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1 Introduction
It is well known that the discrete version of the Cauchy-Schwarz inequality []

( n∑
i=

aibi

)

≤
n∑
i=

ai
n∑
i=

bi (ai,bi ∈ R), ()

and its integral representation in the space of continuous real-valued functionsC([a,b],R),
i.e., the Cauchy-Bunyakovsky inequality []

(∫ b

a
f (x)g(x)dx

)

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx, ()

play an important role in different branches of modernmathematics such as Hilbert space
theory, classical real and complex analysis, numerical analysis, probability and statistics,
qualitative theory of differential equations and their applications. To date, a large number
of generalizations and refinements of the inequalities () and () have been investigated in
the literature, e.g., [–].
Recently in [], we have presented a functional generalization of the Cauchy-

Bunyakovsky-Schwarz inequality for both discrete and continuous cases as follows.

Theorem Let {ai,ai, . . . ,aim}ni= and {bi,bi, . . . ,bik}ni= be real numbers for anym,k ∈ N.
If Fm(x,x, . . . ,xm) and Gk(x,x, . . . ,xk) are two arbitrary functions of m and k variables,
then the following inequality holds:

( n∑
i=

Fm(ai,ai, . . . ,aim)Gk(bi,bi, . . . ,bik)

)
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≤
n∑
i=

F
m(ai,ai, . . . ,aim)

n∑
i=

G
k(bi,bi, . . . ,bik). ()

Moreover, for the integral form of the above inequality, if {fj(x)}mj= and {gj(x)}kj= are real
functions on [α,β], then

(∫ β

α

Fm(f, f, . . . , fm)Gk(g, g, . . . , gk)dx
)

≤
∫ β

α

F
m(f, f, . . . , fm)dx

∫ β

α

G
k(g, g, . . . , gk)dx. ()

Thus, inequalities () and () are respectively generalizations of the discrete and continuous
Cauchy-Bunyakovsky-Schwarz inequalities for m = k = , F(ai) = ai and G(bi) = bi in
() and F(f) = f(x) and G(g) = g(x) in ().
Also, the equality holds if in () Fm(ai,ai, . . . ,aim) = rGk(bi,bi, . . . ,bik) where r is con-

stant and Fm(f, f, . . . , fm) = RGk(g, g, . . . , gk) in () where R is constant.

The aim of this paper is to extend the results of the above-mentioned theorem by using
a specific functional property.

2 On the generalized Cauchy-Schwarz inequality
Suppose that L is a linear functional applied to the arbitrary function h(x), and then con-
sider the following special function:

H(x;h,λ) = h(x) + λL(h)
(
λ ∈ R \ {}). ()

One of the important properties of H(x;h,λ) is that

L(H) = L
(
h + λL(h)

)
= L(h) + λL(h)L()

=
(
 + λL()

)
L(h) = KL(h)

(
K :=  + λL()

)
. ()

This means that only for once one can take an arbitrary linear functional on both sides of
the function () and not more because

L
(
L(H)

)
= L

(
KL(h)

)
= KL(h)L() = K∗L(h)

(
K∗ := KL(h);K :=  + λL()

)
.

More generally, the property () can be considered for two special functions:

⎧⎨
⎩H(x;h,λ) = h(x) + λL(h) (λ ∈ R\{}),
H(x;h,λ) = h(x) + λL(h) (λ ∈ R\{}),

()

as

L(HH) = L
((
h + λL(h)

)(
h + λL(h)

))
= L(hh) +K∗∗L(h)L(h)

(
K∗∗ := λ + λ + L()λλ

)
. ()
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By using the aforesaid functional property, many classical inequalities such as Chebyshev,
Stefensen and Aczel inequalities have been generalized in []. Here we wish to apply the
property () to extend the results of Theorem . For this purpose, we first express the
following lemma.

Lemma  Let the linear functional L be defined in such a way that L(h(x)) ≥  for any
arbitrary function h(x), and H, H be defined as (). Then the following inequality holds:

L(HH) ≤ L
(
H


)
L
(
H


)
. ()

Proof The proof is straightforward if one defines a positive quadratic polynomial P : R →
R as

P(t;H,H) = L
(
(Ht +H)

)
= L

(
H


)
t + L(HH)t + L

(
H


) ≥ 

for any t ∈ R, and then notes that the discriminant � of Pmust be negative. �

It is now well known that the linear functional applied in the inequality () is L(·) = ∑
(·)

where L() = n and L(h) ≥ . So, by noting (), if we define

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H,m(ai,ai, . . . ,aim) = h,m(ai,ai, . . . ,aim)

+ λ
∑n

i= h,m(ai,ai, . . . ,aim) (λ = –p/n),

H,k(bi,bi, . . . ,bik) = h,k(bi,bi, . . . ,bik)

+ λ
∑n

i= h,k(bi,bi, . . . ,bik) (λ = –q/n),

where p,q ∈ R, then we obtain

L
(
H,m(ai,ai, . . . ,aim)

)
=

n∑
i=

(
h,m(ai,ai, . . . ,aim) –

p
n

n∑
i=

h,m(ai,ai, . . . ,aim)

)

= ( – p)
n∑
i=

h,m(ai,ai, . . . ,aim),

L
(
H

,m(ai,ai, . . . ,aim)
)

=
n∑
i=

h,m(ai,ai, . . . ,aim) +
p(p – )

n

( n∑
i=

h,m(ai,ai, . . . ,aim)

)

≥ ,

and

L
(
H,m(ai,ai, . . . ,aim)H,k(bi,bi, . . . ,bik)

)
=

n∑
i=

h,m(ai,ai, . . . ,aim)h,k(bi,bi, . . . ,bik)

+
pq – (p + q)

n

n∑
i=

h,m(ai,ai, . . . ,aim)
n∑
i=

h,k(bi,bi, . . . ,bik).
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Hence, substituting these relations in the inequality () eventually yields

( n∑
i=

h,m(ai, . . . ,aim)h,k(bi, . . . ,bik)

+
pq – (p + q)

n

n∑
i=

h,m(ai, . . . ,aim)
n∑
i=

h,k(bi, . . . ,bik)

)

≤
( n∑

i=

h,m(ai, . . . ,aim) +
p(p – )

n

( n∑
i=

h,m(ai, . . . ,aim)

))

×
( n∑

i=

h,k(bi, . . . ,bik) +
q(q – )

n

( n∑
i=

h,k(bi, . . . ,bik)

))
, ()

in which {ai,ai, . . . ,aim}ni= and {bi,bi, . . . ,bik}ni= are two sequences of real numbers,
m,k ∈ N and h,m(x,x, . . . ,xm) and h,k(y, y, . . . , yk) are two arbitrary functions of m
and k variables. Moreover, the equality holds if in () p = q and h,m(ai,ai, . . . ,aim) =
r∗h,k(bi,bi, . . . ,bik) for the constant r∗.
Similarly, for the continuous case, the corresponding linear functional applied in () is

L(·) = ∫ β

α
(·)dx, where L() = β – α and again L(h) ≥ . So, if one sets

⎧⎨
⎩H,m(f, f, . . . , fm) = h,m(f, f, . . . , fm) – p

β–α

∫ β

α
h,m(f, f, . . . , fm)dx,

H,k(g, g, . . . , gk) = Bk(g, g, . . . , gk) – q
β–α

∫ β

α
h,k(g, g, . . . , gk)dx,

in which p,q ∈ R and {fj(x)}mj= and {gj(x)}kj= are real functions on [α,β], then by using the
inequality (), one finally obtains

(∫ β

α

h,m(f, . . . , fm)h,k(g, . . . , gk)dx

+
pq – (p + q)

β – α

∫ β

α

h,m(f, . . . , fm)dx
∫ β

α

h,k(g, . . . , gk)dx
)

≤
(∫ β

α

h,m(f, . . . , fm)dx +
p(p – )
β – α

(∫ β

α

h,m(f, . . . , fm)dx
))

×
(∫ β

α

h,k(g, . . . , gk)dx +
q(q – )
β – α

(∫ β

α

h,k(g, . . . , gk)dx
))

. ()

The equality holds in () if p = q and h,m(f, f, . . . , fm) = R∗h,k(g, g, . . . , gk) for the con-
stant R∗.
In this section we study two special cases of inequalities () and () which are remark-

able.

Example  (An extension of the pre-Grüss inequality) Before deriving the main result,
let us recall some initial comments.

http://www.journalofinequalitiesandapplications.com/content/2012/1/239
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The space of p-power integrable functions on the interval [a,b] is shown by Lp[a,b]
(≤ p <∞) with the norm

‖f ‖p =
(∫ b

a

∣∣f (t)∣∣p dt)/p

,

and the space of all essentially bounded functions on [a,b] is denoted by L∞[a,b] with the
norm

‖f ‖∞ = ess sup
x∈[a,b]

∣∣f (x)∣∣.
On the space L[a,b], the inner product of Chebyshev type is defined by

〈f , g〉 = 
b – a

∫ b

a
f (x)g(x)dx,

while the standard inner product is in the form

(f , g) = (b – a)〈f , g〉.

For two absolutely continuous functions f , g : [a,b] → R such that f , g, fg ∈ L[a,b], the
Chebyshev functional is defined by

T〈f , g〉 = 〈f , g〉 – 〈f , 〉〈, g〉 = 
b – a

∫ b

a
f (x)g(x)dx –


(b – a)

∫ b

a
f (x)dx

∫ b

a
g(x)dx.

In , Chebyshev [] proved that if f ′, g ′ ∈ L∞[a,b], then

∣∣T〈f , g〉∣∣ ≤ 


(b – a)
∥∥f ′∥∥∞

∥∥g ′∥∥∞.

Later on, Grüss [] in  showed that

∣∣T〈f , g〉∣∣ ≤ 

(M –m)(M –m),

wherem,m,M andM are real numbers satisfying the conditions

m ≤ f (x)≤ M and m ≤ g(x) ≤ M for all x ∈ [a,b].

A remarkable point on the Chebyshev functional is that it can be represented in terms of
the relation () as

〈f , g〉 – 〈f , 〉〈, g〉 = 〈
f – 〈f , 〉, g – 〈, g〉〉 = L

(
H(x; f , –)H(x; g, –)

)
,

where

H(x; f , –) = f (x) –


b – a

∫ b

a
f (t)dt, H(x; g, –) = g(x) –


b – a

∫ b

a
g(t)dt,

http://www.journalofinequalitiesandapplications.com/content/2012/1/239
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and

L(h) = 〈,h〉 = 
b – a

∫ b

a
h(x)dx.

Thus, substituting the above functions into the inequality () generates the well-known
pre-Grüss inequality [, p.] as

(
T〈f , g〉) ≤ T〈f , f 〉T〈g, g〉 ≤ 


(M –m)(M –m). ()

On the other hand, the inequality () can be extended via the inequality (). For this
purpose, if the following generalized Chebyshev functional is defined as

Tλ〈f , g〉 = 〈f , g〉 – λ〈f , 〉〈, g〉 (λ ∈ R),

then, firstly, the aforesaid point is also valid for Tλ〈f , g〉 when λ ≤  so that we have

〈f , g〉 – λ〈f , 〉〈, g〉 = 〈
f – (± √

 – λ)〈f , 〉, g – (± √
 – λ)〈, g〉〉

=


b – a

∫ b

a

(
f (x) –

(± √
 – λ)

b – a

∫ b

a
f (t)dt

)

×
(
g(x) –

(± √
 – λ)

b – a

∫ b

a
g(t)dt

)
dx.

Secondly, substitutingm = k =  and h,(x) = h,(x) = x in the inequality () yields

(
Tp+q–pq〈f , g〉

) ≤ Tp(–p)〈f , f 〉Tq(–q)〈g, g〉 (p,q ∈ R). ()

For p = q =  the above inequality gives the same result as the pre-Grüss inequality ()
while for p = q =  (or p = q = ) the Cauchy-Schwarz inequality is obtained. Also, for
p = q and p( – p) = w, the Wagner inequality [] is derived. An interesting case of the
inequality () is whenTp+q–pq〈f , g〉 = 〈f , g〉 (i.e., /p+/q = ), which reveals its importance
in numerical integration formulas.
Moreover, since p,q ∈ R, we can find the optimal parameters for the inequality (). For

this purpose, we consider two (positive) functions as follows:

F(p) = Tq(–q)〈g, g〉Tp(–p)〈f , f 〉 –
(
Tp+q–pq〈f , g〉

), ()

and

F(q) = Tp(–p)〈f , f 〉Tq(–q)〈g, g〉 –
(
Tp+q–pq〈f , g〉

). ()

The problem is nowhow tominimize F(p) or F(q). Since the final forms of both functions
() and () are quadratic, i.e., as

F(p) = A
 (q)p

 + B(q)p +C(q) (q constant),

http://www.journalofinequalitiesandapplications.com/content/2012/1/239
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and

F(q) = A
(p)q

 + B(p)q +C(p) (p constant),

to minimize, e.g., F(p), after some computations, we finally get

F ′
(p) =  ⇒ p =

(b – a)Tq〈g, g〉
∫ b
a f (t)dt + (q – )

∫ b
a f (t)g(t)dt

∫ b
a g(t)dt

(b – a)T〈g, g〉
∫ b
a f (t)dt

, ()

where q ∈ R. In particular, replacing q =  in () gives the same as the pre-Grüss inequal-
ity.

Example  (A refinement of the Cauchy-Schwarz inequality via the generalized Wagner
inequality) The following inequality for two sequences of real numbers {ai}ni= and {bi}ni=
and a real parameter α ≥  is known in the literature as the Wagner inequality [, p.]

( n∑
i=

aibi + α

n∑
i=

ai
n∑
i=

bi

)

≤
( n∑

i=

ai + α

( n∑
i=

ai

))( n∑
i=

bi + α

( n∑
i=

bi

))
. ()

This inequality is generalized in [, Re. ] as follows:

( n∑
i=

aibi +
pq – (p + q)

n

n∑
i=

ai
n∑
i=

bi

)

≤
( n∑

i=

ai +
p(p – )

n

( n∑
i=

ai

))( n∑
i=

bi +
q(q – )

n

( n∑
i=

bi

))
. ()

Clearly, for p = q ∈ {R – (, )} and p(p – )/n = α in (), the inequality () is derived.
Moreover, () is also a special case of the inequality ().
Now, in order to obtain a refinement for the Cauchy-Schwarz inequality, we first assume

in () that pq = p+q. This yields q(q–) = p(p–)/(p–), and therefore we wish to have

( n∑
i=

aibi

)

≤
( n∑

i=

ai +
p(p – )

n

( n∑
i=

ai

))( n∑
i=

bi –
p(p – )
n(p – )

( n∑
i=

bi

))

≤
n∑
i=

ai
n∑
i=

bi , ()

which is equivalent to

–
p(p – )
n(p – )

n∑
i=

ai

( n∑
i=

bi

)

+
p(p – )

n

n∑
i=

bi

( n∑
i=

ai

)

–
p(p – )

n(p – )

( n∑
i=

ai

)( n∑
i=

bi

)

≤ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/239
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After some initial computations, the left-hand side of the above inequality is decomposable
in terms of the variable p in the form

λp(p – )(p –  +
√
S)(p –  –

√
S) ≤ , ()

in which

λ =


n(p – )

( n∑
i=

ai

)(
n

n∑
i=

bi –

( n∑
i=

bi

))
≥ ,

and

S =
(
∑n

i= bi)(n
∑n

i= ai – (
∑n

i= ai))
(
∑n

i= ai)(n
∑n

i= bi – (
∑n

i= bi))
≥ . ()

Hence, by noting that p ∈ {R – (, )}, then p(p – ) ≥  and the eligible region of the
solution for the inequality () is p ∈ {R – (, )} ∩ [ –

√
S,  +

√
S]. For instance, if

∑n
i= ai

(
∑n

i= ai)
≤

∑n
i= bi

(
∑n

i= bi)
, ()

in () then it is directly concluded that S ≥  in () and conversely. Therefore, the solution
of () would be either p ∈ [,  +

√
S] or p ∈ [ –

√
S, ]. This means that the refinement

() is valid for any p ∈ [, +
√
S] or p ∈ [–

√
S, ] provided that the condition () holds.

Similarly, the latter result holds for the continuous case and we have

Corollary  If f , g ∈ C([a,b],R), then the following refinement for theCauchy-Bunyakovsky
inequality holds:

(∫ b

a
f (x)g(x)dx

)

≤
(∫ b

a
f (x)dx +

p(p – )
b – a

(∫ b

a
f (x)dx

))

×
(∫ b

a
g(x)dx –

p(p – )
(b – a)(p – )

(∫ b

a
g(x)dx

))

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx,

provided that p ∈ {R – (, )} ∩ [ –
√
S∗,  +

√
S∗] where

S∗ =
(
∫ b
a g(x)dx)((b – a)

∫ b
a f (x)dx – (

∫ b
a f (x)dx))

(
∫ b
a f (x)dx)((b – a)

∫ b
a g(x)dx – (

∫ b
a g(x)dx))

≥ .
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