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1 Introduction
Let K(x, ξ ) : Rn × R

n\{} → R be a variable kernel. The singular integral operator is de-
fined by

Tf (x) = p.v.
∫
Rn

K(x,x – y)f (y)dy (.)

and its multilinear commutator with the BMO function

[�b,T]f (x) =
∫
Rn

N∏
i=

(
bi(x) – bi(y)

)
K(x,x – y)f (y)dy, (.)

where �b = (b, . . . ,bn), bi ∈ BMO,  ≤ i ≤ N . The variable kernel K(x, ξ ) depends on some
parameter x and possesses ‘good’ properties with respect to the second variable ξ , which
was firstly introduced by Fabes and Rieviève in []. They generalized the classical Calderón
and Zygmund kernel and the parabolic kernel studied by Jones in []. By introducing a
newmetric ρ , Fabes and Rieviève studied (.) in Lp(Rn), where Rn was endowed with the
topology induced by ρ and defined by ellipsoids.
By using this metric ρ , Softova in [] obtained that the integral operator (.) and com-

mutator were continuous in generalized Morrey spaces Lp,ω(Rn),  < p < ∞, ω satisfying
suitable conditions.
The multilinear commutator was introduced by Pérez and González [] who proved

the weighted Lebesgue estimates. Xu in [] also showed that the multilinear commutators
(.) were continuous in Lp,ω(Rn),  < p <∞.
The weighted Morrey spaces Lp,κ (w) were introduced by Komori and Shirai []. More-

over, they showed some classical integral operators and corresponding commutators were
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bounded in weighted Morrey spaces. Recently, Wang [–] obtained that some other
kind of integral operators (e.g., Bochner-Riesz operator,Marcinkiewicz operators etc.) and
commutatorswere also bounded inweightedMorrey spaces.He Sha [] showed thatmul-
tilinear operatorswere bounded onweightedMorrey spaceswith the symbol of b ∈ Lip(β).
Themain purpose of this paper is to discuss the continuity of the singular integral operator
whose kernel is a variable kernel withmixed homogeneity and its multilinear commutator
in the weightedMorrey spaces Lp,κ (ω),  < p < ∞,  < κ < , where the weight function ω is
Ap weight. Furthermore, we shall give the weighted weak type estimate of theses operators
in the weighted Morrey spaces L,κ (ω),  < κ < . Our main results are stated as follows.

Theorem . Let  < p < ∞,  < κ < . If w ∈ Ap, then there exists a constant C >  such
that

‖Tf ‖Lp,κ (w) ≤ C‖f ‖Lp,κ (w).

When p = , for any λ >  and ellipsoid E , there exists a constant C >  such that

λw
({
x ∈ E :

∣∣Tf (x)∣∣ > λ
}) ≤ C‖f ‖L,κ (w).

If K(x, ξ ) is a constant kernel and a metric ρ is Euclidean one, this result is just Theo-
rem . in [].

Theorem . Let  < p < ∞,  < κ < . If bi ∈ BMO(Rn),  ≤ i ≤ N , w ∈ Ap, then there
exists a constant C >  such that

∥∥[�b,T]f ∥∥Lp,κ (w) ≤ C‖�b‖‖f ‖Lp,κ (w),

where ‖�b‖ =
∏N

i= ‖bi‖∗.When p = , for any λ >  and ellipsoid E , then there exists a con-
stant C >  such that

λw
({
x ∈ E :

∣∣[�b,T]f (x)∣∣ > λ
}) ≤ C‖�b‖‖f ‖L�,κ (w),

where �(t) = t logN (e + t) and ‖f ‖L�,κ (w) = ‖�(|f |)‖L,κ (w).

In what follows, we denote by C positive constants which are independent of the main
parameters but may vary from line to line.

2 Some notations and lemmas
In this section, we introduce some basic definitions and lemmas needed for the proof of
the main results.
Let α, . . . ,αn be real numbers, αi ≥  and |α| = ∑n

i= αi. Following Fabes and Riviève
[], there exists a function ρ such that ρ(x – y) defines a distance between any two points
x, y ∈ R

n. Thus Rn endowed with the metric ρ results in a homogeneous metric space
[, ]. The balls with respect to ρ(x) centered at the origin and of radius r are the ellipsoids

Er() =
{
x ∈R

n :
x
rα

+ · · · + xn
rαn

< 
}
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with Lebesgue measure |Er| = C(n)r|α|. It is easy to see that the unit sphere with respect to
this metric coincides with the unit sphere 
n with respect to the Euclidean one.

Definition . The function K(x, ξ ) : Rn × R
n\{} → R is called a variable kernel with

mixed homogeneity if
(i) for every fixed x, the function K(x, ·) is a constant kernel satisfying

() K(x, ·) ∈ C∞(Rn\{});
() for any μ > , αi ≥ , |α| = ∑n

i= αi

K
(
x,μαξ, . . . ,μαnξn

)
= μ–|α|K(x, ξ );

()
∫

n

K(x, ξ )dσξ =  and
∫

n

|K(x, ξ )|dσξ <∞;
(ii) for every multiindex β , supξ∈
n |Dβ

ξ K(x, ξ )| ≤ C(β) independent of x.

In the case αi = ,  ≤ i ≤ n, Definition . gives rise to the classical Calderón-Zygmund
kernel. On the other hand, when αi = ,  ≤ i ≤ n –  and αn ≥ , we obtain the kernel
studied by Jones in [] and discussed in [].

Definition . Let  ≤ p < ∞,  < κ <  and w be a weight function. Then a weighted
Morrey space is defined by

Lp,κ (w) :=
{
f ∈ Lloc(w) : ‖f ‖Lp,κ (w) < ∞}

,

where

‖f ‖Lp,κ (w) = sup
E

(


w(E)κ
∫
E

∣∣f (x)∣∣pw(x)dx)/p

,

the supremum is taken over all ellipsoid E in R
n.

Definition . For the function b ∈ Lloc(R
n) and any ellipsoid E , b is called a BMO func-

tion if

‖b‖∗ = sup
E


|E |

∫
E

∣∣b(x) – bE
∣∣dx < ∞,

where bE = 
|E |

∫
E b(y)dy. The quantity ‖b‖∗ is a norm in the BMOmodulo constant func-

tion under which BMO results in a Banach space (see []).

Definition . Let  < p < ∞. For any locally integrable function w and ellipsoid E , if

(


|E |
∫
E
w(x)dx

)(


|E |
∫
E
w(x)


–p dx

)p–

< ∞

holds, then w belongs to the Muckenhoupt class Ap. We denote A∞ =
⋃

<p<∞ Ap.
When p = , w ∈ A if there exists C >  such that

Mw(x) ≤ Cw(x)

for almost every x ∈R
n.
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Remark . Given a weight function w ∈ Ap,  ≤ p ≤ ∞, it also satisfies the doubling
condition �: for any ellipsoid E , there exists a constant C >  such that w(E)≤ Cw(E).

In fact, w ∈ �, we have the following inequality.

Lemma A [, ] Suppose w ∈ �, there exists a constant D >  such that

w(E)≥ Dw(E)

for any ellipsoid E .

Lemma B [] Suppose w ∈ A∞, then the norm of BMO(w) is equivalent to the norm of
BMO(Rn), where

BMO(w) =
{
b : ‖b‖∗,w = sup

E


w(E)

∫
E

∣∣b(x) – bE ,w
∣∣w(x)dx < ∞

}
,

where bE ,w = 
w(E)

∫
E b(x)w(x)dx.

Lemma C [] Let the ellipsoid E = E(x, r) centered at x with side length of r. For any
positive integer i, iE denotes the ellipsoid centered at x with side length of ir, we have
the inequality

|biE – bE | ≤ Ci‖b‖∗,

where bE ,w = 
|E |

∫
E b(x)w(x)dx.

Lemma D [] Suppose  < p < ∞,  < κ <  and w ∈ Ap, if T̄ is the classical Calderón-
Zygmund operator with a constant kernel, then the operator T̄ is bounded on Lp,κ (w).
If p = ,  < κ <  and w ∈ A, then there exists a constant C >  such that

λw
({
x ∈ E :

∣∣T̄ f (x)∣∣ > λ
}) ≤ C‖f ‖L,κ (w)w(E)κ

for all λ >  and any ellipsoid E .

Definition . Let �(t) = t logN (t + e). The Orlicz maximal operatorM� is given by

M�f (x) = sup
x∈E

‖f ‖�,E = sup
x∈E


|E |

∫
E

�
(|f |)(x)dx.

From the above definition, observe thatMf (x)≤ M�f (x)≤ M(�(|f |))(x). This inequality
will be relevant in our work.
Aside from the properties of an Ap weight function and a BMO function, we need some

estimates of multilinear commutators. The following results were proved by Pérez and
González [].

Lemma E Let  < p < ∞ and w ∈ Ap. Suppose bj ∈ BMO(Rn),  ≤ j ≤ N , then there exists
a constant C >  such that∫

Rn

∣∣[�b, T̄](f )(x)∣∣pw(x)dx ≤ C‖�b‖p
∫
Rn

∣∣f (x)∣∣pw(x)dx.

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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Although the commutators with a BMO function are not of weak type (, ), we have the
following inequality.

Lemma F Let w ∈ A∞. There exists a constant C >  such that

sup
t>


�( t )

w
(
x ∈R

n :
∣∣[�b, T̄](f )(x)∣∣ > t

)

≤ C sup
t>


�( t )

w
(
x ∈R

n :M�

(‖�b‖f )(x) > t
)
,

where �(t) = t logN (e + t).

By the above inequality, we have the following result.

Lemma G Let w ∈ A. There exists a constant C >  such that, for all λ > ,

w
(
x ∈ R

n :
∣∣[�b, T̄](f )(x)∣∣ > λ

) ≤ C
∫
Rn

�
(|f |)(x)w(x)dx,

where �(t) = t logN (e + t).

Finally, we need the spherical harmonics and their properties (see more detail in
[, , ]). Recall that any homogeneous polynomial P : Rn → R of degree m that sat-
isfies �P =  is called an n-dimensional solid harmonic of degreem. Its restriction to the
unit sphere
n will be called an n-dimensional spherical harmonic of degreem. Denote by
Hm the space of all n-dimensional spherical harmonics of degree m. In general, it results
in a finite-dimensional linear space with gm = dimHm such that g = , g = n and

gm = Cn–
m+n– –Cn–

m+n– ≤ C(n)mn–, m ≥ . (.)

Furthermore, let {Ysm}gms= be an orthonormal basis of Hm. Then {Ysm}gm∞
s=m= is a complete

orthonormal system in L(
n) and

sup
x∈
n

∣∣Dβ
x Ysm(x)

∣∣ ≤ C(n)m|β|+(n–)/, m = , , . . . . (.)

If, for instance, φ ∈ C∞(
n), then 
s,mbsmYsm(x) is the Fourier series expansion of φ(x)
with respect to {Ysm}s,m (
s,m substitutes 
∞

m=

gm
s=) and

bsm =
∫


n

φ(x)Ysm(x)dσ , |bsm| ≤ C(n, l)m–l sup
|β|=l
y∈
n

∣∣Dβ
y φ(y)

∣∣, (.)

for any integer l. In particular, the expansion of φ into spherical harmonics converges
uniformly to φ. For more detail, we can see [].

3 Proof of the theorems
In this section, we shall use the complete orthonormal system in L(
n) and some lemmas
as above to finish the theorems.

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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Proof of Theorem . In order to ensure the existence of the operator (.) in Lp,κ (w),  ≤
p < ∞, we restrict our consideration to the function f ∈ Lp,κ (w), for which the norm of
Lp(w) is finite. For the sake of convenience, we still denote these spaces by Lp,κ (w). Let
x, y ∈R

n and ȳ = y/ρ(y) ∈ 
n. In view of the properties of the kernel K with respect to the
second variable and the complete of {Ysm(x)} in L(
n), we get

K(x,x – y) = ρ(x – y)–|α|K(x,x – y)

= ρ(x – y)–|α| ∑
s,m

bsm(x)Ysm(x – y).

Replacing the kernel with its series expansion, (.) can be written as

Tf (x) = lim
ε→

Tε f (x)

= lim
ε→

∫
ρ(x–y)>ε

∑
s,m

bsm(x)ρ(x – y)–|α|Ysm(x – y)f (y)dy.

From the properties of (.)-(.), the series expansion
∑

s,m |bsm(x)Ysm(x – y)| ≤
C(n,α)m(n–)/–l , where the integer l is preliminarily chosen greater than (n – )/.
Along with the ρ(x – y)–|α|f (y) ∈ L(Rn) for a.a. x ∈ R

n, by the Fubini dominated conver-
gence theorem, we have

Tf (x) =
∑
s,m

bsm(x) lim
ε→

∫
ρ(x–y)>ε

Hsm(x – y)f (y)dy =
∑
s,m

bsm(x)Tsmf (x),

where Hsm(x – y) = ρ(x – y)–|α|Ysm(x – y). Instead of the operators Tf (x), we shall study
the existence and boundedness in Lp,κ (ω) of the operators Tsmf (x) with a kernel Hsm(·).
Observe that Hsm(·) is a constant kernel and satisfies

∣∣Hsm(x)
∣∣ ≤ C(n,α)m

n–
 ρ–|α|;

∣∣∇Hsm(x)
∣∣ ≤ C(n,α)m

n
 ρ–|α|–.

From Lemma D, it follows

∥∥Tsmf (x)
∥∥
Lp,κ (ω) ≤ C(n,α)m

n

∥∥f (x)∥∥Lp,κ (ω)

for  < p < ∞. Consequently, by the above inequality and (.)-(.), we show

∥∥Tf (x)∥∥Lp,κ (ω) ≤ C
∑
s,m

∥∥bsm(x)∥∥L∞
∥∥Tsmf (x)

∥∥
Lp,κ (ω)

≤ C
∑
s,m

m–l+ n

∥∥f (x)∥∥Lp,κ (ω)

≤ C‖f ‖Lp,κ (ω),

where the integer l is preliminary chosen greater that l > n
 . For p = , by Lemma D, we

have

λw
({
x ∈ E :

∣∣Tsmf (x)
∣∣ > λ

}) ≤ C(n,α)m
n
 ‖f ‖L,κ (w)

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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for any λ >  and ellipsoid E . Therefore, one gets

λw
({
x ∈ E :

∣∣Tf (x)∣∣ > λ
}) ≤ C

∑
s,m

∥∥bsm(x)∥∥L∞λw
({
x ∈ E :

∣∣Tsmf (x)
∣∣ > λ

})

≤ C
∑
s,m

m–l+ n
 ‖f ‖L,κ (w)

≤ C
∥∥f (x)∥∥L,κ (w),

thus we complete the proof of Theorem .. �

Next we begin with the second theorem, for which further discussion is needed.

Proof of Theorem . As above, we use the series expansion of a kernelK(x, y), the operator
[�b,T]f (x) is divided into

[�b,T]f (x) =
∑
s,m

bsm(x)[�b,Tsm]f (x).

Instead of the operator [�b,T]f (x), we only consider the existence and boundedness in
Lp,κ (w) of the operators [�b,Tsm]f (x).
Let  < p < ∞. For any ellipsoid E , we only need to obtain the inequality

∫
E

∣∣[�b,Tsm]f (x)
∣∣pw(x)dx ≤ Cm

mp
 ‖b‖pw(E)k‖f ‖pLp,κ (w).

In fact, by the series expansion of a kernel K(x, y), we have

∥∥[�b,T]f (x)∥∥Lp,κ (ω) ≤ C
∑
s,m

∥∥bsm(x)∥∥L∞
∥∥[�b,Tsm]f (x)

∥∥
Lp,κ (ω)

≤ C
∑
s,m

m–l+ n
 ‖f ‖Lp,κ (ω) ≤ C‖f ‖Lp,κ (ω),

where the integer l is chosen greater than l > n
 . Next, fix the above ellipsoid E = E(x, r)

and decompose f = f + f, where f = f χE , χE denotes the characteristic function of E ,
then we have

∫
E

∣∣[�b,Tsm](f )(x)
∣∣pw(x)dx≤ C

∫
E

{∣∣[�b,Tsm](f)(x)
∣∣p + ∣∣[�b,Tsm](f)(x)

∣∣p}w(x)dx
= C{I + II}. (.)

By using Lemma E, we get

I ≤
∫
Rn

∣∣[�b,Tsm](f)(x)
∣∣pw(x)dx

≤ Cm
np
 ‖�b‖pw(E)κ‖f ‖pLp,κ (w). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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For the term II, without loss of generality, we can assumeN = . Thus, the operator [�b,Tsm]
can be divided into four parts,

[�b,Tsm]f(x) =
(
b(x) – λ

)(
b(x) – λ

)∫
Rn

Hsm(x – y)f(y)dy

+
∫
Rn

Hsm(x – y)
(
b(y) – λ

)(
b(y) – λ

)
f(y)dy

–
(
b(x) – λ

)∫
Rn

Hsm(x – y)
(
b(y) – λ

)
f(y)dy

–
(
b(x) – λ

)∫
Rn

Hsm(x – y)
(
b(y) – λ

)
f(y)dy

= II(x) + II(x) + II(x) + II(x), (.)

where λi = (bi)E ,w = 
w(E)

∫
E bi(x)w(x)dx, i = , . For the term II(x), observing that x ∈ E

and y ∈R
n\E , we have ρ(x – y) ≤ Cρ(x – y). Thus, it yields

∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np


∫
E

∣∣(b(x) – (b)E ,w
)(
b(x) – (b)E ,w

)∣∣pw(x)dx
×

(∫
Rn\E

|f (y)|
ρ(x – y)|α| dy

)p

≤ Cm
np
 w(E)

(


w(E)

∫
E

∣∣b(x) – (b)E ,w
∣∣pw(x)dx) 



×
(


w(E)

∫
E

∣∣b(x) – (b)E ,w
∣∣pw(x)dx) 



×
( ∞∑

j=

∫
j+E\jE

|f (y)|
ρ(x – y)|α| dy

)p

≤ Cm
np
 ‖b‖p∗‖b‖p∗w(E)

( ∞∑
j=


|jE |

(∫
j+E

∣∣f (y)∣∣pw(y)dy) 
p

×
(∫

j+E
w(y)–

p′
p dx

) 
p′

) p

,

since w ∈ Ap, and by the definition of a weighted Morrey space, we get

∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np
 ‖�b‖pw(E)

( ∞∑
j=

w
(
j+E

) –
p

(∫
j+E

∣∣f (y)∣∣pw(y)dy) 
p
)p

≤ Cm
np
 ‖�b‖pw(E)

( ∞∑
j=

w
(
j+E

) κ–
p ‖f ‖Lp,κ (w)

)p

≤ Cm
np
 ‖�b‖pw(E)

( ∞∑
j=

Dj κ–p w(E)
κ–
p ‖f ‖Lp,κ (w)

)p

≤ Cm
np
 ‖�b‖pw(E)κ‖f ‖pLp,κ (w). (.)

The third inequality is obtained by Lemma A.

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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For II(x), note that λi = (bi)E ,w = 
w(E)

∫
E bi(x)w(x)dx, i = , . By Hölder’s inequality and

ρ(x – y) ≤ Cρ(x – y), we get

∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np
 w(E)

(∫
Rn\E

|(b(y) – (b)E ,w)(b(y) – (b)E ,w)|
ρ(x – y)|α|

∣∣f (y)∣∣dy)p

≤ Cm
np
 w(E)

( ∞∑
j=


|jE |

∫
j+E\jE

∣∣(b(y) – (b)E ,w
)

× (
b(y) – (b)E ,w

)∣∣∣∣f (y)∣∣dy
) p

≤ Cm
np
 w(E)

( ∞∑
j=


|jE |

(∫
j+E

∣∣f (y)∣∣pw(y)dy) 
p

×
(∫

j+E

∣∣(b(y) – (b)E ,w
)∣∣p′

w(y)–
p′
p dy

) 
p′

×
(∫

j+E

∣∣(b(y) – (b)E ,w
)∣∣p′

w(y)–
p′
p dy

) 
p′

) p

.

Indeed, by LemmaBwe knowBMO(Rn) is equivalent toBMO(w),w ∈ A∞. LetW = w– p′
p ∈

Ap′ ⊂ A∞, bi ∈ BMO(Rn), i = , . For any ellipsoid E , by using Lemma B and Lemma C,
we show

(


W (j+E)

∫
j+E

∣∣bi(y) – (bi)E ,w
∣∣p′

W (y)dy
) 

p′ ≤ Cj‖bi‖∗.

Thus, since w ∈ Ap, it yields

∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np
 w(E)

( ∞∑
j=

j

|jE | ‖b‖∗‖b‖∗W
(
j+E

) 
p′

×
(∫

j+E

∣∣f (y)∣∣pw(y)dy) 
p
) p

≤ Cm
np
 w(E)‖�b‖p‖f ‖pLp,κ (w)

( ∞∑
j=

j

w(j+E)
–κ
p

)p

≤ Cm
np
 w(E)κ‖�b‖p‖f ‖pLp,κ (w). (.)

The last inequality is obtained by Lemma A and the D’Alembert judge method of positive
series.
For II(x), by the inequality ρ(x – y) ≤ Cρ(x – y) since w ∈ Ap ⊂ A∞, by Lemma B, we

have∫
E

∣∣II(x)∣∣pw(x)dx
≤ Cm

np


∫
E

∣∣∣∣(b(x) – λ
)∫

Rn\E
|b(y) – λ|
ρ(x – y)|α|

∣∣f (y)∣∣dy∣∣∣∣
p

w(x)dx
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≤ Cm
np


∫
E

∣∣(b(x) – λ
)∣∣pw(x)dx(∫

Rn\E
|b(y) – λ|
ρ(x – y)|α|

∣∣f (y)∣∣dy)p

≤ Cm
np
 w(E)‖b‖p∗

(∫
Rn\E

|b(y) – λ|
ρ(x – y)|α|

∣∣f (y)∣∣dy)p

.

By Hölder’s inequality, Lemma B and Lemma C, we get

∫
Rn\E

|b(y) – λ|
ρ(x – y)|α|

∣∣f (y)∣∣dy ≤ C
∞∑
j=


|jE |

∫
j+E

∣∣b(y) – λ
∣∣∣∣f (y)∣∣dy

≤ C
∞∑
j=


|jE |

(∫
j+E

∣∣f (y)∣∣pw(y)dy) 
p

×
(∫

j+E

∣∣b(y) – λ
∣∣p′
w(y)–

p′
p dy

) 
p′

≤ C‖b‖∗‖f ‖Lp,κ (w)
∞∑
j=

j
w(j+E)

κ
p

|jE |
(∫

j+E
w(y)–

p′
p dy

) 
p′

≤ C‖b‖∗‖f ‖Lp,κ (w)
∞∑
j=

j

w(j+E)
–κ
p
,

indeed for  < κ < , by using Lemma A, we have that

∞∑
j=

j

w(j+E)
–κ
p

≤
∞∑
j=

j

D(j+) –κ
p
w(E)

κ–
p ≤ Cw(E)

κ–
p .

Thus, we conclude
∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np
 w(E)κ‖�b‖p‖f ‖pLp,κ (w). (.)

In the same way, we shall get the result of II(x)

∫
E

∣∣II(x)∣∣pw(x)dx ≤ Cm
np
 w(E)κ‖�b‖p‖f ‖pLp,κ (w). (.)

Which together with (.)-(.), for  < p < ∞, the proof of Theorem . is finished.
Now, we are in a position to consider the case p = . In general, the singularity of the

commutator is stronger than the singular integral, and the endpoint case p =  of the com-
mutator is not even obtained. Thus, the result for the case p =  of the multilinear com-
mutator is interesting. We split f as above by f = f + f, which yields

λw
({
x ∈ E :

∣∣[�b,T]f (x)∣∣ > λ
}) ≤ C

∑
s,m

‖bsm‖L∞λw
({
x ∈ E :

∣∣[�b,Tsm]f (x)
∣∣ > λ

})

≤ C
∑
s,m

m–l[λw({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > λ/

})

+ λw
({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > λ/

})]
= C

∑
s,m

m–l[III + IV ] (.)
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for any ellipsoid E , λ >  and integer l > . For the term III , we use Lemma G. It follows
that

III ≤ C
∫
Rn

�
(|f|)(x)w(x)dx

≤ Cw(E)κ‖f ‖L�,κ (w). (.)

For the last term IV , without loss of generality, we still suppose N = . By homogeneity, it
is enough to assume λ/ = ‖b‖∗ = ‖b‖∗ = , and hence we only need to prove

w
({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > 

}) ≤ Cw(E)κ‖f ‖L�,κ (w).

In fact, by Lemma F, we get

w
({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > 

}) ≤ sup
t>


�( t )

w
({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > t

})

≤ C sup
t>


�( t )

w
({
x ∈ E :M�f(x) > t

})

= C sup
t>


�( t )

w
({
x ∈ E :M

(
�|f|

)
(x) > t

})
, (.)

where �(t) = t logN (e + t). We use the Fefferman-Stein maximal inequality

∫
x:Mf (x)>t

φ(t)dx≤ C
t

∫
Rn

∣∣f (x)∣∣Mφ(x)dx,

for any functions f and φ ≥ . This yields

w
({
x ∈ E :M

(
�|f|

)
(x) > t

}) ≤ 
t

∫
{x∈Rn :M(�|f|)(x)>t}

χE (x)w(x)dx

≤ C
t

∫
Rn

�
(|f|)(x)M(wχE )(x)dx

=
C
t

(∫
E

+
∫
Rn\E

)
�

(|f|)(x)M(wχE )(x)dx

=
C
t
(IV  + IV ). (.)

For IV , since w ∈ A, it follows that

IV  ≤ C
∫
E

�
(|f |)(x)w(x)dx

≤ Cw(E)κ
∥∥�

(|f |)∥∥L,κ (w)

≤ Cw(E)κ‖f ‖L�,κ . (.)

To estimate the term IV , we first consider the form


|F |

∫
E∩F

w(y)dy

http://www.journalofinequalitiesandapplications.com/content/2012/1/302
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for any x ∈R
n\E , x ∈F and F ∩ E �= ∅. By simple geometric observation, we have


|F |

∫
E∩F

w(y)dy ≤ C


ρ(x – x)|α|

∫
E
w(y)dy

=
C

ρ(x – x)|α|w(E).

Therefore, we obtain

M(wχE )(x)≤ C
ρ(x – x)|α|w(E).

Since w ∈ A satisfies the doubling condition and Lemma A, we estimate the term IV  as
follows:

IV  ≤ C
∫
Rn\E

�(|f |)(x)
ρ(x – x)|α|w(E)dx

≤ Cw(E)
∞∑
j=


|jE |

∫
j+E

�
(|f |)(x)dx

≤ Cw(E)
∥∥�

(|f |)∥∥L,κ (w)

∞∑
j=


w(jE)–κ

≤ Cw(E)κ‖f ‖L�,κ . (.)

The last inequality is similar to (.). Noting that t�( t ) > , from (.)-(.), we conclude

w
({
x ∈ E :

∣∣[�b,Tsm]f(x)
∣∣ > 

}) ≤ Cw(E)κ‖f ‖L�,κ (w).

Thus, the proof of Theorem . is completed. �
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