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Abstract
In this paper, we define a generalized additive set-valued functional equation, which
is related to the following generalized additive functional equation:

f (x1 + · · · + xl) = (l – 1)f
(x1 + · · · + xl–1

l – 1

)
+ f (xl)

for a fixed integer l with l > 1, and prove the Hyers-Ulam stability of the generalized
additive set-valued functional equation.
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1 Introduction and preliminaries
The theory of set-valued functions has been much related to the control theory and the
mathematical economics. After the pioneering papers written by Aumann [] and Debreu
[], set-valued functions in Banach spaces have been developed in the last decades. We
can refer to the papers by Arrow and Debreu [], McKenzie [], the monographs by Hin-
denbrand [], Aubin and Frankowska [], Castaing and Valadier [], Klein and Thompson
[] and the survey by Hess [].
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave the first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was general-
ized by Aoki [] for additive mappings and by Th.M. Rassias [] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias the-
orem was obtained by Găvruta [] by replacing the unbounded Cauchy difference with a
general control function in the spirit of Th.M. Rassias’ approach. The stability problems
of several functional equations have been extensively investigated by a number of authors,
and there are many interesting results concerning this problem (see [–]).
Let Y be a Banach space. We define the following:
Y : the set of all subsets of Y ;
Cb(Y ): the set of all closed bounded subsets of Y ;
Cc(Y ): the set of all closed convex subsets of Y ;
Ccb(Y ): the set of all closed convex bounded subsets of Y .
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On Y we consider the addition and the scalar multiplication as follows:

C +C′ =
{
x + x′ : x ∈ C,x′ ∈ C′}, λC = {λx : x ∈ C},

where C,C′ ∈ Y and λ ∈R. Further, if C,C′ ∈ Cc(Y ), then we denote C ⊕C′ = C +C′.
It is easy to check that

λC + λC′ = λ
(
C +C′), (λ +μ)C ⊆ λC +μC.

Furthermore, when C is convex, we obtain (λ +μ)C = λC +μC for all λ,μ ∈R
+.

For a given set C ∈ Y , the distance function d(·,C) and the support function s(·,C) are
respectively defined by

d(x,C) = inf
{‖x – y‖ : y ∈ C

}
, x ∈ Y ,

s
(
x*,C

)
= sup

{〈
x*,x

〉
: x ∈ C

}
, x* ∈ Y *.

For every pair C,C′ ∈ Cb(Y ), we define the Hausdorff distance between C and C′ by

h
(
C,C′) = inf

{
λ >  : C ⊆ C′ + λBY ,C′ ⊆ C + λBY

}
,

where BY is the closed unit ball in Y .
The following proposition reveals some properties of the Hausdorff distance.

Proposition . For every C,C′,K ,K ′ ∈ Ccb(Y ) and λ > , the following properties hold:
(a) h(C ⊕C′,K ⊕K ′) ≤ h(C,K) + h(C′,K ′);
(b) h(λC,λK) = λh(C,K).

Let (Ccb(Y ),⊕,h) be endowed with the Hausdorff distance h. Since Y is a Banach
space, (Ccb(Y ),⊕,h) is a complete metric semigroup (see []). Debreu [] proved that
(Ccb(Y ),⊕,h) is isometrically embedded in a Banach space as follows.

Lemma . [] Let C(BY * ) be the Banach space of continuous real-valued functions on BY *

endowed with the uniform norm ‖ · ‖u. Then the mapping j : (Ccb(Y ),⊕,h)→ C(BY * ), given
by j(A) = s(·,A), satisfies the following properties:
(a) j(A⊕ B) = j(A) + j(B);
(b) j(λA) = λj(A);
(c) h(A,B) = ‖j(A) – j(B)‖u;
(d) j(Ccb(Y )) is closed in C(BY * )

for all A,B ∈ Ccb(Y ) and all λ ≥ .

Let f : � → (Ccb(Y ),h) be a set-valued function from a complete finite measure space
(�,�,ν) into Ccb(Y ). Then f is Debreu integrable if the composition j ◦ f is Bochner
integrable (see []). In this case, the Debreu integral of f in � is the unique element
(D)

∫
�
f dν ∈ Ccb(Y ) such that j((D)

∫
�
f dν) is the Bochner integral of j ◦ f . The set of

Debreu integrable functions from � to Ccb(Y ) will be denoted by D(�,Ccb(Y )). Further-
more, on D(�,Ccb(Y )), we define (f + g)(ω) = f (ω)⊕ g(ω) for all f , g ∈ D(�,Ccb(Y )). Then
we obtain that ((�,Ccb(Y )), +) is an abelian semigroup.
Set-valued functional equations have been extensively investigated by a number of au-

thors, and there are many interesting results concerning this problem (see [–]).
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In this paper, we define a generalized additive set-valued functional equation and prove
the Hyers-Ulam stability of the generalized additive set-valued functional equation.
Throughout this paper, let X be a real vector space and Y be a Banach space.

2 Stability of a generalized additive set-valued functional equation
Definition . Let f : X → Ccb(Y ). The generalized additive set-valued functional equa-
tion is defined by

f (x + · · · + xl) = (l – )f
(
x + · · · + xl–

l – 

)
⊕ f (xl) ()

for all x, . . . ,xl ∈ X. Every solution of the generalized additive set-valued functional equa-
tion is called a generalized additive set-valued mapping.

Note that there are some examples in [].

Theorem . Let ϕ : Xl → [,∞) be a function such that

ϕ̃(x, . . . ,xl) :=
∞∑
j=


lj
ϕ
(
ljx, . . . , ljxl

)
< ∞ ()

for all x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f (x + · · · + xl), (l – )f

(
x + · · · + xl–

l – 

)
⊕ f (xl)

)
≤ ϕ(x, . . . ,xl) ()

for all x, . . . ,xl ∈ X. Then there exists a unique generalized additive set-valued mapping
A : X → (Ccb(Y ),h) such that

h
(
f (x),A(x)

) ≤ 
l
ϕ̃(x, . . . ,x) ()

for all x ∈ X.

Proof Let x = · · · = xl = x in (). Since f (x) is convex, we get

h
(
f (lx), lf (x)

) ≤ ϕ(x, . . . ,x), ()

and if we replace x by lnx, n ∈N in (), then we obtain

h
(
f
(
ln+x

)
, lf

(
lnx

)) ≤ ϕ
(
lnx, . . . , lnx

)
and

h
(
f (ln+x)
ln+

,
f (lnx)
ln

)
≤ 

ln+
ϕ
(
lnx, . . . , lnx

)
.

So,

h
(
f (lnx)
ln

,
f (lmx)
lm

)
≤ 

l

n–∑
j=m


lj
ϕ
(
ljx, . . . , ljx

)
()
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for all integers n,mwith n≥ m. It follows from () and () that { f (lnx)ln } is a Cauchy sequence
in (Ccb(Y ),h).
Let A(x) = limn→∞ f (lnx)

ln for each x ∈ X. Then we claim that A is a generalized additive
set-valued mapping. Note that

h
(
f (ln(x + · · · + xl))

ln
, (l – )f

(
ln(x + · · · + xl–)

ln(l – )

)
⊕ f (lnxl)

ln

)
≤ 

ln
ϕ
(
lnx, . . . , lnxl

)
.

Since h(A⊕ B,C ⊕D)≤ h(A,C) + h(B,D), we have

h
(
A(x + · · · + xl), (l – )A

(
x + · · · + xl–

l – 

)
⊕A(xl)

)

≤ h
(
A(x + · · · + xl),

f (ln(x + · · · + xl))
ln

)

+ h
(
f (ln(x + · · · + xl))

ln
, (l – )f

(
ln(x + · · · + xl–)

ln(l – )

)
⊕ f (lnxl)

ln

)

+ h
(
(l – )f

(
ln(x + · · · + xl–)

ln(l – )

)
⊕ f (lnxl)

ln
, (l – )A

(
x + · · · + xl–

l – 

)
⊕A(xl)

)
,

which tends to zero as n → ∞. So, A is a generalized additive set-valued mapping. Letting
m =  and passing the limitm→ ∞ in (), we get the inequality ().
Now, let T : X → (Ccb(Y ),h) be another generalized additive set-valued mapping satis-

fying () and (). So,

h
(
A(x),T(x)

)
=


ln
h
(
A

(
lnx

)
,T

(
lnx

))
≤ 

ln
h
(
A

(
lnx

)
, f

(
lnx

))
+


ln
h
(
T

(
lnx

)
, f

(
lnx

))
≤ 

ln+
ϕ̃
(
lnx, . . . , lnx

)
,

which tends to zero as n → ∞ for all x ∈ X. So, we can conclude that A(x) = T(x) for all
x ∈ X, which proves the uniqueness of A, as desired. �

Corollary . Let  > p >  and θ ≥  be real numbers, and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f (x + · · · + xl), (l – )f

(
x + · · · + xl–

l – 

)
⊕ f (xl)

)
≤ θ

l∑
j=

‖xj‖p ()

for all x, . . . ,xl ∈ X. Then there exists a unique generalized additive set-valued mapping
A : X → Y satisfying

h
(
f (x),A(x)

) ≤ lθ
l – lp

‖x‖p

for all x ∈ X.
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Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �

Theorem . Let ϕ : Xl → [,∞) be a function such that

ϕ̃(x, . . . ,xl) :=
∞∑
j=

ljϕ
(
x
lj
, . . . ,

xl
j

)
< ∞

for all x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is amapping satisfying ().Then there
exists a unique generalized additive set-valued mapping A : X → (Ccb(Y ),h) such that

h
(
f (x),A(x)

) ≤ 
l
ϕ̃(x, . . . ,x)

for all x ∈ X.

Proof It follows from () that

h
(
f (x), lf

(
x
l

))
≤ ϕ

(
x
l
, . . . ,

x
l

)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let p >  and θ ≥  be real numbers, and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying (). Then there exists a unique
generalized additive set-valued mapping A : X → Y satisfying

h
(
f (x),A(x)

) ≤ lθ
lp – l

‖x‖p

for all x ∈ X.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �
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