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Abstract
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1 Introduction

Let C™ * " be the set of all m x n complex matrices with complex entries. I,, denotes
the identity matrix of order n and O, , ,, denotes the m x n matrix of all zero entries
(if no confusion occurs, we will omit the subscript). For a given a matrix A e C” *”,
the symbols A* and r(A) will stand for the conjugate transpose and the rank of the
matrix A, respectively. We recall that a generalized inverse X e C" * " of Ae C" ™"

is a matrix which satisfies some of the following four Penrose equations [1]:
()AXA=4A, (2)XAX=X, (3)(AX)*=AX, (4)(XA)"=XA.

For a subset {ij...,k} of the set {1,2,3,4}, the set of n x m matrices satisfying the equa-
tions (i), (j), ...,(k) from among the above four Penrose Equations (1)-(4) is denoted by
Afij,...k}. A matrix X from A{ij,....k} is called an {i}....k}-inverse of A and is denoted by
A%R n particular, an # x m matrix X of the set A{1} is called a g-inverse of A and
denoted by AN The unique {1, 2, 3, 4}-inverse of A is denoted by A", which is called
the Moore-Penrose inverse of A. Throughout this article, the abbreviated symbols E,4
and F, stand for the two projectors E4 = [ - AA" and F4 = I — AA of A, respectively.
We refer the reader to [2,3] for basic results on the generalized inverses.

Given a matrix with some variant entries in it (often called partial matrix) or a
matrix expression with some variant matrices in it, the rank of the partial matrix or
matrix expression will vary with respect to the variant entries or variant matrices.
Because the rank of matrix is an integer between 0 and the minimal of row and col-
umn numbers of the matrix, maximal and minimal ranks of partial matrix or matrix
expressions must exist with respect to their variant entries or variant matrices. Many
problems in matrix theory and applications are closely related to maximal and minimal
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possible ranks of matrix expressions with variant entries. For example, a matrix equa-
tion AXB = C is consistent if and only if the minimal rank of C-AXB with respect to X
is zero, see [4-6]; there is matrix X such that the partial matrix AXB of order # is non-
singular if and only if the maximal rank of AXB with respect to X is n, see [7-11].

The maximal and minimal ranks of matrix expressions or partial matrix are two
basic concepts in matrix theory for describing the dimension of the row or column
vector space of matrix expressions or partial matrix, both of which are well understood
and are easy to compute by the well-known elementary or congruent matrix opera-
tions, see [5,7,8,10-16]. These two quantities play an essential role in characterizing
algebraic properties of matrices expressions or partial matrices. In fact, maximal and
minimal ranks of matrix expressions or partial matrices have been the main objects of
study in matrix theory and applications. Some previous systematical researches on
maximal and minimal ranks of matrix expressions or partial matrices and their applica-
tions can be found in [17-20]. In recent years, the present author reconsidered the
maximal and minimal ranks of matrix expressions or partial matrices by using some
tricky operations on block matrices and generalized inverses of matrices, and obtained
many new formulas for maximal and minimal ranks of matrix expressions or partial
matrices and their applications, see [4,6,9,21-28].

In this article, given matrices A € C"*", B; € C"*Fi, C; € C%*", i=1,2,3,4, we will
present the maximal and minimal ranks of the matrix expression A-B;V;C; - B,V,C, -
B3V3Cs - B,V,C, with respect to Vi, Vs, V3, and Vy. As applications, the maximal and
minimal ranks of the generalized Schur complement A - BMYC - DNYG and the par-
tial matrix (4 BMYC DNV G) with respect to the generalized inverse M) ¢ M{1} and
NY e N{1} are also considered. The results in this article extend the earlier studies by
various authors, see, e.g., [4-6,11,16,18,21,25,26].

We first introduce some well-known results which will be used in this article.

Lemma 1.1 [5,8,25]. Let

An A X
M= | Ay Az A
Y As Aszz
where A € C™>*"(1 <14, j < 3) are given, X ¢ C™>*"s and Y € C"s*™ are two var-

iant matrices. Then

r)r(lagcr(M) = min {mg +N3+T (A“ Au), mp+ny +71 (A22 AB),

Ax A A3 Ass
A1 1)
my + ms + T(A21 Azz A23), ny+ns+r A22 ,

Az

An

. An A A
HllIlT(M) = T(A21 A22 A23) +7 (A22 + max {r (AH A12> —r <A12) _ T(Az] Azz),
XY 21 4122 22
Az (2)

Ay Axz Ay
! (A32 A33) -T (A32) - T(A22 A23)} .
Lemma 1.2 [2]. Let A € C” * ". Then the expression of {1}-inverses of A can be

written as
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AD) = AT 4 (I, — ATA)W + Z(I,, — AAT), 3)

where We C"* " and Ze C" * ™ are arbitrary.
Lemma 1.3 [9]. Let Ae C"*",Be C"** and Ce C'*". Then

(1).7(A B) =1(A) + r(EsB) = r(EgA) + r(B),
(2).r (é) =71(A) +17(CF4) = r(AFc) + r(C),
where E, = I, - AA" and F, = I, - A’A.

2 The maximal and minimal ranks of A - B;V,C; - B,V,C, - B3V3C; - B4V,C,
In this section, we will present the maximal and minimal ranks of the linear matrix

expression

P(V1,V,,V3,Vy) =A — B1V1Cy — B,V,Cy — B3V3C5 — B4VaCy, (4)

where A e C™", B; e C™¥Pi, C; e C%*", {=1,2,3,4, are given matrices, with
respect to four variant matrices V; € CPi*%, j = 1,2,3,4. Applying the formula (1) in
Lemma 1.1 to the linear matrix expression in (4) and simplifying, we obtain the follow-

ing result.
Theorem 2.1 Let P(Vy, V5, V3, V) be given as (4). Then

VI,‘I/IZl,EJ{/); Ve T(P(Vl, V2, V3, V4)) = min {Tl,Tz, T3, T4}, (5)
where

O O O OO0 O Ip—V,

O O O 0C,O0 O O I,

O O O OO0Ip,-V,0 O

O 0 0O 0Go 1 OO0 4 4
r(P(V1,V2,V3,Va))=7| O B3 O By ABy O By O [=) pi=) qu

ool 0CO O O O i=1 i=1

O O-Vilp, OO O O O

I, O O OGO O O O

-Vslp, O OO O O O O

4 4

=1(T) =D pi= ) di,

i=1 i=1

Proof. It is easy to verify by block Gaussian elimination that the rank of P(V,V5,V53,

V,) in (4) can be expressed as

O O O O0O0 O Ipg—V,
O 0O 0O 0OCO O O Iy
O O 0O OO0Ip-V,0 O
O 0O 0 O0CO I, OO 4 4
r(P(V1,V2,V3,Va))=r| O Bs O By A By O By O |=) pi—> gi
O Ol OCO O O O P i1
O O-Vi[;, OO O O O
Iz O O OCGGO O O O
—V3lp3 O OO O O O O

4 4

=r(T)—Zpi—Zqi,
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where A€ C™n, Bie C™Pi, Cje O, Ve CP¥, i=1,2,3,4 and
Ipi1g,1=1,2,3,4, are denotes the identity matrix of order p; and g;, respectively.

O O 0OCsO O O
O O O0O0I,-V,0

O E, -V, O O 0CO 1, O

T=| E; S Es |,S=]|B3 O By ABy, O By
—V3E;s O oOl, 0C,O O O
Oo-vil,, OO O O

O O OGO O O

and

E; = (0000001I,)* E;=(0000001,),
E; = (I, 000000)*, E4=(I,,000000).

According to this result, we have

4 4
P ’ ’ ’ = T) — i — i
VI/\I/IZI/E%VJ( (V1, V2, V3, V4)) vl,énz,avf,vf( ) gpl ;m (6)

Then applying the formula (1) in Lemma 1.1 to matrix 7, we have

\r/g%/):r(T) =min{p3+q4 +r<g 22>p4+q3+r<;4Eo3> ,
E;
pa+p3s+7(E1 SEy), gz +qa+1| S
Ey4
= min {p3 +qq +ps+q3+71(S1), pa+qs+qs +p3+1(S2),
pa+p3+ds+qs+1(S3), g3 +qa +ps +p3 +r(S4)},

where

O OO0 Olp,—V, O O0O0Ip OV,

O 00C, 0 O O 0C, 00 I,

s .| ©00co | | OB ABB O
! O B3;B, AB, O |'™? I, OC, OO0 O
I, O0OC O O O 0COO O
~Vi0I,, 00O O ~Vil,, 0 OO O

O 0 O0Ip-V,

O 00 O0Ip O -V, O 0C,O O

O 00C, 00 I, O 0C, O I

S;| O BsBi AByBy O |,S4=| O Bi AB, O
I, 0O0OC, 00 O I, 0OCO O
~Vi 0, 0 OO0 O O 0CO O
-Vil,, O O O

Again applying the formula (1) in Lemma 1.1, we get

T) = mi , /
Vl,‘I/?,a\‘/f,wr( ) mln{p3+q4+p4 +q3+‘r}3§/§r(81) pa +q3+q4+p3+‘r}3:3./>§r(82)

7)

Pa+P3+ds+(qs3 +‘1’/I]1lé%/)§1’(83), q3 +qa +pg +p3+ ‘I’/Illlé%/)ir(sél)}
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and

Vi, Va

O O Cy O Cs O
max T(Sl)=min Pr+qa+qr+p2+71 OOCZ P1+qda+q1+p2+71 B3A32 ,

B3 B A 0C, O
0 C4 (8)
O 0C4 O 0 G
Pr+qa+qr+pa+7 BsB, A B, Pr+qa+qr+pa+T By A
O ¢
0GC, 0 A By By
max T(Sz)=min Pr+da+qr+p2+71 BlAB4 Pr+qda+q1+p2+71 ClOO ,
VieVa 0C; 0 C;0 0
C, 0 )
BIABzB4 AB4
Pr+qa+qr+p2+7 0C00 Pr+qa+qr+pa+T C, 0
C; O
max r(S3) =min{p; +qa +q1 +p2 +7 00C 0
Yo T3 1+t *T\gog A B, )
+qr+q1+py+71 Bs A Bs By
pr+42+q1+p2 0C,00) o)
p1+4g2+q1+p2+7(Bs By AB; By),
OC, O
p1+QQ+ql+p2+T B3AB4 ,
OC O
OC4 C4O
max 1(S4) = min +qa+qL Py +T 0C +qa+qL+pr+T A By
pax 1) = pP1+qd2+q1+p2 B, A P1+q2+q1+P2 c, ol
OC3 C3O
Cs (11)
OCs O G
Pr+ga+qr+p2+7| Bi ABy | pr+ga+qr+pat+r| A
OC; 0O Cy
Cs

Substituting (8)-(11) into (7) and (6) yield (5).

Recall a simple fact that a matrix equation AXB = C is consistent for every variant
matrices X, if and only if the maximal rank of C - AXB with respect to X is zero.
Thus, by Theorem 2.1 we can immediately obtain the following result.

Corollary 2.2 Let P(V,V,,V3, V,) be given as (4). Then the matrix equation A =
B,ViCy + B,V,LCy + B3V3Cs + B4V,Cy holds for any Vi, Vs, V3, and Vy if and only if
T, =0Oor Ty, =0or T3 =0or T, = O.

Because the right side of (5) are just composed by ranks of block matrices, they can
be easily simplified by block Gaussian elimination when the given matrices in (4)
satisfy some restrictions.

Theorem 2.3 Let P(Vy, Vs, V3, V) be given as (4) and let R(B;) € R(B,), R(B3) € R
(BJ), R(B1) € R(B2), R(Bs) € R(B4), R(C3) € R(C}), R(C}) € R(C5) Then

P(Vy, V,, V3, V4)) = mi , T2, T3},
Vl,\rfrzl,%/f,wr( (V1, Vo, V3, V4)) = min{ry, 10, 13} (12)

Page 5 of 15
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where
O O Cy O Cy
7p=minir| O O G, ,r(BO?:BO),T Bs A /

B3B1A 3 2 OCI

. OC, O A By
rz-mln{r(Bl A B4>’ r(ABzB4),r<C1 O)}'

. (0N © A B, A

3=min{r| B A |, r C: O , ] C

0 GCs 3 Cs

Proof. In fact, we can write B; = ByX, B3 = B,Y, C, = ZCy, and C, = WCj3 under the
hypotheses of Theorem 2.3. In this case, we have

O Cq4
(00GCOY_ (0COY) (oG] _, gi“
BsBy ABy)] '\B3;AB,) |B3A |~ 3 ’
O C
0 G (13)
OO0 O O 0 C OCy O
rf O OC,|=r{ O O ZC; | <r| B3 A B,
B3 B; A B; BobX A OC O
and
C, O
A(BrABBay __(ABBy\ | ABy| é“g
oco00) '\ccoo)' "|co]|" ! ’
C; O
C O (14)
0C, O O 7C; O A B, By
r{Bi1 ABys|=r{B;X A B4 | <r|{C; OO
O0C; 0 O C; O C; 00
and
0GC, O A B
r(Bs By ABy By) =1(AByBs)=7| B3 A By =r<c 04)
0C O !
(O00COY_ (0 O ZC O\ _ (Bs A BBy (15)
B3 B A By - Bs BbX A By) — OC, OO '
(O00COY_ (OGO
BsBy A By) \B; A B,
and
Cy
0OC, O C, A 0 Cy 0 G,
A32 OCZ
r|{ B A B, :TCO’TA =r| C ’rBA =r| B A |,
0C; 0 3 G Cs ! O Cs
0 C;
G (16)
0 Cy 0 G Cs O
O C, O zZC A By
T =T <r
B, A BX A Cc, O

O Gs O G G O
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Combining (5) with (13)-(16) yields (12).

Corollary 2.4 Let P(Vy, V, V3, V,) be given as (4) and let
R(B1) € R(B;),R(B3) € R(B4),R(C3) € R(C}),R(C};) € R(C3) then the matrix equa-
tion A = B1V1Cy + ByVoCy + B3V3Cs + B, V,Cy holds for any Vi, V,, V3, and V4 if and
onlyifz; =Oort,=0or; = 0.

In the rest of this section, we will find the minimal rank of the linear matrix expres-
sion P(V,V,, V3, V) in (4), with respect to four variant matrices
Vi e Chix4i, j=1,2,3,4, when P(V;, V,, V3, V) satisfy some restrictions.

Theorem 2.5 Let P(Vy, V, V3 V,) be given as (4) and let
R(B1) € R(B,), R(B3) € R(B4),R(C}) € R(C%),R(C;) € R(C3). Then

min y r(P(V1, V2, V3, Vy))

Vi, V2, V3, Vy
O C,
_ A By OC, O A B,
_r(AB2B4)+r(Clo)+r(BlAB4)+r(C3O)+r B, A
O Cs
A B: A By 0C, O Bi A € O
+r|C | -1 0C O —-7r B, A B —-r{OCi|—-1r| AB
Cs ! 2 4 O Cs C; O
O Cy4 O 0 Cy O 0 Cy (17)
+max r(BO%BO)+r Bs; A |l+r] OOC,|—-r| O OC
3 2 OC1 B3BlA BSBIA
O O Cy A By
—T OOC2 —ﬁl—ﬂz,T(CABOZ%)+T ClO
B3B, A 3 C; O
OC, O B A By C, OO
+7 BIAB4 —T OCIO —T ABzB4 —2,33 ’
OC; O OC; O C; OO
where
O 0CGC Bz A
B1=minir| B3 B; A ,r(%g%),r O C; ,
0 0 C; 3 0 Cs
OC4 O Cs O
Br=minir| O C, O ,r(%;)l?), A By ,
B: A B, 204 C: O
O0C, O A By
Bs=min{r| By A By ,r(élg%),r ¢ O
0C; O 3 C; O

Proof. From the proof of Theorem 2.1, it is easy to verify that the minimal rank of P
(V1, Vi, V3, Vi) in (4) can be expressed as
Vi,V V3,V

4 4
min | (P(Va,Va, Vs, Va)) = min | r(T) - dopi=) a (18)
e i=1 i=1

where 7, S, E;, p; and ¢q;, i = 1,2,3,4, are given as the proof of Theorem 2.1. Then

applying the formula (2) in Lemma 1.1 to matrix 7, we have

Page 7 of 15
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O E, -V, E,
min r(T)=minr| E; S Es |=r(E1 S E3)+r| S
Vi, Vo, V3, Vy V3, Vs —V3E; O E,
OE, E; (19)
+max{r(E18)—r(S)—r(E1 S),

(26)(a) e m)

In this case, we derive from (19) that

E;
min r(T)=minr(E; S Es)+minr| S
Vi, Vo, V3, Vs Vi, Va Vi, Va
Eq4
. O E; . (E . (20)
+max{\r/rllll\r%r<E1 S ) ‘I/rllll‘rér< S ) ‘I/rllll‘rér(El S),

. S Es3 . S .
‘I/Illll‘I/lZT<E4 O> —\r/rlll1\r/12r<E4> —\I]’Illll\I%T(S Eg)} .
Again applying the formula (2) in Lemma 1.1, we have

inr(E; S E3) = inr(S
5’?,15‘2“1 3) q4+q3+‘%1‘2r( 3)

4 OC, O
=Zqi+p1+p2+T(B3 B1 A Bz B4)+T B3AB4
i=1 OC O
00GC O 0 06O 000G 0O (1)
+ max T<B381 AB4>—T Bs B A By <B331 ABQB4)’
O0C O

O0OC, OO0
{

T<B3AB?'B4)—T B3ABQB4

Bs B; ABQ_B4)
0OC; 00 0C 00

O0C OO

where S3 is given as the Equation (7) of the proof of Theorem 2.1. Since B; = B,X,
Bs = B,Y, Cy, = ZCy, and C4 = WCjs, (21) is reduced to

min r(E; S E3)
Vi, Va

4
A B
:Zqi+p1+p2+T(A Bz B4)+T<C1 O4>

i=1
v [ (OCOY_ (BiAB_ (COOY _ (ABB
By A B, 0C O AByBy)' €100 (22)
4
- . A By OC, 0O\ (B ABy
_leql+p1+p2+r(A B, B4)+T<C1 O)+T<B1 A B4) T(O c O)
=
_(co0o0
A By By )’
The last equality holds, since the well-known Frobenius rank inequality #(ABC) = r
(AB) + r(BC) - r(B), then

Page 8 of 15



Xiong et al. Journal of Inequalities and Applications 2012, 2012:54 Page 9 of 15
http://www.journalofinequalitiesandapplications.com/content/2012/1/54

(0CO\_ (0 zGo
B]AB4_ BzXAB4
z0\[/0GC o) [(X00
“"{\lor)\B, AB 010
2 7\oo01
X0O0

ZO\(0C, O 0C O
(@) (ES8)(mdm) (oo
o1)\B, A B, B2 AB )\ 5o
(oGO
B, A B,
_({0GoO 0C,0)_ (0CO
“"\B,AaB, )t "\B,AB, ) "\B,AB, )

With the similar method, we also have

v

E, 4 A AB O C,
minr| S | =Y pi+q1+q2+7| C +r(C ()2)+r B A
AT © 3 °e (23)
By A C, O
—Tr OC] —T A32 ’
O Cs C; O
min r OE _ +Pr+Ps+q1+qor+qs +T 0Cs O +7 1??’{4
PRI\ g, s )PPt Pat it @G AT gy g 3
O C
(24)
O O Cy O O Cy O O Cy
1l OO0OC |-rfOOC |—-7r] OO0CGC,|,
B3 By A B3 B; A B3 B, A
A By
. S E A B, B
‘11111’1‘11121’(}54 03)=ql+q2+q4+p1+p2+p3+7’(c30204)+T C] O
C; O 25)
OGO B1 A By C, OO
+7 B]A B4 — T OC]O —T ABQB4 .
0 G0 0C; 0 C;0 0
On the other hand, by the formula (1) in Lemma 1.1, we have
E O 0 G OC, O
minr(sz)=p4+p1+p2+q1+q7_+min r{BsBy A |, r|Bs AB |,
ViV 0 0 G 0C; 0
(26)
Bs A
r OC1

O Gs
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S O0C, O Cs O O
‘r/na‘g(r(E)=p3+p1+p2+q1+q2+min r{ By ABs|, r| ABy;Bs |,
1, V2 4

OC3O Cgoo
(27)
A By
r{C O ,
Cs O
OCs O
max r(E; S)=qz+p1+p2+q1+q2+minyr|{ OC, O |, r Cs 0 O )
Vi A By By
B, A By
(28)
Cs O
r AB4 ,
C O
O0GC O
max (S Es)=qs+p1+pr+qi+qo+min{r| By A By |, r A By By
Vi G0 O
OGO
(29)

A By
A C1 O .
C; O

Contrasting (18), (20) and (22)-(29) yields (17).

Corollary 2.6 Let P(Vy, V5, Vi, V) be given as (4) and let R(B;) S R(B,), R(Bs) € R
(B4), R(B1) € R(B2),R(B3) € R(B4),R(C%) € R(C}),R(C}) € R(C3). Then the matrix
equation A = B;V1Cy + BV,Co+ B3V3Cs + B4V,C,y is consistent if and only if the right
side of (17) is zero.

3 Some applications to generalized Schur complement and partial matrix
As direct applications of the results in Section 2, we determine in this section the max-
imal and minimal ranks of the generalized Schur complement A-BMVC-DN'"'G and
the partial matrix (A BMYC DNV G) with respect to two variant matrices MY [ M1
and NV [ N{1}.

Theorem 3.1 Let Al C" *", B[ C"*?,cl c**" D[ C"**, Gl C"*", M| C"~
P and N[ C'*°.

Then
max r(A — BMYC — DNWG) = min{Ty, Ty, T3}, (30)
MM eM{1},NDeN{1}
where
R ADB AD B A D
Ti=minqr| GN O | —r(M) —r(N), T(GNO) —1(N), | GN | —r(N) ¢,
COM coO

f2=min{<éﬁg>—r(M), (A B D), r(ég)},

A B A
~ AB
T3 =minqr|{ CM | —r(M), r| C |, r .



Xiong et al. Journal of Inequalities and Applications 2012, 2012:54
http://www.journalofinequalitiesandapplications.com/content/2012/1/54

Proof. Applying Lemma 1.2, we have
MO = M+ Fy Wy + W)Ey (31)

and
N = N+ FyW; + W4Ey, (32)

where W, i = 1,2,3,4 are arbitrary, Ey; = I, - MM" and Fy; = I, - M'M. Substituting
the Equation (31) and Equation (32) into the generalized Schur complement A - BMWY
C - DNYG yields

A —BMWYC —DNMG = A, — BFyW,C — BW,EyC — DENW5G — DW4ENG,  (33)

where A; = A - BM'C - DN'G.

In fact Ay - BF\;W;,C - BW,E\,C - DFNW3G - DW4ENG is a special case of the
matrix expression P(V1,V5,V3,V,), and R(BF,;) € R(B), R(DFy) € R(D), R((E;C)*) € R
(C¥), R((ENG)) € R(G¥). In this case, from the formula (12) in Theorem 2.3, we have

max (A — BMC — DNG)
MW em{1}, N eN{1}

= max r(A; — BEyW,C — BW,EyC — DFyW3G — DW,ENG) (34)
Wy, Wi, W3, Wy

= min{T}, T}, T3},

where
O O ENG O ENG
Ti=minyr| O O EuC r(D(; Egcg),r DFNy A4
DFn BFy A; N O C
;o O EuyCO A; D

T, —mln{r(BFM A D)’ (A1 B B), r(c O)}

O EMC Al

Ty, =min {7 | BFy A ,r(%g),r C

O G G

For T/, simplifying the ranks of matrices by Lemma 1.3 and block Gaussian elimina-
tion, we find that:

O O ENG A1 DFy BFy
T O O EyC|=|EuG O O
DFy BFy A4 EMC O O

AADBOOO
ONOOOO
-rl oomMo000 | -2r(N) - 2r(M) (35)
GOOONO
COO0OOM

ADB
=r| GNO | —r(N) —r(M),
COM
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AiDBO
r(Dg Egcg)=r(EA1GD£Ng>=r ONOO | —-2r(N)
N4 N GOON (36)
ADB
=r(GNO)_T(N)'
OGNO
O EnxG OCOM AD
r|DFy A, |=|DAOO | =2r(N)=r| GN | —1r(N). (37)
O C NOOO Cco
0OCOO

Combining the rank equalities (35), (36) with (37), we have T} = ﬁ

By the similar approach, we also have T} = T, and T} = T5. Then we have complete
the proof of theorem.

Corollary 3.2 Let A[ C" ", B[ ¢"*?,cl cT*", D[ C"** Gl C"*", M[ C?*
? and N C'**. Then the identity A = BM™C + DNVG holds for every M™ [ M{1}
and N[ N{1} if and only if ﬂ =0 or T\z =0 or 1’"; =0.

From the proof of Theorem 3.1, we known that A - BMYC - DNVG = 4; -
BE,,W,C - BW,E,,C - DFNW3G - DW,ENG, where A, = A - BM'C - DN'G. In this
case, A - BMYC - DNYG is a special case of the matrix expression P(Vy, Vi, V3, Vy),
and R(BFy;) € R(B), R(DFy) € R(D), R((Ex;C)*) € R(C*%), R((ENG)*) € R(G*). Then from
the Theorem 2.5, we have

Theorem 3.3 Let A/ C" *", B[ c">*?,c[ ct*", D[ C"*5GL C ", M[ C?*
? and N[ C***

Then

min (A — BMC — DN(IG)
MMeM(1}, NMeN(1}

= min T(A1 — BFMW1 C— BWZEMC — DFNW3G — DW4ENG)
er WZr WS: W4

A MC
AD MCO AB
=r(ABD)+r< >+r< )+r C +r< >+r B A
coO B AD C GO oc
B A

BAD OCOM MO COM
—-r|MOO | —r sapo) " "loc| T AB O | +3r(M)
O0CO oc GOO

NGO OGN NOG [(\)]82
+ max r( >+r BAO|+r|OMC | —r1 (38)

baB oco DB A DB A

OMO
NOGO
-r{OOCM +T(N)—81—82,

DBAO
B AD

ABD AB MCO MOO

T +r|{ CO|+r|{|BAD|—r
GOO Co 0CO OCO
OGO

COOM
—-1|ABDO | —28¢,
GOOO

Page 12 of 15



Xiong et al. Journal of Inequalities and Applications 2012, 2012:54 Page 13 of 15
http://www.journalofinequalitiesandapplications.com/content/2012/1/54

where
B4 pasy (05
81 =min {7 —1M), r{ NOO |, r ,
NOO 0CO OocC
O00G OG
OGON GON
§=min{r{ MCOO —r(M),r(i?%ﬁ),r ADO ,
BADO COO
MCO AD
§3=min{r| BAD —r(M),r(ééZ),r CcO
OGO GO

Corollary 3.4 Let A[ C" ", B[ ¢"*?,cl c?*", D[ C"** Gl C">*", M[ C?*
P and N[ C'* . then the identity A = BM™C + DN'VG is consistent if and only if the
right side of (38) is zero.

Next, we will determine the maximal and minimal ranks of the partial matrix

(A BMYC DNWG)

with respect to MY [ M{1} and NV [ N{1}, by applying the results in Section 2.
It is quite obvious that the partial matrix (4 BM®C DN"G) may be written as

(A BMYC DNOWG)=(A 0 0)+BMP©O ¢c 0)+DNYO 0 G). (39

Then from (39) and Theorems 2.3 and 3.1, we have
Theorem 3.5 Let AL C" *", B[ c"*?,c[ ct*", D[ c" 5 Gl C" ™", M[ CT*™
? and N[ Ct**%

Then
max (4 BMOIC DNUG) = min Ty, T, T3, (40)
MM eM{1},NMeN{1}
where
AOODB
Ti=min{r[OOGNO | —r(M) —r(N), r(éSﬁé) —1(N),
OCOOM
AOD
T(OGN) +r(C)—r(N)},

T, = min {r(ggz g) — K(M), (A BD), r(A D) +r(C)},

Ty = min {r (g SZ) +7(G) = (M), (A B) +1(G), 7(A) +(C) + r(G)} .

Corollary 3.6 Let Ac C"*",Be C"*?,Ce C1*", De C"*5 Ge C""" Me
C7* %, and Ne C'* % then the inclusion RBBMYC + DNG) € R(A) holds for every
M®P [ M{1} and NP [ N{1} if and only if T, =0 or T, =0 or T3 = O.

On the other hand, from (39) and Theorems 2.5 and 3.3, we can easily obtain the
minimal rank of the partial matrix (A BM"’C DNV G) with respect to M [ M{1} and
N[ N1}
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Theorem 3.7 Let Aec C"*", Be C"*?, Ce C1*" De C"*5 Ge C"*" Me
C?1*P and Ne C' *°.
Then

min r(A BM)C DNUG)
MO eM{1},NDeN{1}

MO CO
=1(A)+1(A D)+r(A B)+71(A B D)+T<BAOD)
B A B AD O0OCOM
_TQMO>_7<NHDO>_T<BACH)O)+3“M)
NOGO OOGN NOOOG
smaxir( 52 05 )* (g aoo ) rloMoco
DBAOO (41)
NOOG NOOOG Oa
| DBAO|—-r|O0OOCOM |+r(N)—£& —&,
OMOO DBAOO O
MOCO
H(G)+1(AD)+1(ABD)+r| BAOD (ﬁgg)
OGO
OCOOM
4(AOBDO)_E%’
where
oMOC
& =min{r| DB AO|+r(G)—r(M), T(E]gg>+r(c)r
NOOO
DA
r(NO)+r(C)+1’(G)}
OO0OOGON
&L=min{r [ MOCOOO —r(M),r(nggg>,
BAOODO
OOGON
rlaAoobo]|,
0CO00O0

& = min{r (A; 2 g 8) +1(G) —r(M), r(AB D) +1(G), r(AD) +1r(C) +1(G)}.

Corollary 3.8 Let Ac C"*",Be C"*?,Ce C1*", D[ C" "5, G[ C"*", M/
C?*? and N[ C'**. then there are some MY [ M{1} and N[ N{1}, such that the
inclusion RBBMYC+DNYG) € R(A) holds if and only if the right side of (41) is zero.
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