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Abstract

Purpose: Two problems are discussed in this paper. In the first problem, we consider
one homogeneous and one non-homogeneous differential equations and study
when the solutions of these differential equations can have (nearly) the same zeros. In
the second problem, we consider two linear second-order differential equations and
investigate when the solutions of these differential equations can take the value 0
and a non-zero value at (nearly) the same points.

Method:We apply the Nevanlinna theory and properties of entire solutions of linear
differential equations.

Conclusion: In the first problem, the results determine all pairs of such equations
having solutions with the same zeros or nearly the same zeros. Regarding the second
problem, the results also show all pairs of such equations having solutions taking the
value 0 and a non-zero value at (nearly) the same points.
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1 Introduction
There has been much research [–] on zeros of solutions of linear differential equations
with entire coefficients. The principal paper [] that was published in  by Bank and
Laine has stimulatedmany studies on this kind of problems. The reader is referred to [–
] for background on some applications of the Nevanlinna theory. We use the standard
notation of the Nevanlinna theory from [].
In , Wittich [] proved the following theorem.

Theorem . If f is a non-trivial solution of w′′ + Aw = , i.e., f �≡  and A �≡  is entire,
then we have:

(i) T(r,A) = S(r, f ).
(ii) If f has finite order, then A is a polynomial.
(iii) If a is a non-zero complex number, then f takes the value a infinitely often, and in

fact, outside a set of finite measure,

N
(
r,


f – a

)
� T(r, f ).
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The following facts follow from the asymptotic representation for solutions of the equa-
tion

w′′ + Pw = . ()

Theorem . [, ] Let P be a polynomial of degree n, and let w be a non-trivial solution
of the equation (). Then, w has order of growth equal to n+

 .Moreover, if w is a solution of
() which has infinitely many zeros, then we have

lim inf
r→∞

N(r, 
w )

r(n+)/
> . ()

Our previous paper [] studied homogeneous linear differential equations having so-
lutions with nearly the same zeros and proved several results, including the following.

Theorem . [] Let P �≡  be a polynomial of degree n. Let w �≡  be a solution of ().
Assume that w has infinitely many zeros. Suppose that we have a solution v �≡  of the
differential equation

v′′ +Av =  ()

such that A is an entire function and N(r) counts zeros of v which are not zeros of w and
zeros of w which are not zeros of v. Assume that

N(r) + T(r,A) = o
(
r(n+)/

)
.

Then v
w is a constant and A = P.

The paper [] includes further results for homogeneous linear differential equations,
and the corresponding problem where P is a transcendental entire function of finite order
is studied in [].
Recently, the same problem, but with non-homogeneous first-order differential equa-

tions, has been studied in [], including the following result.

Theorem . [] Assume that v′ = Av+B and w′ = Cw+D,where A, B,C and D are entire
functions of order less than  and v, w are transcendental functions. Assume that v = Lw,
where L has finitely many zeros and poles, and

T(r,A) + T(r,B) = S(r, v), T(r,C) + T(r,D) = S(r,w). ()

Then the following conclusions hold.
(I) If L is a rational function, then A≡ C, L is a constant and B = LD.
(II) If L is a transcendental function, then one of the following cases holds:

(i) B≡D ≡  and v, w have no zeros.
(ii) A = –C and B/A, D/C are non-zero constants, and

v = c + ceA , w = c + ce–A ,

where cj ∈C, A′
 = A and L = (constant)eA .
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If, in addition, L has finite order in case (ii), then A, B, C, D are polynomials and so
is A.

In this paper, our first result (Theorem .) looks at the same problem but with one ho-
mogeneous and one non-homogeneous differential equations. In particular, we consider
the first equation to be homogeneous of the second-order with a polynomial coefficient
and the second equation to be non-homogeneous of the first-orderwith entire coefficients.
A further result (Theorem .) studies the case where the solutions of two second-order

homogeneous differential equations can take the value  and a non-zero value at (nearly)
the same points.

2 Our results
Our first result is the following theorem.

Theorem . Suppose that P �≡  is a polynomial of degree n, and w solves (), and w �≡ 
has infinitely many zeros. Suppose that v �≡  solves

v′ = Av + B, ()

where A, B are entire and AB �≡ , and

T(r,A) + T(r,B) = o
(
r(n+)/

)
. ()

Suppose that L = w
v has finitely many zeros and poles (i.e., w and v have the same zeros

with finitely many exceptions).
Then A is a polynomial and there exists a polynomial Q such that

w = ceQ
∫

e–Q dz and v = ceA

∫
e–Q dz,

and

P = –
(
Q′′ +Q′) and B = ceA–Q,

where A′
 = A and c, c are constants.

Example . Take Q to be a polynomial. Let

w = eQ
∫ z


e–Q dz.

Then

w′ =Q′w + e–Q,

and

w′′ =Q′′w +Q′w′ –Q′e–Q =Q′′w +Q′(Q′w + e–Q
)
–Q′e–Q =

(
Q′′ +Q′)w.

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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So, we have P = –(Q′′ +Q′).
Now, let A be another polynomial, and let

v = eA

∫ z


e–Q dz.

Note that v has the same zeros as w. Now, we have

v′ = Av + eA–Q,

where A = A′
.

We choose A so that

deg(A – Q) <
deg(P) + 


.

For example, let A = Q.

We now state our second result.

Theorem . Suppose that P �≡  is a polynomial of degree n, and A is an entire function,
and suppose that w solves () and v solves (), and vw �≡ . Let v– and w have,with finitely
many exceptions, the same zeros and the same multiplicities. Then one of the following
holds.
(A) w has finitely many zeros and v is a polynomial and A = .
(B) w has infinitely many zeros and P, A are non-zero constants and v–

w is non-constant
and

w = λeσ z + λe–σ z,

v = λeσ z,
()

where σ , λ, λ, λ are non-zero constants.

Example . If w = ez – e–z and v = ez , then

v –  = ez –  = ez
(
ez – e–z

)
= ezw.

Hence, v –  has the same zeros as w. Here P = – and A = –.

Example . We give an example to show that the zeros of v –  and w must necessarily
have the same multiplicities. To show this, let

w = sin
z

, v = cos z.

Then w =  ⇔ z
 = kπ , where k ∈ Z.

Also v =  ⇔ z = kπ , where k ∈ Z.
Therefore, w and v –  have the same zeros but the zeros are simple for w, double for

v – . Here, P = 
 and A = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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3 Proof of Theorem 2.1

Proof We have

w = Lv. ()

So,

w′′ = L′′v + L′v′ + Lv′′. ()

but

v′′ = A′v +Av′ + B′ = A′v +A(Av + B) + B′ = v
(
A +A′) +AB + B′. ()

We also have, using (), (), (), () and (),

 = w′′ + Pw = L′′v + L′v′ + Lv′′ + PLv

= L′′v + L′(Av + B) + L
[
v
(
A +A′) +AB + B′] + PLv

=
[
L′′ + L′A + L

(
A +A′) + PL

]
v + L′B + L

(
AB + B′). ()

Let

M =
L′

L
. ()

Then

L′′

L
=M′ +M. ()

We divide () by L, and by using () and (), we get

 =
[
L′′

L
+ 

L′

L
A +A +A′ + P

]
v + 

L′

L
B +AB + B′

=
[
M′ +M + MA +A +A′ + P

]
v + MB +AB + B′. ()

The next step is to estimate the growth ofM.
We know that ρ(w) = n+

 from []. Therefore,

m
(
r,
w′

w

)
=O(log r) = o

(
r(n+)/

)
. ()

Claim . We claim that T(r,M) = o(r(n+)/).

To show this, we know that N(r,m) =O(log r) sinceM has finitely many poles.
Write () as

(
ve–A

)′ = e–AB,

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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where A′
 = A.

Then, there exists a constant c such that

v = eA

(
c +

∫ z


e–A(t)B(t)dt

)
.

Also, using (), we can write

logM(r,A) ≤ T(r,A) = o
(
r(n+)/

)
, M(r,A) ≤ exp

(
o
(
r(n+)/

))
.

Also,

A(z) = A() +
∫ z


A(t)dt.

So,

M(r,A) ≤
∣∣A()

∣∣ + rM(r,A) ≤O() + r exp
(
o
(
r(n+)/

)) ≤ exp
(
o
(
r(n+)/

))
.

Therefore, we get

M(r, v) ≤ expexp
(
o
(
r(n+)/

))
, T(r, v)≤ logM(r, v) ≤ exp

(
o
(
r(n+)/

))
.

We use Lemma . in [, p.] with R = r to get

m
(
r,
v′

v

)
=O(log r) +O

(
log+T(r, v)

) ≤ o
(
r(n+)/

)
.

Now, we haveM = w′
w – v′

v . So

m(r,M) = o
(
r(n+)/

)
.

We also have N(r,M) =O(log r).
Hence,

T(r,M) = o
(
r(n+)/

)
+O(log r) = o

(
r(n+)/

)
.

This completes the proof of Claim ..
Using Claim . and (), we get

T
(
r,M′ +M + MA +A +A′ + P

)
= o

(
r(n+)/

)

and

T
(
r, MB +AB + B′) = o

(
r(n+)/

)
.

Also, by Theorem ., we get

T(r, v)≥ N
(
r,

v

)
–O() ≥ (constant) · r(n+)/.

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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Therefore, we must have

M =M′ +M + MA +A +A′ + P ≡  ()

and

M = MB +AB + B′ ≡  ()

because otherwise we can write v = –M/M to get a contradiction.
We now divide () by B to get

M +A +
B′

B
≡ .

So, B′/B has finitely many poles, and so B has finitely many zeros. Then we can write B
in the form

B = PeP ,

where P, P are polynomials.
But then, we can write

B′/B = R,

where R is rational.
Then we also can write

M = –
A

+ R, ()

where R is rational and R = – 
R.

Substitute () in (), we obtain

 ≡
(
–
A′


+ R′



)
+

(
A


–AR + R



)
+

(
–A + AR

)
+A +A′ + P

≡
(
A′


+ R′



)
+

(
A


+AR + R



)
+ P

≡
(
A

+ R

)′
+

(
A

+ R

)

+ P. ()

Now, let

N =
A

+ R =

A

–

B′

B
.

Also, let

H = e
A
 B– 

 . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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So, we get

H ′

H
=
A

–

B′

B
=N . ()

Substituting () in (), we obtain

 =N ′ +N + P =
H ′′

H
+ P, H ′′ + PH = .

Thus, ρ(H) < ∞, H is entire, and B has no zeros.
Then,

m
(
r,
H ′

H

)
=O(log r)

Therefore, A is a polynomial.
Since B has no zeros, from () we can write

H = eQ, ()

where Q is a polynomial.
Since w and H solve the same equation and are linearly independent (because w has

zeros but H does not), we can write

(
w
H

)′
=
(constant)

H .

Therefore,

w = ceQ
∫

e–Q dz, ()

where c is a constant and Q is a polynomial.
Now, we have

L′

L
=M = –

A

+ R =N –A =

H ′

H
–A.

So, we can write

L = (constant) ·He–A .

Therefore, we have

v =
w
L
=
(constant) ·H ∫

H– dz
He–A

.

Hence, using (), we obtain

v = ceA

∫
e–Q dz, ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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where c is a constant and A′
 = A.

Now, from () and (), we notice that w and v have the same zeros.
Also, differentiating (), using (), we have

v′ = cAeA

∫
H– dz + ceAH– = Av + ceAH– = Av + ceA–Q.

Comparing this with (), we get

B = ceA–Q.

Moreover, H = eQ solves H ′′ + PH = , and so

–P =
H ′′

H
=Q′′ +Q′.

This completes the proof of Theorem .. �

4 A lemma needed to prove Theorem 2.2
In order to prove Theorem ., we must state and prove the following lemma.We include
a proof for completeness.

Lemma . Let P, . . . ,Pn ∈C be distinct, and let A, . . . ,An be rational functions such that

 ≡ A(z)ePz + · · · +An(z)ePnz. ()

Then there exists k ∈ {, . . . ,n} such that Pk =  and Ak = , and Aj =  for j �= k.

Proof The proof is by induction. It is obvious that the lemma is true when n = .
Assume that the lemma is true form ≤ n – . Differentiating (), we get

 ≡ B(z)ePz + · · · + Bn(z)ePnz, Bj = A′
j + PjAj.

Now, we have two cases to consider.
Case (): Suppose there exists k such that Bk �≡ . Without loss of generality, let k = ,

then we can write

 =  +
B

B
e(P–P)z + · · · + Bn

B
e(Pn–P)z.

Since we assumed the lemma is true for m ≤ n – , there exists j ∈ {, . . . ,n} such that
Pj – P = . But this contradicts our assumption that P, . . . ,Pn are distinct.
Case (): Suppose that Bj =  for each j, i.e.,

A′
j + PjAj ≡ .

If Pj �= , then Aj ≡  because otherwise we have

A′
j

Aj
+ Pj ≡ , Aj(z)ePjz = c ∈ C \ {}.

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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But this contradicts the fact that Pj �= .
So, we have Aj ≡  for Pj �= . Thus, () becomes (for some k)

 = Ak(z)ez = Ak(z),

and Pk =  and Ak = . �

5 Proof of Theorem 2.2
We first note that, outside a set of finite measure, by Theorem .,

T(r, v)∼N
(
r,


v – 

)
≤ N

(
r,


w

)
+O(log r) ≤ O

(
r(n+)/

)
+O(log r). ()

In particular, if w has finitely many zeros, then v is a polynomial, which gives A = . This
completes the proof of part (A) in the conclusion.
Assume henceforth that w has infinitely many zeros. Then () implies that ρ(v)≤ (n +

)/, and so A is a polynomial of degree at most n by theWiman-Valiron theory []. Also,
A �≡  since v –  has infinitely many zeros.
Now, two cases have to be considered.
Case (I). Assume that P is a non-zero constant; then n =  and A is constant. Therefore,

we can write

w = ceαz + ce–αz, v = deβz + de–βz, ()

where α,β ∈C \ {}, cj,dj ∈C and cj �=  (j = , ).
Since w and v –  have the same zeros with finitely many exceptions, we can write

v –  = RePw, ()

where R is a rational function and P is a polynomial. We know that deg(P) ≤  because
ρ(w),ρ(v)≤ . We can now write

deβz + de–βz –  = Reγ z(ceαz + ce–αz),
where γ ∈C, and so

 = deβz + de–βz – cRe(γ+α)z – cRe(γ–α)z.

Now, by using Lemma ., R is constant and so we can write () as

v – 
w

= eγ z+δ , ()

where δ is constant.
Therefore,

deβz + de–βz –  =
(
eγ z+δ

)(
ceαz + ce–αz) = ce(α+γ )z+δ + ce(–α+γ )z+δ . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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Now, by using Lemma ., we get

α + γ = β , –β or , –α + γ = β , –β or ,

and α + γ , –α + γ , β , –β ,  cannot all be different.
We must now try six cases:
I(a): If α + γ = β and –α + γ = –β , then γ =  and α = β . But this contradicts (). Thus,

this case cannot happen.
I(b): If α + γ = β and –α + γ = , then β = γ and α = γ . Substituting these in () gives

deγ z + de–γ z –  = heγ z + h,

where h, h are constants, which yields d = . Putting this in () gives () with σ = γ .
There are four more cases:
I(c): α + γ = –β and –α + γ = β .
I(d): α + γ = –β and –α + γ = .
I(e): α + γ =  and –α + γ = β .
I(f ): α + γ =  and –α + γ = –β .
It is easy to check that case I(c) is impossible and cases I(d), I(e), I(f ) all lead to () with

σ = γ .
From these cases, we find that γ �= , and so v–

w = eγ z+δ is non-constant. Also, we have
() and case (B) of the conclusion.
Case (II). Suppose that P is non-constant.Wewill show that this leads to a contradiction.

Let

v – 
w

=M = LeQ, ()

where L is a rational function and Q is an entire function.
From (), we have ρ(v) <∞, and so Q is a polynomial.
Also, from (), we have

v =Mw + , v′ =M′w +Mw′,

v′′ =M′′w + M′w′ +Mw′′ = M′w′ +w
(
M′′ – PM

)
= –Av = –A(Mw + ).

So,

M′w′ +
(
M′′ +AM – PM

)
w = –A. ()

Now, we have two cases to consider.
Case (i): If M is constant, then either A = P and A = , so that P = , which is a contra-

diction, or

w =
–A

AM – PM

is a rational function, which is a contradiction since w has infinitely many zeros.

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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Case (ii): IfM is non-constant, thenM′ �≡ . Therefore,

w′ +
(
M′′

M′ +
(A – P)M

M′

)
w =

–A
M′ , ()

where M′′
M′ + (A–P)M

M′ is rational because M′
M = L′

L +Q′ is rational and M′′
M is rational, and so

M′′
M′ = M′′

M /M′
M is rational.

Also,

–A
M′ =

–A
(L′ +Q′L)eQ

.

Then we can write () as

w′ = Rw + Se–Q, ()

where

R =
PM –AM –M′′

M′ , S =
–A

(L′ +Q′L)

are rational functions and Q is a polynomial.
Let U = Se–Q, then we can write () as

w′ = Rw +U . ()

Now, we have two cases to consider:
Case ii(a): If R ≡  in (), then () gives

w′ = Se–Q, w =
–w′′

P
=
–(S′ –Q′S)

P
e–Q,

which is a contradiction since w has infinitely many zeros.
Case ii(b): Assume that R �≡  in (); then () gives

w′′ = Rw′ + R′w +U ′.

Now, () and () give

–Pw = R(Rw +U) + R′w +U ′,

and so

(
R′ + R + P

)
w + RU +U ′ = .

Therefore,

R′ + R + P ≡ , ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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because if not, w has finitely many zeros, a contradiction. Also,

RU +U ′ ≡ . ()

Put

G =

U

= TeQ, ()

where T = /S is a rational function.
Then,

R =
–U ′

U
=
G′

G
.

From (), we get

 = R′ + R + P =
G′′

G
+ P, G′′ + PG = .

So, G solves (), and since P �≡  and is a polynomial of degree n, we see that G is a
transcendental entire function with finitely many zeros and has order (n + )/.
Sincew andG solve the same equation butw has infinitely many zeros andG has finitely

many zeros, w and G are linearly independent, and we can write

w′G –wG′ = c,

where c is a non-zero constant. So,
(
w
G

)′
=

c
G .

By integrating, we get

w =G
∫ z c

G dζ . ()

Also, using (), () and (),

v =  +Mw =  + LeQTeQ
∫ z c

G dζ =  +HG
∫ z c

G dζ , ()

where H = L/T is a rational function.
Now, we can assume that c =  because if c �= , we can multiply w by /c.
We differentiate () to get

v′ =H ′G
∫ z 

G dζ + HGG′
∫ z 

G dζ +H =H +K(v – ), ()

where

K =
H ′

H
+ 

G′

G
()

is a rational function.

http://www.journalofinequalitiesandapplications.com/content/2012/1/222
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So, from () and (), we get

–Av = v′′ =H ′ +K ′(v – ) +K
[
H +K(v – )

]
,

and so

 = v
(
K ′ +K +A

)
+

(
H ′ –K ′ +KH –K) = vU +U,

where U = K ′ +K +A and U =H ′ –K ′ +KH –K.
Since v is transcendental and U, U are rational functions, we must have

U = K ′ +K +A =  ()

and

U =H ′ –K ′ +KH –K = . ()

Claim . We claim that H ≡ K .

To show this, let H �≡ K .
From (), we have

H ′ –K ′

H –K
+K = .

From (), we get

H ′ –K ′

H –K
= –K =

–H ′

H
– 

G′

G
.

We integrate to get

H –K =
a

HG , G =
a

H(H –K)
,

where a is a constant. But this contradicts the fact thatH and K are rational functions and
G is a transcendental function. This completes the proof of Claim ..
Once we have Claim ., () gives

v′ =H +H(v – ) =Hv,

and so

H =
v′

v
. ()

By (), v has finitely many zeros, so we can write

v = PeQ ,

where P,Q are polynomials, P �≡ , andQ is non-constant because v is transcendental.
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Therefore,

w =
v – 
LeQ

=
PeQ – 

LeQ
.

Now, we can write this as

w = ReS + ReS , ()

where R = P/L �≡ , R = –/L �≡  are rational functions and S = Q – Q, S = –Q are
polynomials.
Here, ReS and ReS are linearly independent becauseQ is non-constant. Now, we get

 = w′′ + Pw = JeS + JeS = JeQ–Q + Je–Q,

where J, J are rational and satisfy

Jk = R′′
k + R′

kS
′
k + Rk

(
S′′
k + S′

k + P
)
.

Therefore, J = J =  because otherwise eQ = –J/J or e–Q = J/J. Thus, ReS , ReS

both solve y′′ + Py =  and have finitely many zeros, and they are linearly independent.
Hence, P is constant by [], which contradicts our assumption in Case (II) that P is non-

constant. �
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