On a new application of almost increasing sequences

HS Özarslan and A Keten*

*Correspondence:
keten@erciyes.edu.tr
Department of Mathematics, Erciyes University, Kayseri, 38039, Turkey

Abstract

In (Bor in Int. J. Math. Math. Sci. 17:479-482, 1994), Bor has proved the main theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of an infinite series. In the present paper, we have generalized this theorem on the $\varphi-\left|A, p_{n}\right|_{k}$ summability factors under weaker conditions by using an almost increasing sequence instead of a positive non-decreasing sequence.

MSC: 40D15; 40F05; 40G99
Keywords: absolute matrix summability; almost increasing sequences; infinite series

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. We denote by t_{n} the nth $(C, 1)$ mean of the sequence $\left(s_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right) . \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [2]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty . \tag{4}
\end{equation*}
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence
$s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty, \tag{6}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) .
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{7}
\end{equation*}
$$

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-\left|A, p_{n}\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability. Also, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability. Furthermore, if we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of $n, \varphi-\left|A, p_{n}\right|_{k}$ reduces to $|C, 1|_{k}$ summability. Finally, if we take $\varphi_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|R, p_{n}\right|_{k}$ summability (see [6]).

Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots . \tag{9}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{11}
\end{equation*}
$$

2 Known result

Many works have been done dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series (see [7-22]). Among them, in [21], the following main theorem has been proved.

Theorem A Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{12}\\
& \beta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{13}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } n \rightarrow \infty, \tag{14}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{15}
\end{align*}
$$

are satisfied. Furthermore, if $\left(p_{n}\right)$ is a sequence of positive numbers such that

$$
\begin{align*}
& P_{n}=O\left(n p_{n}\right) \quad \text { as } n \rightarrow \infty, \tag{16}\\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|s_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty, \tag{17}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3 The main result

The aim of this paper is to generalize Theorem A for $\varphi-\left|A, p_{n}\right|_{k}$ summability under weaker conditions. For this, we need the concept of an almost increasing sequence. A positive sequence $\left(c_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(b_{n}\right)$ and two positive constants A and B such that $A b_{n} \leq c_{n} \leq B b_{n}$ (see [23]). Obviously, every increasing sequence is an almost increasing sequence but the converse need not be true as can be seen from the example $b_{n}=n e^{(-1)^{n}}$. Also, one can find some results dealing with absolute almost convergent sequences (see [24]). So, we are weakening the hypotheses of Theorem A replacing the increasing sequence by an almost increasing sequence. Now, we shall prove the following theorem.

Theorem Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
& \bar{a}_{n 0}=1, \quad n=0,1, \ldots, \tag{18}\\
& a_{n-1, v} \geq a_{n v} \quad \text { for } n \geq v+1, \tag{19}\\
& a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{20}\\
& \left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right) . \tag{21}
\end{align*}
$$

Let $\left(X_{n}\right)$ be an almost increasing sequence and $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If conditions (12)-(16) and

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{22}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-\left|A, p_{n}\right|_{k}, k \geq 1$.

Remark It should be noted that if we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, $\varphi_{n}=\frac{p_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{\nu}}{P_{n}}$, then we get Theorem A. In this case, conditions (21) and (22) reduce to conditions (16) and (17), respectively. Also, the condition ' $\left(\frac{\varphi p_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence' and the conditions (18)-(20) are automatically satisfied.

Lemma [22] Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, we have the following:

$$
\begin{align*}
& n \beta_{n} X_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{23}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{24}
\end{align*}
$$

Proof of the Theorem Let $\left(T_{n}\right)$ denote A-transform of the series $\sum a_{n} \lambda_{n}$. Then we have, by (10) and (11),

$$
\bar{\Delta} T_{n}=\sum_{v=1}^{n} \hat{a}_{n v} \lambda_{v} a_{v}
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} T_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \lambda_{v}\right) s_{v}+\hat{a}_{n n} \lambda_{n} s_{n} \\
& =\sum_{v=1}^{n-1}\left(\hat{a}_{n v} \lambda_{v}-\hat{a}_{n, v+1} \lambda_{v+1}\right) s_{v}+\hat{a}_{n n} \lambda_{n} s_{n} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} s_{v} \Delta \lambda_{v}+a_{n n} \lambda_{n} s_{n} \\
& =T_{n}(1)+T_{n}(2)+T_{n}(3)
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|T_{n}(r)\right|^{k}<\infty \quad \text { for } r=1,2,3
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k, where $1 / k+1 / k=1$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|T_{n}(1)\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left(\frac{p_{v}}{P_{v}}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k}\left|s_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of the theorem and the lemma. Again, applying Hölder's inequality and using the fact that $v \beta_{v}=O\left(\frac{1}{X_{v}}\right)=O(1)$ by (23), we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|T_{n}(2)\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|s_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\left.\sum_{v=1}^{n-1}\left|\hat{a}_{n, v}\right|\left|\beta_{v}\right| s_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \beta_{v}\left|s_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m} \nu \beta_{v}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} \nu \beta_{v}\left|s_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|s_{v}\right|^{k}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left(\frac{p_{v}}{P_{v}}\right) \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k}\left|s_{r}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and the lemma. Finally, as in $T_{n}(1)$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left|T_{n}(3)\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left|a_{n n} \lambda_{n} s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|s_{n}\right|^{k} \\
& =O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem. If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get a result concerning the $\left|A, p_{n}\right|_{k}$ summability factors. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have another result dealing with $\left|\bar{N}, p_{n}, \varphi_{n}\right|_{k}$ summability. If we take $a_{n \nu}=\frac{p_{\nu}}{P_{n}}$ and $p_{n}=1$ for all values of n , then we get a result dealing with $\left|C, 1, \varphi_{n}\right|_{k}$ summability. If we take $\varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n , then we get a result for $|C, 1|_{k}$ summability.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Received: 3 September 2012 Accepted: 6 November 2012 Published: 9 January 2013

References

1. Flett, TM: On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. Lond. Math. Soc. 7, 113-141 (1957)
2. Hardy, GH: Divergent Series. Oxford University Press, Oxford (1949)
3. Bor, H: On two summability methods. Math. Proc. Camb. Philos. Soc. 97, 147-149 (1985)
4. Sulaiman, WT: Inclusion theorems for absolute matrix summability methods of an infinite series (IV). Indian J. Pure Appl. Math. 34(11), 1547-1557 (2003)
5. Özarslan, HS, Keten, A: A new application of almost increasing sequences. An. ştiinţ. Univ. "Al.I. Cuza" Iaşi, Mat. (2012, in press)
6. Bor, H: On the relative strength of two absolute summability methods. Proc. Am. Math. Soc. 113, 1009-1012 (1991)
7. Bor, H: On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Proc. Am. Math. Soc. 94, 419-422 (1985)
8. Bor, H : A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series. Indian J. Pure Appl. Math. 18, 330-336 (1987)
9. Bor, H: On absolute summability factors. Analysis 7, 185-193 (1987)
10. Bor, H: Absolute summability factors for infinite series. Indian J. Pure Appl. Math. 19, 664-671 (1988)
11. Bor, H, Kuttner, B: On the necessary conditions for absolute weighted arithmetic mean summability factors. Acta Math. Hung. 54, 57-61 (1989)
12. Bor, H: A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Bull. Calcutta Math. Soc. 82, 357-362 (1990)
13. Bor, H: Absolute summability factors for infinite series. Math. Jpn. 36, 215-219 (1991)
14. Bor, H: Factors for $\left|\mathbb{N}, p_{n}\right|_{k}$ summability of infinite series. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 16, 151-154 (1991)
15. Bor, H: On absolute summability factors for $\left|\bar{N}, p_{n}\right|_{k}$ summability. Comment. Math. Univ. Carol. 32(3), 435-439 (1991)
16. Bor, H : On the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors for infinite series. Proc. Indian Acad. Sci. Math. Sci. 101, 143-146 (1991)
17. Bor, H: A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Rend. Mat. Appl. (7) 12, 937-942 (1992)
18. Bor, H: On absolute summability factors. Proc. Am. Math. Soc. 118, 71-75 (1993)
19. Bor, H: On the absolute Riesz summability factors. Rocky Mt. J. Math. 24, 1263-1271 (1994)
20. Bor, H: On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Kuwait J. Sci. Eng. 23, 1-5 (1996)
21. Bor, H: A note on absolute summability factors. Int. J. Math. Math. Sci. 17, 479-482 (1994)
22. Mazhar, SM: A note on absolute summability factors. Bull. Inst. Math. Acad. Sin. 25(3), 233-242 (1997)
23. Bari, NK, Stečkin, SB: Best approximation and differential properties of two conjugate functions. Tr. Mosk. Mat. Obŝ. 5, 483-522 (1956) (in Russian)
24. Çakalli, H, Çanak, G: (p_{n}, s)-absolute almost convergent sequences. Indian J. Pure Appl. Math. 28(4), 525-532 (1997)
doi:10.1186/1029-242X-2013-13
Cite this article as: Özarslan and Keten: On a new application of almost increasing sequences. Journal of Inequalities and Applications 2013 2013:13.

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

