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Abstract

We first introduce and study a new family of weights, the A(a, b, g; E)-class which
contains the well-known Ar(E)-weight as a proper subset. Then, as applications of the
A(a, b, g ;E)-class, we prove the local and global Poincaré inequalities with the Radon
measure for the solutions of the non-homogeneous A-harmonic equation which
belongs to a kind of the nonlinear partial differential equations.
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1. Introduction
Let Ω be a domain in ℝn, n ≥ 2 , B be a ball and sB be the ball with the same center

and diam(sB) = sdiam(B), s > 0. We use |E| to denote the Lebesgue measure of the

set E ⊂ ℝn. We say w is a weight if w ∈ L1loc(R
n) and w > 0 a.e. In 1972, Muckenhoupt

[1] introduced the following Ar(E)-weight in order to study the properties of the

Hardy-Littlewood maximal operator. We say a weight w satisfies the Ar(E) -condition

in a subset E ⊂ ℝn , where r > 1 , and write w Î Ar(E) when

sup
B

(
1
|B|

∫
B
wdx

)⎛
⎜⎝ 1

|B|
∫
B

(
1
w

) 1
r − 1 dx

⎞
⎟⎠

r−1

< ∞, (1:1)

where the supremum is over all balls B ⊂ E. Since then, the weight functions have

been well studied and widely used in analysis and PDEs, particularly in areas of the

measures and integrals, see [2-11]. In 1998, the following Ar(l, E)-weight class was

introduced in [12]. We say that a weight w belongs to the Ar(l, E) class, 1 <r < ∞ and

0 <l < ∞, or that w is an Ar(l, E)-weight, write w Î Ar (l, E) , if

supB

(
1
|B|

∫
B w

λdx
)(

1
|B|

∫
B

(
1
w

)1/(r−1)

dx

)r−1

< ∞ for all balls B ⊂ E. Notice that if

we choose l = 1 , we find that Ar (1, E) = Ar (E). In 2000, the following class of

Aλ
r (E)-weights was introduced in [13]. We say that the weight w(x) > 0 satisfies the
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supB

(
1
|B|

∫
B wdx

)(
1
|B|

∫
B w

1/(1−r)dx
)λ(r−1)

< ∞-condition in E, r > 1 and l > 0, and

write w ∈ Aλ
r (E), if supB

(
1
|B|

∫
B wdx

)(
1
|B|

∫
B w

1/(1−r)dx
)λ(r−1)

< ∞ for any ball B ⊂ E

⊂ ℝn. Also, it is easy to see that A1
r (E) = Ar(E). Both Ar (l, E) and Aλ

r (E) have widely

been used in the study of the weighted inequalities and integral estimates, see

[4-6,12,13] for example.

2. The A(a, b, g; E)-class
In this section, we first introduce the A(a, b, g; E)-class which is an extension of the Ar

(E)-weight. Then, we study the properties of this class. We will use the following

Hölder inequality repeatedly in this article.

Lemma 2.1. Let 0 <a < ∞, 0 <b < ∞ and s-1 = a-1 + b-1. If f and g are measurable

functions on ℝn, then || fg ||s,E≤|| f ||a,E ⋅|| g ||b,E for any E ⊂ ℝn.

We introduce the following class of functions which is an extension of the several

existing classes of weights, such as Aλ
r (E)-weights, Ar (l, E)-weights, and Ar (E)-

weights.

Definition 2.2. We say that a measurable function g(x) defined on a subset E ⊂ ℝn

satisfies the A(a, b, g; E)-condition for some positive constants a, b, g, write g(x) Î A

(a, b, g; E) if g(x) > 0 a.e., and

sup
B

(
1
|B|

∫
B
gαdx

)(
1
|B|

∫
B
g−βdx

)γ /β

< ∞, (2:1)

where the supremum is over all balls B ⊂ E.

We should notice that there are three parameters in the definition of the A(a, b, g;
E)-class. If we choose some special values for these parameters, we may obtain the

existing weights. For example, if a = l, b = 1/(r - 1) and g = 1 in above definition, the

A(a, b, g; E) -class becomes Ar(l, E)-weight, that is Ar(l, E) = A(l, 1/(r - 1),1;E). Simi-

larly, Aλ
r (E) = A(1, 1/(r − 1),λ;E). Also, it is easy to see that the A(a, b, g; E)-class

reduces to the usual Ar(E)-weight if a = g = 1 and b = 1/(r - 1). Moreover, we have

the following theorem which establishes the relationship between the Ar(E)-weight and

the A(a, b, g; E)-class.
Theorem 2.3. Let r > 1 be any constant and E ⊂ ℝn . Then, (i) There exists a con-

stant a0 > 1 such that Ar(E) ⊂ A(a0,1/(r-1),a0; E). (ii) For any a with 0 <a < 1, Ar(E)

⊂ A(a,1/(r-1), a; E).
Proof. For w(x) Î Ar(E), by the reverse Hölder inequality for the Ar(E)-weight, there

are constants a0 > 1 and C1 > 0 such that

(
1
|B|

∫
B
wα0dx

)1/α0

≤ C1

|B|
∫
B
wdx (2:2)

for all balls B ⊂ E, i.e.,

1
|B|

∫
B
wα0dx ≤ C2

(
1
|B|

∫
B
wdx

)α0

. (2:3)
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From (2.3) and (1.1), we obtain

sup
B

(
1
|B|

∫
B
wα0dx

)⎛
⎜⎝ 1

|B|
∫
B
w

−
1

r − 1 dx

⎞
⎟⎠

α0(r−1)

≤ C2 sup
B

(
1
|B|

∫
B
wdx

)α0

⎛
⎜⎝ 1

|B|
∫
B
w

−
1

r − 1 dx

⎞
⎟⎠

α0(r−1)

≤ C2

⎛
⎜⎜⎝sup

B

(
1
|B|

∫
B
wdx

)⎛
⎜⎝ 1

|B|
∫
B

(
1
w

) 1
r − 1 dx

⎞
⎟⎠

r−1⎞⎟⎟⎠
α0

< ∞,

(2:4)

where the supremum is over all balls B ⊂ E. Thus, w Î A(a0, 1/(r - 1), a0;E). Hence,

Ar(E) ⊂ A(a0, 1/(r -1), a0; E). We have completed the proof of the first part of Theo-

rem 2.3. Next, we prove the second part of the theorem. Let a Î (0,1) be any real

number. Using the Hölder inequality with 1/a = 1 + (1 - a)/a, we have

(∫
B
wαdx

)1/α

≤
(∫

B
wdx

)⎛
⎝∫

B
1

α

1 − α dx

⎞
⎠

(1−α)/α

, (2:5)

that is

(
1
|B|

∫
B
wαdx

)1/α

≤ 1
|B|

∫
B
wdx

which can be written as

1
|B|

∫
B
wαdx ≤

(
1
|B|

∫
B
wdx

)α

. (2:6)

Similar to inequality (2.4), using (2.6) and the definitions of the Ar(E)-weight and the

A(a, b,g; E)-class, we obtain that Ar(E) ⊂ A(a, 1/(r-1), a; E) for any a with 0 <a < 1.

The proof of Theorem 2.3 has been completed.

Example 2.4. Let Ω ⊂ ℝn be a bounded domain containing the origin and g(x) = |x|
p, x Î Ω. We all know that g(x) = |x|p Î Ar(Ω) for some r > 1 if and only if -n <p <n

(r - 1). Now, we consider an example in ℝ2, that is n = 2. Assume that D ⊂ ℝ2 is a

bounded domain containing the origin and g(x) = |x|-3 is a function in D. Since p = -3

< -2 = -n, then g(x) = |x|-3 ∉ Ar(D) for any r > 1. However, it is easy to check that g(x)

= |x|-3 Î A(a, b, g; D) for any positive numbers a, b, g with 0 <a < 2/3.

Combining Theorem 2.3 and Example 2.4, we find that Ar(E) is a proper subset of A

(a, b, g; E) for any positive constants a, b, g and r with 0 <a < 2/3 and r > 1.

Theorem 2.5. If g1(x), g2(x) Î A(a, b, g; E) for some a ≥ 1, b, g > 0 and a subset E ⊂
ℝn, then g1(x) + g2(x) Î A(a, b, g; E).
Proof. Let g1(x), g2(x) Î A(a, b, g; E). By Minkowski inequality, we find that

(∫
B

∣∣g1 + g2
∣∣αdx)

1
α ≤

(∫
B

∣∣g1∣∣αdx
)1

α +
(∫

B

∣∣g2∣∣αdx
)1

α . (2:7)
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Since |a + b|s ≤ 2s(|a|s + |b|s) for any constants a, b, s with s > 0, from (2.7) , we

have

∫
B
(g1 + g2)

αdx ≤

⎛
⎜⎝(∫

B

∣∣g1∣∣αdx
)1

α +
(∫

B

∣∣g2∣∣αdx
)1

α

⎞
⎟⎠

α

≤ 2α

(∫
B

∣∣g1∣∣αdx +
∫
B

∣∣g2∣∣αdx
)
.

(2:8)

Note that g1(x), g2(x) Î A(a, b, g; E). Using (2.8) , we obtain

sup
B

(
1
|B|

∫
B
(g1 + g2)

αdx
)(

1
|B|

∫
B
(g1 + g2)

−β

dx
)γ /β

≤ sup
B

2α

(
1
|B|

∫
B

∣∣g1∣∣αdx + 1
|B|

∫
B

∣∣g2∣∣αdx
)(

1
|B|

∫
B
(g1 + g2)

−βdx
)γ /β

≤ sup
B

2α

(
1
|B|

∫
B
gα
1dx

(
1
|B|

∫
B
g−β
1 dx

)γ /β

+
1
|B|

∫
B
gα
2dx

(
1
|B|

∫
B
g−β
2 dx

)γ /β
)

< ∞.

Thus, g1(x) + g2(x) Î A(a, b, g; E). The proof of Theorem 2.5 has been completed.

Theorem 2.6. Let g1(x) Î A(a1, b1, a1g; E) and g2(x) Î A(a2, b2, a2g; E) for some g >

0 and any subset E ⊂ ℝn , where ai, bi > 0, i = 1,2, and
1
α

=
1
α1

+
1
α2

,
1
β

=
1
β1

+
1
β2

.

Then, g1(x)g2(x) Î A(a, b, ag; E).

Proof. Using Lemma 2.1 with
1
α

=
1
α1

+
1
α2

and
1
β

=
1
β1

+
1
β2

, respectively, we have

(∫
B
(g1g2)

αdx
)1/α

≤
(∫

B
gα1
1 dx

)1/α1
(∫

B
gα2
2 dx

)1/α2

, (2:9)

(∫
B
(g1g2)

−β

dx
)γ /β

≤
(∫

B
g−β

1 dx
)γ /β1

(∫
B
g−β2
2 dx

)γ /β2

. (2:10)

Combining (2.9) and (2.10) yields

(∫
B
(g1g2)

αdx
)1/α(∫

B
(g1g2)

−βdx
)γ /β

≤
(∫

B
gα1
1 dx

)1/α1
(∫

B
g−β1
1 dx

)γ /β1
(∫

B
gα2
2 dx

)1/α2
(∫

B
g−β2
2 dx

)γ /β2
(2:11)

which is equivalent to

(∫
B
(g1g2)

αdx
(∫

B
(g1g2)

−βdx
)αγ /β

)1/α

≤
(∫

B
gα1
1 dx

(∫
B
g−β1
1 dx

)α1γ /β1
)1/α1

(∫
B
gα2
2 dx

(∫
B
g2−β2dx

)α2γ /β2
)1/α2

.

(2:12)
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Noticing that g1(x) Î A(a1, b1, a1 g; E) and g2(x) Î A(a2, b2, a2g; E), we obtain

sup
B

⎛
⎝ 1

|B|
∫
B

(g1g2)
αdx

⎞
⎠(

1
|B|

∫
B
(g1g2)

−βdx
)αγ /β

≤

⎛
⎜⎝sup

B

(
1
|B|

∫
B
gα1
1 dx

)(
1
|B|

∫
B
g−β1
1 dx

)α1γ

β1

⎞
⎟⎠

α

α1

⎛
⎜⎝sup

B

(
1
|B|

∫
B
gα2
2 dx

)(
1
|B|

∫
B
g−β2
2 dx

)α2γ

β2

⎞
⎟⎠

α

α2

< ∞.

(2:13)

Thus, g1(x)g2(x) Î A(a, b, ag; E). The proof of Theorem 2.6 has been completed.

Proposition 2.7. Let 0 <p < 1 and g(x) Î A(a, bp, g; E). Then, gp(x) Î A(a, b, g; E).

Proof. Using Lemma 2.1 with
1
αp

=
1
α
+
1 − p
αp

yields

(∫
B
gαpdx

)1/αp

≤ |B|(1−p)/αp
(∫

B
gαdx

)1/α

,

that is

1
|B|

∫
B
(gp)αdx ≤

(
1
|B|

∫
B
gαdx

)p

. (2:14)

Since g(x) Î A(a, bp, g; E), using (2.14) , we find that

sup
B

(
1
|B|

∫
B
(gp)αdx

)(
1
|B|

∫
B
(gp)−βdx

)γ /β

≤ sup
B

(
1
|B|

∫
B
gαdx

)p( 1
|B|

∫
B
g−βpdx

)γ /β

≤ sup
B

((
1
|B|

∫
B
gαdx

)(
1
|B|

∫
B
g−βpdx

)γ /βp
)p

≤
(
sup
B

(
1
|B|

∫
B
gαdx

)(
1
|B|

∫
B
g−βpdx

)γ /βp
)p

< ∞.

(2:15)

Therefore, gp(x) Î A(a, b, g; E). The proof of Proposition 2.7 has been completed.

Let a, b, g > 0 be any constants. It is easy to prove that (i)
1

g(x)
∈ A(α,β , γ ;E) if and

only if g(x) Î A(b, a, ab/g; E). (ii) gp(x) Î A(a, b, g; E) if and only if g(x) Î A(ap, bp,
gp; E) for any constant p > 0. Also, using the Hölder inequality and the definition of

the A(a, b, g; E)-class, we can prove the following monotone properties of the A(a, b,
g; E)-class.
Proposition 2.8. If a1 <a2, then A(a2, b, g; E) ⊂ A(a1, b, g; E) for any b,g > 0. If b1

<b2, then A(a, b2, g; E) ⊂ A(a, b1, g; E) for any a, g > 0.

From Theorem 2.3 and Proposition 2.8, we know that for every r > 1, there exists a

constant a0 > 1 such that Ar(E) ⊂ A(a, 1/(r - 1),a; E) for any a with 0 <a <a0.

3. Local Poincaré inequalities
As applications of the A(a, b, g; E)-class, we prove the local Poincaré inequalities with

the Radon measure for the differential forms satisfying the non-homogeneous A-har-

monic equation. Differential forms are extensions of functions in ℝn. For example, the
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function u(x1, x2,...,xn) is called a 0-form. The 1-form u(x) in ℝn can be written as

u(x) =
∑n

i=1 ui(x1, x2, ..., xn)dxi. If the coefficient functions ui(x1, x2,...,xn), i = 1,2,...,n,

are differentiable, then u(x) is called a differential 1-form. Similarly, a differential k-

form u(x) is generated by
{
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

}
, k = 1, 2, ..., n, that is,

u(x) =
∑

I
uI(x)dxI =

∑
ui1 i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik, where I = (i1, i2,...,ik), 1 ≤ i1

<i2 < ... <ik ≤ n. Let ∧l = ∧l (ℝn) be the set of all l-forms in ℝn and Lp(Ω, Λl) be the l-

forms u(x) = ΣI uI (x) dxI in Ω satisfying ∫Ω |uI|
p < ∞ for all ordered l-tuples I, l =

1,2,...,n. We denote the exterior derivative by d and the Hodge star operator by *. The

Hodge codifferential operator d* is given by d* = (-1)nl+1 *d*, l = 0,1,..., n - 1. We con-

sider here the solutions to the nonlinear partial differential equation

d∗A(x, du) = B(x, du) (3:1)

which is called non-homogeneous A -harmonic equation, where A : Ω × ∧l(ℝn) ® ∧l

(ℝn) and B : Ω × ∧l(ℝn) ® ∧l-1(ℝn) satisfy the conditions: |A(x, ξ)| ≤ a|ξ|p-1, A(x, ξ) ⋅ ξ
≥ |ξ|p and |B(x, ξ)| ≤ b|ξ|p-1 for almost every x Î Ω and all ξ Î ∧l(ℝn). Here a, b > 0

are constants and 1 <p < ∞ is a fixed exponent associated with (3.1). A solution to

(3.1) is an element of the Sobolev space W1,p
loc (�,∧l−1) such that ∫Ω A(x, du) ⋅ d� + B

(x, du) ⋅ � = 0 for all ϕ ∈ W1,p
loc (�,∧l−1) with compact support. If u is a function (0-

form) in ℝn, the equation (3.1) reduces to

divA(x,∇u) = B(x,∇u). (3:2)

If the operator B = 0, Equation (3.1) becomes d*A(x, du) = 0, which is called the

(homogeneous) A -harmonic equation. Let A : Ω × ∧l(ℝn) ® ∧l(ℝn) be defined by A(x,

ξ) = ξ|ξ|p-2 with p > 1. Then, A satisfies the required conditions and d*A(x, du) = 0

becomes the p-harmonic equation d*(du|du|p-2) = 0 for differential forms. See

[5,6,9-16] for recent results on the solutions to the different versions of the A-harmo-

nic equation. The operator Ky with the case y = 0 was first introduced by Cartan [17].

Then, it was extended to the following version in [18]. Let D be a convex and bounded

domain. To each y Î D there corresponds a linear operator Ky: C
∞(D, ∧l) ® C∞(D, ∧l-

1) defined by (Kyu)(x; ξ1, ..., ξl−1) =
∫ 1
0 tl−1u(tx + y − ty; x − y, ξ1, ..., ξl−1)dt. A homotopy

operator T : C∞(D, ∧l) ® C∞(D, ∧l-1) is defined by averaging Ky over all points y Î D:

Tu = ∫D�(y)Ky udy, where φ ∈ C∞
0 (D) is normalized so that ∫D�(y)dy = 1. The l-form

is defined by ωD = |D|-1 ∫Dω(y) dy, l = 0, and ωD = d(T ω), l = 1,2,...,n for all ω Î Lp

(D, ∧l), 1 ≤ p ≤ ∞. For any differential form u ∈ Lsloc(D,∧l), l = 1, 2, ...,n, 1 < s < ∞, we

have

‖Tu‖s,D ≤ C |D| diam(D)‖u‖s,D. (3:3)

Lemma 3.1. [14]Let u be a differential form satisfying the non-homogeneous A-har-

monic equation (3.1) in Ω, s > 1 and 0 <s, t < ∞. Then, there exists a constant C, inde-

pendent of u, such that ||du||s, B ≤ C|B|(t-s)/st||du||t,sB for all balls or cubes B with sB
⊂ Ω.

Theorem 3.2. Let u ∈ Lsloc(�,∧l)be a solution of the non-homogeneous A-harmonic

equation (3.1) in a domain �, du ∈ Lsloc(�,∧l+1), l = 0, 1, ...,n − 1and 1 <s < ∞. Then,

there exists a constant C, independent of u, such that
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(∫
B
|u − uB|sdμ

)1/s

≤ C |B| diam(B)
(∫

σB
|du|sdμ

)1/s

(3:4)

for all balls B with sB ⊂ Ω, where the Radon measure μ is defined by dμ = g(x)dx

and g Î A(a, b, a; Ω), a > 1, b > 0.

Proof. By the decomposition theorem of differential forms, we have u = d(Tu) + T

(du) = uB + T(du), where d is the exterior differential operator and T is the homotopy

operator.

From (3.3), we obtain

‖u − uB‖t,B =
∥∥T(du)∥∥t,B ≤ C1 |B| diam(B)‖du‖t,B (3:5)

for any t > 1. Now, choose t = as/(a - 1), then, t >s. Using the Hölder inequality and

(3.5), we obtain

(∫
B
|u − uB|sdμ

)1/s

=
(∫

B
|u − uB|sg(x)dx

)1/s

=
(∫

B

(
|u − uB| g1/s(x)

)s
dx

)1/s

≤
(∫

B
|u − uB|tdx

)1/t(∫
B
gt/(t−s)(x)dx

)(t−s)/st

≤ C2 |B| diam(B)‖du‖t,B
(∫

B
gα(x)dx

)1/αs

.

(3:6)

Let m = bs/(1 + b), then 0 <m <s. From Lemma 3.1, we have

‖du‖t,B ≤ C3 |B| m − t
mt

‖du‖m, σ1B, (3:7)

where s1 > 1 is a constant. Using the Hölder inequality again, we find that

‖du‖m,σ1B =
(∫

σ1B

(
|du| (g(x))1/s(g(x))−1/s

)m
dx

)1/m

≤
(∫

σ1B
|du|sg(x)dx

)1/s
⎛
⎝∫

σ1B

(
g−1/s(x)

) ms
s − mdx

⎞
⎠
s − m
ms

≤
(∫

σ1B
|du|sg(x)dx

)1/s
⎛
⎝∫

σ1B
(g(x))

−m

s − mdx

⎞
⎠
s − m
ms

≤
(∫

σ1B
|du|sdμ

)1/s(∫
σ1B

g−β(x)dx
)1/βs

.

(3:8)
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Since g Î A(a, b, a; Ω), it follows that

(∫
B
gα(x)dx

)1/αs(∫
σ1B

g−β(x)dx
)1/βs

≤
((∫

σ1B
gα(x)dx

)(∫
σ1B

g−β(x)dx
)α/β

)1/αs

=

⎛
⎝|σ1B|

1+
α

β
(

1
|σ1B|

∫
σ1B

gα(x)dx
)(

1
|σ1B|

∫
σ1B

g−β(x)dx
)α/β

⎞
⎠

1/αs

≤ C4|B|1/αs+1/βs.

(3:9)

Combining (3.6), (3.7), and (3.8) and using (3.9), we have

(∫
B
|u − uB|sdμ

)1/s

≤ C5 |B| diam(B)|B|
m − t
mt

(∫
σ1B

|du|sdμ
)1/s(∫

B
gα(x)dx

)1/αs(∫
σ1B

g−β(x)dx
)1/βs

≤ C5diam(B)|B|1+
1
t

−
1
m

(∫
σ1B

|du|sdμ
)1/s

((∫
B
gα(x)dx

)(∫
σ1B

g−β(x)dx
)α/β

)1/αs

≤ C6 |B| diam(B)
(∫

σ1B
|du|sdμ

)1/s

,

that is

(∫
B
|u − uB|sdμ

)1/s

≤ C6 |B| diam(B)
(∫

σ1B
(du)sdμ

)1/s

.

We have completed the proof of Theorem 3.2.

Let g(x) =
1

|x − xB|λ
, where xB be the center of the ball B ⊂ Ω and 0 < λ <

n

α
,α > 1.

Then, g(x) Î A (a, b, a; Ω). From Theorem 3.2, we have the following corollary.

Corollary 3.3. Let u ∈ Lsloc(�,∧l)be a solution of the non-homogeneous A-harmonic

equation (3.1) in a domain �, du ∈ Lsloc(�,∧l+1), l = 0, 1, ...,n − 1and 1 <s < ∞. Then,

there exists a constant C, independent of u, such that

(∫
B
|u − uB|sdμ

)1/s

≤ C |B| diam(B)
(∫

σB
|du|sdμ

)1/s

(3:10)

for all balls B with sB ⊂ Ω, where the Radon measure μ is defined by

dμ =
1

|x − xB|λ
dx, xB is the center of the ball B ⊂ �, 0 < λ <

n

α
and a > 1 is a constant.

4. Global Poincaré inequalities
In this section, we will prove the global Poincaré inequalities with the Radon measure

for solutions of the nonhomogeneous A-harmonic equation in Ls (μ)-averaging

domains. In 1989, Staples [19] introduced the following Ls-averaging domains.

Definition 4.1. A proper subdomain Ω ⊂ ℝn is called an Ls-averaging domain, s ≥ 1,

if there exists a constant C such that
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(
1

|�|
∫

�

|u − u�|sdx
)1/s

≤ C sup
B⊂�

(
1
|B|

∫
B
|u − uB|sdx

)1/s

for all u ∈ Lsloc(�).

Also, in [19], the Ls-averaging domain is characterized in terms of the quasi-hyper-

bolic metric. Particularly, Staples proved that any John domain is Ls-averaging domain,

see [20] for more results on the averaging domains. In [15], the Ls-averaging domains

were extended to the following Ls (μ)-averaging domains.

Definition 4.2. We call a proper subdomain Ω ⊂ ℝn an Ls (μ)-averaging domain, s ≥

1, if there exists a constant C such that

(
1

μ (�)

∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C sup
B⊂�

(
1

μ (B)

∫
B
|u − uB|sdx

)1/s

for some ball B0 ⊂ Ω and all u ∈ Lsloc(�;μ), where the Radon measure μ(x) is defined

by dμ = w(x)dx and w(x) is a weight. Here, the supremum is over all balls B with B ⊂
Ω.

Theorem 4.3. Let u Î Ls(Ω, ∧0) be a solution of the non-homogeneous A -harmonic

equation (3.2) in a domain Ω, du Î Ls(Ω, ∧1), 1 <s < ∞. Then, there exists a constant

C, independent of u, such that

(∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C
(
μ(�)

)1+1/n(∫
�

|du|sdμ
)1/s

(4:1)

for any Ls(μ)-averaging domain Ω ⊂ ℝn with μ (Ω) <∞, where B0 is some ball

appearing in Definition 4.2 and the Radon measure μ is defined by dμ = g(x)dx, g(x) Î
A(a, b, a; Ω), a >1, b > 0.

Proof. We may assume g(x) ≥ 1 a.e. in Ω. Otherwise, let Ω1 = Ω ⋂ {x Î Ω : 0 <g(x)

< 1} and Ω2 = Ω ⋂ {x Î Ω : g(x) ≥ 1}. Then, Ω = Ω1 ∪ Ω2. We define G(x) by

G(x) =
{
1, x ∈ �1

g(x), x ∈ �2.

Then, G(x) ≥ g(x) and it is easy to check that g(x) Î A(a, b, a; Ω) if and only if G(x)

Î A(a, b, a; Ω).

Thus,

(∫
�

∣∣u − uB0

∣∣sdμ)1/s

=
(∫

�

∣∣u − uB0

∣∣sg(x)dx)1/s

≤
(∫

�

∣∣u − uB0

∣∣sG(x)dx)1/s
(4:2)

with G(x) ≥ 1. Hence, we may suppose that g(x) ≥ 1 a.e. in Ω. Thus, for any D ⊂ Ω,

we have

μ(D) =
∫
D
dμ =

∫
D
g(x)dx ≥

∫
D
dx = |D| . (4:3)
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Note that diam(B) = C1|B|
1/n. From Theorem 3.2, we obtain

(
1
|B|

∫
B
|u − uB|sdμ

)1/s

≤ C2|B|1+1/n−1/s
(∫

σB
|du|sdμ

)1/s

. (4:4)

By definition of the Ls (μ) -averaging domain, (4.3) , (4.4) and noticing that 1 + 1/n -

1/s > 0, we find that

(
1

μ(�)

∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C3 sup
B⊂�

(
1

μ(B)

∫
B
|u − uB|sdμ

)1/s

≤ C3 sup
B⊂�

(
1
|B|

∫
B
|u − uB|sdμ

)1/s

≤ C4 sup
B⊂�

|B|1+1/n−1/s
(∫

σB
|du|sdμ

)1/s

≤ C4|�|1+1/n−1/s sup
B⊂�

(∫
σB

|du|sdμ
)1/s

≤ C4|�|1+1/n−1/s
(∫

�

|du|sdμ
)1/s

≤ C4(μ(�))1+1/n−1/s
(∫

�

|du|
s

dμ
)1/s

,

that is

(∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C
(
μ(�)

)1+1/n(∫
�

|du|sdμ
)1/s

.

The proof of Theorem 4.3 has been completed.

In [15], it has been proved that any John domain is an Ls(μ)-averaging domain.

Hence, we have the following corollary.

Corollary 4.4. Let u Î Ls(Ω, ∧0) be a solution of the non-homogeneous A-harmonic

equation (3.2) in a John domain Ω with μ(Ω) < ∞, du Î Ls(Ω, ∧1), 1 <s < ∞. Then,

there exists a constant C, independent of u, such that

(∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C
(∫

�

|du|sdμ
)1/s

, (4:5)

where B0 is some ball appearing in Definition 4.2 and the Radon measure μ is defined

by dμ = g(x)dx and g(x) Î A(a, b, a; Ω), a > 1, b > 0.

Example 4.5. Since the usual p-harmonic equation div (∇u|∇u|p-2) = 0 and the A-

harmonic equation div A (x, ∇u) = 0 for functions are the special cases of the non-

homogeneous A-harmonic equation, all results proved in Sections 3 and 4 are still true

for p-harmonic functions and A-harmonic functions.

Remark. (i) Since an Ls-averaging domain is a special Ls (μ)-averaging domain, then

the inequality (4.1) still holds in any Ls-averaging domain. (ii) Since μ(Ω) < ∞, the

inequality (4.1) can be written as

(∫
�

∣∣u − uB0

∣∣sdμ)1/s

≤ C
(∫

�

|du|sdμ
)1/s

,
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where Ω is an Ls (μ)-averaging domain Ω ⊂ ℝn with μ(Ω) < ∞ and B0 is some ball

appearing in Definition 4.2, and the Radon measure μ is defined by dμ = g(x)dx and g

(x) Î A(a, b, a; Ω), a > 1, b > 0. (iii) The inequalities obtained in this article are

extensions of the usual Ar(E)-weighted inequalities since the Ar(E) is a proper subset of

the A(a, b, a; E)-class which can be used to extend many results with the Ar(E)-weight

into the A(a, b, a; E)-weight.
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