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1 Introduction

Let K(x,&) : R” x R"\{0} — R be a variable kernel. The singular integral operator is de-
fined by

Tf (x) = p.v. /1;{" K(x,x—y)f(y)dy (1.1)

and its multilinear commutator with the BMO function
R N
.11 = [ T](0i) - b)) K3 - 570, 12)
R™ i1

where b = (b1,...,b,), b; € BMO, 1 < i < N. The variable kernel K(x,&) depends on some
parameter x and possesses ‘good’ properties with respect to the second variable &, which
was firstly introduced by Fabes and Rievieve in [1]. They generalized the classical Calderén
and Zygmund kernel and the parabolic kernel studied by Jones in [2]. By introducing a
new metric p, Fabes and Rieviéve studied (1.1) in L?(R"), where R” was endowed with the
topology induced by p and defined by ellipsoids.

By using this metric p, Softova in [3] obtained that the integral operator (1.1) and com-
mutator were continuous in generalized Morrey spaces L”“(R"), 1 < p < 00, w satisfying
suitable conditions.

The multilinear commutator was introduced by Pérez and Gonzélez [4] who proved
the weighted Lebesgue estimates. Xu in [5] also showed that the multilinear commutators
(1.2) were continuous in L7*(R"), 1< p < c0.

The weighted Morrey spaces L (w) were introduced by Komori and Shirai [6]. More-
over, they showed some classical integral operators and corresponding commutators were
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bounded in weighted Morrey spaces. Recently, Wang [7-9] obtained that some other
kind of integral operators (e.g., Bochner-Riesz operator, Marcinkiewicz operators ezc.) and
commutators were also bounded in weighted Morrey spaces. He Sha [10] showed that mul-
tilinear operators were bounded on weighted Morrey spaces with the symbol of b € Lip(8).
The main purpose of this paper is to discuss the continuity of the singular integral operator
whose kernel is a variable kernel with mixed homogeneity and its multilinear commutator
in the weighted Morrey spaces LP*(w), 1 < p < 00, 0 < k <1, where the weight function w is
A, weight. Furthermore, we shall give the weighted weak type estimate of theses operators
in the weighted Morrey spaces L (), 0 < k < 1. Our main results are stated as follows.

Theorem 1.1 Let 1< p < 00,0 <« <1. Ifwe A, then there exists a constant C > 0 such
that

1 Zf lzox owy < Clf 2o )
When p =1, for any A > 0 and ellipsoid &, there exists a constant C > 0 such that
aw({xe & |TfW)] > 1)) < Clf i)

If K(x,£) is a constant kernel and a metric p is Euclidean one, this result is just Theo-
rem 3.3 in [6].

Theorem 1.2 Let1<p <00, 0 <« <1 If b e BMOR"), 1 <i <N, w e A, then there
exists a constant C > 0 such that

1B, TYf || sy < CUBIIF 2o o,

where ||79|| = ]_[f\z[l 16ill. When p =1, for any A > 0 and ellipsoid £, then there exists a con-
stant C > 0 such that

ww([x e E:|b, T )| > 1)) < CUBIIF L ox s
where ®(t) = tlogN (e + t) and Wl Los gy = NP DN L1 ) -

In what follows, we denote by C positive constants which are independent of the main
parameters but may vary from line to line.

2 Some notations and lemmas
In this section, we introduce some basic definitions and lemmas needed for the proof of
the main results.

Let a,...,a, be real numbers, o; > 1 and || = ZL «a;. Following Fabes and Riviéve
[1], there exists a function p such that p(x — y) defines a distance between any two points
x,y € R”. Thus R” endowed with the metric p results in a homogeneous metric space
[1, 3]. The balls with respect to p(x) centered at the origin and of radius r are the ellipsoids

2 2
X X
5r(0)=[x€R":Til+~~+ 2n <1}

r rn
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with Lebesgue measure |£,| = C(n)r!l. It is easy to see that the unit sphere with respect to
this metric coincides with the unit sphere X, with respect to the Euclidean one.

Definition 2.1 The function K(x,&) : R” x R"\{0} — R is called a variable kernel with
mixed homogeneity if
(i) for every fixed x, the function K(x, -) is a constant kernel satisfying
1) K(x,-) € C*(R"\{0});
(2) forany u>0,0;,>1, | = 1j o

K(x, UAE,. .., ua”En) = M_la‘K(x,E);

(3) fEn K(x,&)do: = 0 and f):n |K(x,&)| doe < 00;
(ii) for every multiindex B, sup;.y, |D§K(x,$)| < C(B) independent of x.

In the case o; =1, 1 < i < n, Definition 2.1 gives rise to the classical Calderén-Zygmund
kernel. On the other hand, when o; =1,1 <i <#un -1 and «, > 1, we obtain the kernel
studied by Jones in [2] and discussed in [1].

Definition 2.2 Let 1 < p <00, 0 <k <1 and w be a weight function. Then a weighted
Morrey space is defined by

LP(w) = {f € Lo (W) : IIf ll 1w wy < 00},

where

1 » 1/p

e :su< [ w(x)dx) ,
Pirein =50\ gy J. V)

the supremum is taken over all ellipsoid £ in R”.

Definition 2.3 For the function b € L} (R") and any ellipsoid &, b is called a BMO func-
tion if

1
ol =sup - [ [b6a) - be] dx <,
e 1€l Je

where bge = Ié_\ f ¢ b(y) dy. The quantity ||b|, is a norm in the BMO modulo constant func-
tion under which BMO results in a Banach space (see [11]).

Definition 2.4 Let 1 < p < co. For any locally integrable function w and ellipsoid &, if

1 1 a1\
(E/gw(x)dx> (E/Sw(x) -» dx) <00

holds, then w belongs to the Muckenhoupt class A,. We denote A = ;.00 Ap-
When p =1, w € A if there exists C > 1 such that

Mw(x) < Cw(x)

for almost every x € R”.
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Remark 2.5 Given a weight function w € A, 1 < p < o0, it also satisfies the doubling
condition A,: for any ellipsoid &, there exists a constant C > 0 such that w(2€) < Cw(€).

In fact, w € Ay, we have the following inequality.

Lemma A [6, 12] Suppose w € A, there exists a constant D > 1 such that
w(2€) > Dw(E)
for any ellipsoid E.

Lemma B [13] Suppose w € Aw, then the norm of BMO(w) is equivalent to the norm of
BMO(R"), where

(15) /£|b(x) - bg,w|w(x)dx < oo},

BMO(w) = {bi 114, = sup
g W
where bg ,, = ﬁ [ bx)w(x) dx.

Lemma C [14] Let the ellipsoid £ = E(xo,r) centered at xo with side length of r. For any
positive integer i, 2°€ denotes the ellipsoid centered at xo with side length of 2'r, we have
the inequality

|byie — be| < Cillb|ls,
where bg ,, = \‘lf_l Je bx)w(x) dx.

Lemma D [6] Suppose 1 <p<00,0<k <1landwe A, if T is the classical Calderén-
Zygmund operator with a constant kernel, then the operator T is bounded on LP* (w).
Ifp=1,0<k <1landw € A;, then there exists a constant C > 0 such that

Aw({x e&: ‘Tf(x)’ > A}) = ClIf ll prwe yw(E)*
forall . >0 and any ellipsoid £.

Definition 2.6 Let ®(t) = t1og" (¢ + e). The Orlicz maximal operator Mg is given by

Mof (x) = sup Iflloe = sup I‘i"_l fg D(|f]) () dx.

From the above definition, observe that Mf (x) < Mqf(x) < M(®P(|f]))(x). This inequality
will be relevant in our work.

Aside from the properties of an A, weight function and a BMO function, we need some
estimates of multilinear commutators. The following results were proved by Pérez and
Gonzélez [4].

LemmaE Let1<p<ooandweA, Suppose by e BMO(R"), 1 <j < N, then there exists
a constant C > 0 such that

/ |15, 1)) [Pwix) dx < CIBIP / @) wix) .
R” R”
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Although the commutators with a BMO function are not of weak type (1,1), we have the

following inequality.

LemmaF Let w € Aw.. There exists a constant C > 0 such that

sup 11 w(x ceR”: |[l;, T](f)(x)! > t)

t>0q>;

< Csup w(xeR”:Mq>(||l;|[f)(x)>t),

1
t>0 P

where ®(t) = tlog! (e + t).
By the above inequality, we have the following result.

Lemma G Let w € Ay. There exists a constant C > 0 such that, for all A > 0,
w(x ceR": |[l;, T](f)(x)| > A) < C/ ¢([f|)(x)w(x) dx,
RVI

where ®(t) = tlogN (e + t).

Finally, we need the spherical harmonics and their properties (see more detail in
[1, 15, 16]). Recall that any homogeneous polynomial P : R” — R of degree m that sat-
isfies AP = 0 is called an n-dimensional solid harmonic of degree m. Its restriction to the
unit sphere ¥, will be called an n-dimensional spherical harmonic of degree m. Denote by
H,, the space of all #n-dimensional spherical harmonics of degree m. In general, it results
in a finite-dimensional linear space with g, = dim H,, such that gp =1, g; = n and

gn=Crl —C"l . <Cmm"2 m=>2. (2.1)

m+n-1 m+n-3

Furthermore, let {Yj,, }ffl be an orthonormal basis of H,,. Then {Ysm}fflonjzo is a complete

orthonormal system in L2(%,) and

sup |[DE Y, (x)| < CrnymP1+=22 21,2, (2.2)

XEX,

If, for instance, ¢ € C*(X,), then X;,,b, Y5, (x) is the Fourier series expansion of ¢(x)
with respect to { Yy, }sm (Xs,, substitutes EfnozoEfi”l) and

) (2.3)

by = ¢ @) Ysu(x)do, bl < C(n, l)m_y sup |Df¢(y)
Zn 1B1=21
Y€y

for any integer /. In particular, the expansion of ¢ into spherical harmonics converges

uniformly to ¢. For more detail, we can see [15].

3 Proof of the theorems
In this section, we shall use the complete orthonormal system in L?(2,,) and some lemmas
as above to finish the theorems.
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Proof of Theorem 1.1 In order to ensure the existence of the operator (1.1) in L”*(w), 1 <
p < 00, we restrict our consideration to the function f € LP*(w), for which the norm of
LP(w) is finite. For the sake of convenience, we still denote these spaces by L”*(w). Let
x,y € R" and y = y/p(y) € .. In view of the properties of the kernel K with respect to the
second variable and the complete of {Y},,(x)} in L2(Z,,), we get

K(x,x-y) = plx - ) K(x,x=7)

= p(x _y)—|a\ Z bsm(x)Ysm(xTy)

Replacing the kernel with its series expansion, (1.1) can be written as

Tf (x) = lim Tf(x)

e—0

Sim [ b= ) YGRS 0)
plr=y)>€e ¢

e—0

From the properties of (2.1)-(2.3), the series expansion ) [bgu(x)Ysu(x=7)| <
C(n,a)m> =222l \yhere the integer [ is preliminarily chosen greater than (31 — 4)/4.
Along with the p(x — y)7*/f(y) € L(R") for a.a. x € R”, by the Fubini dominated conver-
gence theorem, we have

Tf(x) = ) bon(x) lim /p T @ =0y =Y bon(®) Tonf (),

where H,(x — y) = p(x — )% Y,,,(x=7). Instead of the operators Tf(x), we shall study
the existence and boundedness in L”*(w) of the operators Ty,,f(x) with a kernel H,(-).
Observe that Hy,(-) is a constant kernel and satisfies

[Hyn@)| < COnaym™ p™#; - [VHy@)| < Cln,cym? o717,
From Lemma D, it follows

” Tonf (x) ”U’r"(w) < C(na)m? Hf(x) “U’"‘(w)

for 1 < p < 0o. Consequently, by the above inequality and (2.1)-(2.3), we show
[T ey = € 2o 1Bom @) o | Tonf @) e

= CZ m2s If @) e (@)
S,m
= Clif llzox (@)

where the integer [ is preliminary chosen greater that / > 34—”. For p =1, by Lemma D, we
have

aw(fxe & |Tof)| > 1)) < C(n,a)m? Nl 21 )
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for any A > 0 and ellipsoid €. Therefore, one gets

aw({re & TF)] > 1)) < C [ ban@) | o riw({x € € 1 | Tonf )] > 1))

s,m

<C Z 25 | f || e )
sm
< Clf @) 1y
thus we complete the proof of Theorem 1.1. O
Next we begin with the second theorem, for which further discussion is needed.

Proofof Theorem 1.2 Asabove, we use the series expansion of a kernel K (x, y), the operator
(b, T]f () is divided into

(B, T (%) = Y ban(0)[B, Tof (x).

Instead of the operator [Z, Tf(x), we only consider the existence and boundedness in
LP*(w) of the operators [79, Tomlf (%).
Let 1 < p < co. For any ellipsoid £, we only need to obtain the inequality

/g 1B, Tonlf @) wlx) dx < ConZ 1BIPWEEV W
In fact, by the series expansion of a kernel K(x, y), we have

1B, T ey < C DB @] o |18, Tnlf )| e,

s,m

=Y m Ef iy < Clif lrecon

s,m

where the integer / is chosen greater than [/ > 34—”. Next, fix the above ellipsoid £ = E(x, r)
and decompose f = f + f, where fi = f xa¢, x2¢ denotes the characteristic function of 2&,
then we have

/g 1B, Ton) (V@) ww) dx < C fg (0B, Tond () + (B Tond (5))|” ) i

= C{I +1I). (3.1)

By using Lemma E, we get

I< f 1B, Ton] () 0)|P () dx
R’l

< CmF [BIPWE I e (3.2)

Page 7 of 13
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For the term I, without loss of generality, we can assume N = 2. Thus, the operator [I;, Tonl
can be divided into four parts,

. Tonls8) = (b1(5) - 20) (o) = 32) | Hinl= 50500y
. /R Hyp(w =) (010) = 11) (520) ~ 22)o0) dy
(i) - ) / o= 3) (02) — 3 )fo(0) by

— (bs®) = 12 / Hin(t = )(510) = 1) o) by

= II1(x) + II5(x) + II3(x) + II4(x), (3.3)

where A; = (b))g, = ﬁ fs bi(x)w(x)dx, i =1,2. For the term II;(x), observing that x € £
and y € R"\2&, we have p(xo —y) < Cp(x — y). Thus, it yields

|1 (%) [P wix) dx < Cm? |(B1(%) = (B1)g,) (B2 (x) = (B2) e w) | wix) dx
¢ £
LTI
* </R”\25 p(xo —y)lel dy
le 1 %
< szw(5)<w/£’b1( — (B)ew|Pw dx)
x (% /‘;|l’)2(x) - (b2)£,w|2pW(x) dx) ’
I g
d
<Z/2\/+15\2/g p xo_ )|a| y)

[e¢]

" 1 ’
Cm’™ ||by||2||by P w(E — d d)
< Cm® [[by]1Z]1ba 17w )(121 |2/€|( o SO w0y

1\ P
_%d 14 ’
(L))

since w € A,, and by the definition of a weighted Morrey space, we get

o]

p
f|1]1(x) ’pw(x) dx < Cm? ||l;||pw(€)< E (2”15 ( Lf(y |pw(y dy) )
£

j=1

00 p
i - . k=1
< Cm T (|BIIPw(E) (Z w(2E) P |1f||w<w>)
j=1
p
< Cm ¥ |bIPw(E) (ZU 7 W(E)T If e M)

< Cm FBIPWEY I 2 - (3.4)

The third inequality is obtained by Lemma A.
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For II,(x), note that A; = (b))g,» = ﬁg) Je bix)w(x) dx, i =1,2. By Hélder’s inequality and
p(xo —y) < Cplx —y), we get

/€|112(x)|pw(x)dx§ CM%W((S)(/H‘{ |(hl(.)/) (bl)gw) bZ(y (b2 SW Lf(y)|dy)p

mag p(xo — y)le!
np =1
< Cm2 w(&) — bi(y) — (b)ew
(121: [2&] 2/‘+15\2/'5|( 10 Dew)

p
X (b2(0) = (b2)ew) | [f )] dy)

o]

np 1 1%
C & — P d)
<ontuo (i (] Jorw

x ( f Bi0)— Br)e) | wo) dy>2"
+lg

1\ P
x (/ (B20) = (b)) | W) 7 dy)z”) :
Jtle

Indeed, by Lemma B we know BMO(R") is equivalent to BMO(w), w € Ax.. Let W = wf% €
Ay CAx, by € BMO(R"), i = 1,2. For any ellipsoid &, by using Lemma B and Lemma C,
we show

1 2p' 2’ .
<m /y+1g|bi(w - (bi)f,w| W) d)’) < Glbll

Thus, since w € A, it yields

[ee]

‘/g|112(x)|pW(x)dx < Cm* w(é) (Z e (2E)r

< ([, oo dy)’l’>p

" R o0 ) p
< Cm W@ BIP I I (Z ’7_)
j=1 W(2/+15) r

1
F

< CmFwEYNBIP I e, (3.5)

The last inequality is obtained by Lemma A and the D’Alembert judge method of positive
series.

For II3(x), by the inequality p(xo — y) < Cp(x — y) since w € A, C A, by Lemma B, we
have

f 115 (%) [P w(x) dx
£

np |2 (y) — As]
2 b - _ d
< Cm /g (br(x) — 1) fR e sy VO
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<Cm® /g |(b1<x>—xl)|”w(x)dx< fR D20 - “'lf(y)ld>

m\2E p(xo — y)l!
np b
gcmw(s)nblni‘:(fR b Aﬁ' o)l )

m2E p(xo —

By Holder’s inequality, Lemma B and Lemma C, we get

b2 (y) = A2 1
‘/R lf()’)| 2 w/yHJbz(Y)—)‘ZW@”dy

mag P (%o —J’)""‘

A

3 |2/£|</ Lf(y)l’”w(y)dy)
x(/ 1) =32 ) )"

2 w(2HE)r
= Clba Il If ll o o) Zl% (/2,415 w(y) 7 d)’)

j=1

1
7

1
7

o]

< Clballellf N Y —

o lx?
j=1 W(2/+15) P

indeed for 0 < x <1, by using Lemma A, we have that
oo

o0 .
Sl e Y e sone

= W(2,+15)17 =

Thus, we conclude

fg [1155) [P () e < CrnFwl€) WBIP I (3.6)
In the same way, we shall get the result of I7,(x)

[l sy < o F (@ VB o (37)

Which together with (3.1)-(3.7), for 1 < p < 00, the proof of Theorem 1.2 is finished.

Now, we are in a position to consider the case p = 1. In general, the singularity of the
commutator is stronger than the singular integral, and the endpoint case p = 1 of the com-
mutator is not even obtained. Thus, the result for the case p = 1 of the multilinear com-
mutator is interesting. We split f as above by f = f; + f2, which yields

aw({xeé: |[l;, T (%)| > A}) < CZ bl Aw({x € |[l;, Tyulf (x)| > 1})

s,m

< CZm_ZZ[Aw({x e&: ![79, Toulfi(®)] > A/2})

s,m

+ Aw({x eé: |[Z, Tsm]fZ(x)| > MZ})]
=CY m I +1V] (3.8)

s,m
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for any ellipsoid &£, A > 0 and integer / > 0. For the term /II, we use Lemma G. It follows
that

I < C/ O (|f1]) ) w(x) dx
Rn
< Cw(E) If llow - (3.9)

For the last term IV, without loss of generality, we still suppose N = 2. By homogeneity, it
is enough to assume A/2 = ||b1]|« = ||b2 ||« = 1, and hence we only need to prove

w({x € &:|[b, Tonlo®)| > 1)) < CWE If ll o -

In fact, by Lemma F, we get

w({x e £: B, Tmlh)] > 1)) < sug)%w({xe € :|1b Tl )| > 1))

< Cst1>1£) #%)w({x €& : Mofo(x) > t})

= Csup Ll)w({xGE:M(QD[fzI)(x)>t}), (3.10)

t>0 7

where ®(t) = tlog" (e + t). We use the Fefferman-Stein maximal inequality

C
f ¢(t)dx = — f |f (x) | Mg (%) dx,
x:Mf (x)>t R”

for any functions f and ¢ > 0. This yields

w({x €& M(P|])x) > t}) < 1/ xe (®)w(x) dx

{xeR"T:M(®|f2|)(x)>t}

t

C
T (./35 ’ /;gn\&) O([fal) W)M(wxe)(x) dx

C
= (Vi +1V3). (3.11)

<< / (s ]) )M(wixe)(x) dx
Rn

For IV, since w € Aj, it follows that

IV, < C/ss O (|f1) B)wlx) dx

= cwiaey | o(1f)|

LY* (w)

= Cw(E) IIf llpox. (3.12)

To estimate the term IV, we first consider the form

1
[Fl Jenr

w(y) dy

Page 11 0f 13
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for any x € R"\3&, x € F and F N € # (. By simple geometric observation, we have

1 1
— d S — d
|F] gm;w(y) yicp(x—xo)‘“'/gw(y) i’

C
= 7p(x o) w(&).

Therefore, we obtain

M(wye)(x) < w(&).

¢
p(x —x0)1e!

Since w € A; satisfies the doubling condition and Lemma A, we estimate the term IV, as
follows:

PfDx)
IVZ < Cv/lk{n\sg WW((‘;)Q’X

<CW(5)Z |%|/ O ([f1) (x) dx

[e¢]

< cw(&) | (|f1 ||L1K(w Z w(3/5)1 “
j

j=1

< Cw(E)|If llpox- (3.13)
The last inequality is similar to (3.4). Noting that tCD(%) > 1, from (3.8)-(3.11), we conclude
w({x € &:|[b, Tonlo@)] > 1}) < CWE If llp0u )

Thus, the proof of Theorem 1.2 is completed. O
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