaa = . Also,

y + y + y + y = e + e + e + e– >  + e + e + e– = a + a + a + a.

Furthermore,

yy + yy + yy + yy + yy + yy = e + e + e– + e + e– + e–

and

aa + aa + aa + aa + aa + aa = e + e + e– + e + e– + e–.

Since e > e + , we have e > e + e + e and, therefore,

yy + yy + yy + yy + yy + yy ≥ aa + aa + aa + aa + aa + aa.

Nevertheless, for the sum of squared logarithms, the ‘reverse’ inequality

(log y) + (log y) + (log y) + (log y) =  +  +  +  = 

<  =  +  +  + 

= (loga) + (loga) + (loga) + (loga)

holds true.

Example  The inequality () does not remain true either, if the function log(y) is re-
placed by its linearization (y – ). Indeed, let y = , y = , y = 

 , a = , a = , a = 
 .

Then

y + y + y >  > . = a + a + a

and

yy + yy + yy > ≥ . = aa + aa + aa.

But

(y – ) + (y – ) + (y – ) =  +  +
(



)

<  <  +  +
(




)

= (a – ) + (a – ) + (a – ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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5 Conjecture for arbitrary n
The structure of the inequality in dimensions n =  and n =  and extensive numerical
sampling strongly suggest that the inequality holds for all n ∈ N if the n corresponding
conditions are satisfied. More precisely, in terms of the elementary symmetric polynomi-
als, we expect the following:

Conjecture  Let n ∈N and yi,ai >  for i = , . . . ,n. If for all i = , . . . ,n –  we have

ei(y, . . . , yn) ≥ ei(a, . . . ,an) and en(y, . . . , yn) = en(a, . . . ,an),

then

n∑
i=

(log yi) ≥
n∑
i=

(logai).

6 Applications
The investigation in this paper has been motivated by some recent applications. The new
sum of squared logarithms inequality is one of the fundamental tools in deducing a novel
optimality result in matrix analysis and the conditions in the form () had been deduced
in the course of that work. Optimality in thematrix problem suggested the sum of squared
logarithms inequality. Indeed, based on the present result in [], it has been shown that
for all invertible Z ∈ C

× and for any definition of the matrix logarithm as possibly mul-
tivalued solution X ∈ C

× of expX = Z it holds

min
Q∗Q=I

∥∥logQ∗Z
∥∥
F =

∥∥logU∗
pZ

∥∥
F = ‖logH‖F ,

min
Q∗Q=I

∥∥sym logQ∗Z
∥∥
F =

∥∥sym logU∗
pZ

∥∥
F = ‖logH‖F ,

()

where symX = 
 (X +X∗) is the Hermitian part of X ∈C

× and Up is the unitary factor in
the polar decomposition of Z into unitary and Hermitian positive definite matrix H

Z =UpH . ()

This result () generalizes the fact that for any complex logarithm and for all z ∈C \ {}

min
ϑ∈(–π ,π ]

∣∣logC[
e–iϑz

]∣∣ = ∣∣logR |z|∣∣, min
ϑ∈(–π ,π ]

∣∣Re logC
[
e–iϑz

]∣∣ = ∣∣logR |z|∣∣. ()

The optimality result () can now also be viewed as another characterization of the uni-
tary factor in the polar decomposition. In addition, in a forthcoming contribution [], we
use () to calculate the geodesic distance of the isochoric part of the deformation gra-
dient F

detF



∈ SL(,R) to SO(,R) in the canonical left-invariant Riemannian metric on
SL(,R), to the effect that

distgeod

(
F

detF 

,SO(,R)

)
=

∥∥dev log√
FTF

∥∥
F , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/168
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where devX = X– 
 (trX)I is the orthogonal projection ofX ∈R

× to trace freematrices.
Thereby, we provide a rigorous geometric justification for the preferred use of theHencky-
strain measure ‖log√

FTF‖F in nonlinear elasticity and plasticity theory [].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed fully to all parts of the manuscript. Notably all ideas have emerged by continuous discussions
among them.

Author details
1Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Essen,
Germany. 2Department of Mathematics, University ‘A.I. Cuza’ of Iaşi, Iaşi, Romania.
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