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Abstract

The purpose of this article, is to study the Dirichlet problems of the sub-Laplace
equation Lu + f(ξ, u) = 0, where L is the sub-Laplacian on the Carnot group G and f
is a smooth function. By extending the Perron method in the Euclidean space to the
Carnot group and constructing barrier functions, we establish the existence and
uniqueness of solutions for the linear Dirichlet problems under certain conditions on
the domains. Furthermore, the solvability of semilinear Dirichlet problems is proved
via the previous results and the monotone iteration scheme corresponding to the
sub-Laplacian.
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1 Introduction
In this article we consider Dirichlet problems of the type{

Lu + f (ξ , u) = 0, in �,
u = ϕ, on ∂�,

(1:1)

where Ω is a bounded domain in a Carnot group G and L is the sub-Laplacian. Some

knowledge on G and L see next section. Hörmander’s theorem permits us to judge the

hypoellipticity of the operator L, i.e., if Lu Î C∞ then u Î C∞ (see [1]).

The investigation of the boundary value problems, concerning the operators in the

form of the sum of squares of vector fields fulfilling Hörmander condition, has turned

into the subject of several works, see [2-4]. The precursory work of Bony [2] proved a

maximum principle and the solvability of the Dirichlet problem in the sense of Perron-

Wiener. The Wiener type regularity of boundary points for the Dirichlet problem was

considered in [3]. Thanks to the previous results, Capogna et al. [4] established the sol-

vability of the Dirichlet problem when the boundary datum belongs to Lp, 1 <p ≤ ∞, in

the group of Heisenberg type.

The Perron method (see [5,6]) and the monotone iteration scheme (see [7,8]) are

well-known constructive methods for solving linear and semilinear Dirichlet problems,

respectively. Brandolini et al. [9] applied these methods to the Dirichlet problems for

sub-Laplace equations on the gauge balls in the Heisenberg group which is the sim-

plest Carnot group of step two. Let us notice that the balls possess of legible proper-

ties. However, we do not see the reseach to the problems on other domains using
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these methods. Concerning the construction of barrier function, Brandolini et al. [9]

used the result given in [10], which holds in the setting of Heisenberg group.

Our work is motivated by [9]. We try to extend the existence of solutions for semi-

linear Dirichlet problems on the Heisenberg balls in [9] to general Carnot domains. To

do so, the Perron method in the Carnot group is used in this article. Based on the work

in [3], we construct a barrier function in a domain of the Carnot group (see Lemma

3.10) under the hypothesis of the outer sphere condition to discuss the boundary beha-

viour of the Perron solutions. The method to obtain a barrier function is essentially

similar to the one in [9]. Then we prove the existence of solutions for linear sub-Laplace

Dirichlet problems. In the discussion of semilinear Dirichlet problems, we will use

monotone iteration scheme. The main difficulty we meet is that the sub-Laplacian L

does not have explicit expression. To overcome it, we use the regularity of L in [1].

The article is organized as follows. In the next section, we recall some basic defini-

tions and collect some known results on the Carnot group which will play a role in

the following sections. Section 3 is devoted to the study of the Perron method for lin-

ear equations. By finding a barrier function related to the sub-Laplacian L, we prove

that the Perron solutions for linear Dirichlet problems are continuous up to the

boundary. The main results are Theorems 3.8, 3.11, and 3.13. In Section 4, using the

results in Section 3 and the monotone iteration scheme, we provide the solutions of

the semilinear Dirichlet problems in Carnot groups with some available supersolutions

and subsolutions. Finally, we give an existence of solution to the sub-Laplace equation

on the whole group of Heisenberg type (a specific Carnot group of step two). The

main results in this section are Theorems 4.2 and 4.3.

2 Carnot groups
We will consider G = (ℝN, ·) as a Carnot group with a group operation · and a family

of dilations, compatible with the Lie structure.

Following [11,12], a Carnot group G of step r ≥ 1 is a simple connected nilpotent Lie

group whose Lie algebra g̃ admits a stratification. That is, there exist linear subspaces

V1, . . ., Vr of g̃ such that

g̃ = ⊕r
j=1Vj, [V1, Vi] = Vi+1 for i = 1, 2, . . . , r − 1 and [V1, Vr] = {0}.

Via the exponential map, it is possible to induce on G a family of non-isotropic dila-

tions defined by

δλ(ξ) = δλ(x(1), x(2), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)).

Here ξ = (x(1), x(2), . . ., x(r)), x(i) ∈ RNi for i = 1, . . ., r and N1 + · · · + Nr = N. We

denote by Q =
r∑
j=1

jNj the homogeneous dimension of G attached to the dilations {δl}

l > 0. Let m = N1 and X = {X1, . . ., Xm} be the dimension and a basis of V1, respec-

tively. Let Xu = {X1u, . . ., Xmu} denote the horizontal gradient for a function u. The

sub-Laplacian associated with X on G is given by

L =
m∑
j=1

X2
j .
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If u and v are two measurable functions on G, their convolution is defined by

u ∗ v(ξ) =
∫
G
u(η)v(η−1 · ξ)dG(η) =

∫
G
u(ξ · η−1)v(η)dG(η),

where dG(h) denotes a fixed Haar measure on G.

Let e be the identity on G. For ξ Î G, we denote by ξ-1 the inverse of ξ with

respect to the group operation. By [1], there exists a norm function

ρ(ξ) ∈ C∞
0 (G\{e}) ∩ C(G) satisfying

(1) r(ξ) ≥ 0; Moreover, r(ξ) = 0 if and only if ξ = e;

(2) r(ξ) = r(ξ-1).

The open ball of radius R centered at ξ is expressed as the set:

BG(ξ ,R) = {η ∈ G : ρ(ξ , η) = ρ(ξ−1 · η) < R}.

Let D′ denote the space of distributions on G. The non-isotropic Sobolev space Sk, p

is defined by

Sk,p = {f ∈ D′ : Dαf ∈ Lp(G), |α| ≤ k},

where a = (a1, . . ., al) is a multi-index, Dα = Dα1Dα2 · · ·Dαl , and

Dαj ∈ {X1, . . . ,Xm} . In the space Sk, p, we shall adopt the norm∥∥f∥∥Sk,p = sup
|α|≤k

∥∥Dαf
∥∥
Lp .

For a domain Ω in G, we define Sk, p(Ω, loc) as the space of distributions f such that

for every ψ(ξ) ∈ C∞
0 (�) we have fψ Î Sk, p. Let 0 <b <∞, we employ the following

non-isotropic Lipschitz spaces:

(i) for 0 <b < 1,

�β :=

{
f ∈ L∞ ∩ C0 : sup

ξ ,η

|f (η · ξ) − f (η)|
(ρ(ξ , e))β

< ∞
}
,

(ii) for b = 1,

�1 :=

{
f ∈ L∞ ∩ C0 : sup

ξ ,η

|f (η · ξ) + f (η · ξ−1) − 2f (η)|
(ρ(ξ , e))β

< ∞
}
,

(iii) for b = k + b’ where k = 1, 2, 3, . . . and, 0 <b’ ≤ 1,

�β :=
{
f ∈ L∞ ∩ C0 : Dαf ∈ �β ′

, |α| ≤ k
}
.

We refer the reader to [1] for more information on the above.

The following results are useful.

Proposition 2.1. (i) Suppose Ω ⊂ G is an open set, and suppose f , g ∈ D′(�) satisfy

Lf = g in Ω. If g Î Sk, p(Ω, loc) (1 <p <∞, k ≥ 0) then f Î Sk+2,p(Ω, loc).

Yuan and Yuan Journal of Inequalities and Applications 2012, 2012:136
http://www.journalofinequalitiesandapplications.com/content/2012/1/136

Page 3 of 12



(ii) Suppose 1 <p <∞ and β = k − Q
p > 0 , then Sk, p ⊂ Γb.

Part (i) and (ii) are contained, respectively, in Theorems 6.1 and 5.15 of [1].

3 The Perron method and barrier function for linear problem
In this section, we study the solvability of the following linear sub-Laplace Dirichlet

problem{
Lu − λ(ξ)u = f , in �,
u = ϕ, on ∂�,

(3:1)

where λ(ξ) ∈ C(�̄) satisfies l(ξ) > 0.

Definition 3.1. A bounded open set Ω ⊂ G is said to satisfy the outer sphere condi-

tion at ξ0 Î ∂Ω, if there exists a ball BG(h, r) lying in G\Ω such that

∂BG(η, r) ∩ ∂� = {ξ0}.

The definition in the case of general degenerate elliptic operator can be seen in [3].

Notice that in the H-type group case, every bounded convex subset accords with the

condition of the outer sphere. In particular, the gauge balls in H-type group are convex

domains (see [4]). From Theorem 2.12 in [13] and Theorem 5.2 in [2] respectively, one

has the following two lemmas.

Lemma 3.2. (Maximum principle) Let Ω be a connected open set in a Carnot group

G. If u Î C2(Ω) satisfies

Lu − λ(ξ)u ≥ 0 in �,

then u cannot achieve a nonnegative maximum at an interior point unless u ≡ con-

stant in Ω.

Lemma 3.3. Let Ω be a bounded domain in G. Then there exists a family of open

subsets, denoted by F = {ω : ω̄ ⊂ �} , which is a base for the topology of Ω for which

the Dirichlet problem{
Lu − λ(ξ)u = f , in ω,
u = ϕ, on ∂ω

(3:2)

has a unique distributional solution u ∈ C(ω̄) for any ω ∈ F , f ∈ C(ω̄) and � Î C

(∂ω). Furthermore, if f Î C∞(ω), then u Î C∞(ω).

We give notions of subsolution and supersolution for the Dirichlet problem (3.1).

Definition 3.4. Let � Î C(∂Ω), f ∈ C∞(�̄) . A function u ∈ C(�̄) is called a subsolu-

tion of (3.1) if it fits the following properties:

(i) u ≤ � on ∂Ω;

(ii) for every ω ∈ F and for every h ∈ C2(ω) ∩ C(ω̄) such that Lh - l(ξ)h = f and

u ≤ h on ∂ω, we also have u ≤ h in ω.

The definition of supersolution is analogous.

Lemma 3.5. Assume that u is a subsolution of (3.1) and v is a supersolution of (3.1),

then either u <v in Ω or u ≡ v.
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Proof. Suppose that at some point h Î Ω we have u(h) ≥ v(h). Set

M = sup
ξ∈�

(u − v)(ξ) ≥ 0. Take ξ0 Î Ω such that (u - v)(ξ0) = M, and we can know that

u - v ≡ M in a neighborhood of ξ0. Otherwise there exists ω ∈ F such that ξ0 Î ω

but u - v is not identically equal to M on ∂ω. Letting ū and v̄ denote the solutions of

Lw - l(ξ)w = f in ω, equal to u and v on ∂ω respectively. Since u and v are the subso-

lution and the supersolution respectively, we deduce from Definition 3.4 that ū ≥ u

and v̄ ≤ v in ω. One sees that

M = sup
ξ∈�

(u − v)(ξ) ≥ sup
ξ∈∂ω

(ū − v̄)(ξ) ≥ (ū − v̄)(ξ0) ≥ (u − v)(ξ0) = M,

and hence all the equalities above hold. By Lemma 3.2 it follows that ū − v̄ ≡ M in

ω and hence u - v ≡ M on ∂ω, which contradicts the choice of ω.

The previous argument implies u - v ≡ M in Ω. Combining this with Definition

3.4-(i) we obtain u ≡ v in Ω. □
Let u ∈ C(�̄) be a subsolution of (3.1) and ω ∈ F . Denote by ū the solution of the

Dirichlet problem (see Lemma 3.3){
Lū − λ(ξ)ū = f (ξ), in ω,
ū = u, on ∂ω,

and define in Ω the lifting of u (in ω) by

U(ξ) :=

{
ū(ξ), ξ ∈ ω,

u(ξ), ξ ∈ �\ω. (3:3)

Lemma 3.6. U(ξ) is a subsolution of (3.1).

Proof. Since u(ξ) is a subsolution of (3.1), it follows that U(ξ) = u(ξ) ≤ �(ξ) on ∂Ω.

Let ω′ ∈ F and h ∈ C2(ω′) ∩ C(ω′) such that Lh - l(ξ)h = f and U ≤ h on ∂ω’. If ω ∩
ω’ = j, then u = U ≤ h on ∂ω’. It leads to U = u ≤ h in ω’;

Suppose now ω ∩ ω’ = j. Since u ≤ U, we have u ≤ h on ∂ω’ and then u ≤ h in ω’.

In particular, u ≤ h in ω’\ω, i.e. U ≤ h in ω’\ω. Thus, we have ū ≤ h on ∂(ω’ ∩ ω). As

L(ū − h) − λ(ξ)(ū − h) = 0 in ω’ ∩ ω and ū − h ≤ 0 on ∂(ω’ ∩ ω), it yields by Lemma

3.2 that ū ≤ h in ω’ ∩ ω, and therefore U ≤ h in ω’ ∩ ω. □
The following result is a trivial consequence of Definition 3.4.

Lemma 3.7. Let u1, u2, . . ., ul be subsolutions of (3.1). Then the function

v = max{u1, u2, . . . , ul}

is also a subsolution of (3.1).

Let S denote the set of all subsolutions of (3.1). Notice that S is not empty, since -k2 Î S

for k large enough. The basic result via the Perron method is contained in the following

theorem.

Theorem 3.8. The function u(ξ) := sup
v∈S

v(ξ)satisfies Lu - l(ξ)u = f in Ω.

Proof. Notice that k2, for k large enough, is a supersolution of (3.1). By Lemma 3.5,

we deduce v ≤ k2 for any v Î S, so u is well defined. Let h be an arbitrary fixed point

of Ω. By the definition of u, there exists a sequence {vn}nÎN such that vn(h) ® u(h). By
replacing vn with max {v1, . . ., vn}, we may assume that v1 ≤ v2 ≤ · · · ≤ vn ≤ · · ·. Let
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ω ∈ F be such that h Î ω and define Vn(h) to be the lifting of vn in ω according to

(3.3). From Lemma 3.2, Vn is also increasing and, since Vn Î S (see Lemma 3.6) and

Vn ≥ vn, it gets Vn(h) ® u(h). Set V(ξ) := lim
n→∞Vn(ξ) . Obviously, we have that V ≤ u

in Ω and V (h) = u(h). Noting that every Vn satisfies LVn - l(ξ)Vn = f in ω, we have,

by the dominated convergence theorem that the function V satisfies LV - l(ξ)V = f in

the distributional sense in ω. Since f Î C∞(ω), we have V(ξ) Î C∞(ω) in view of the

hypoellipticity of the operator L - l(ξ).
We conclude that V ≡ u in ω. In fact, suppose V(ζ) <u(ζ) for some ζ Î ω, then there

exists a function ū ∈ S such that V(ζ ) < ū(ζ ). Define the increasing sequence

wn = max{ū,Vn} and then the corresponding liftings Wn. Set W(ξ) := lim
n→∞ Wn(ξ).

Analogously to V, W satisfies LW - l(ξ)W = f. Since Vn ≤ wn ≤ Wn, we obtain V ≤ W.

The equalities V(h) = u(h) = W(h) and Lemma 3.2 imply that V ≡ W in Ω. This is in

contradiction with V(ζ ) < ū(ζ ) ≤ W(ζ ). Consequently, V ≡ u in ω and u satisfies Lu

- l(ξ)u = f in the classical sense. The arbitrariness of h leads to the desired result. □
Definition 3.9. Let ζ Î ∂Ω. Then a function w(ξ) ∈ C∞(�) ∩ C(�̄) is called a bar-

rier function related to the sub-Laplacian L at ζ if the following two conditions hold:

(i) Lw(ξ) ≤ -1 in Ω;

(ii) w(ξ) > 0 on �̄\{ζ } , w(ζ) = 0.

Lemma 3.10. Let Ω ⊂ G be a bounded open domain which satisfies the outer sphere

condition at every point of the boundary ∂Ω. Then for every ζ Î ∂Ω, the Dirichlet

problem{
Lw = −1, in �,
w(ξ) = ρ(ξ , ζ ), on ∂�

(3:4)

has a unique solution w ∈ C∞(�) ∩ C(�̄) fulfilling w(ξ) > 0 on �̄\{ζ } and w(ζ) = 0.

Proof. From [1], let Γ(ξ) = CQr(ξ, e)-(Q-2) be the fundamental solution of the sub-

Laplacian L. Define the convolution

ũ := −� ∗ χ�,

where cΩ denotes the indicator function. Since �(ξ) ∈ Lploc for 1 ≤ p < Q
Q−2, it yields

ũ ∈ C∞(�) ∩ C(�̄) .

According to Corollary 10 in [3], the problem{
Lv = 0, in �,
v(ξ) = ρ(ξ , ζ ) − ũ(ξ), on ∂�

has a unique solution v ∈ C∞(�) ∩ C(�̄) . Since Lũ = −χ� (see Corollary 2.8 in [1]),

it follows that w := v + ũ is the desired solution of (3.4). □
Theorem 3.11. Let Ω be as in Lemma 3.10. Suppose � Î C(∂Ω) and

f ∈ C∞(�) ∩ C(�̄) . Then the Dirichlet problem (3.1) possesses a unique solution

u ∈ C∞(�) ∩ C(�̄) .
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Proof. Uniqueness is a direct consequence of Lemma 3.2. Theorem 3.8 provides the

existence of the solution u Î C∞(Ω). To complete the proof of the theorem, it needs

only to examine that u is continuous up to the boundary of Ω.

Let ζ Î ∂Ω. Since � Î C(∂Ω), it follows that for any ε > 0 there exists some δ > 0

such that for every ξ Î ∂Ω with r(ξ, ζ) <δ, we have

|ϕ(ξ) − ϕ(ζ )| < ε.

Let w(ξ) be the barrier function related to L at ζ constructed in Lemma 3.10. Set

M = sup
ξ∈∂�

|ϕ(ξ)| and choose k1 > 0 such that k1w(ξ) ≥ 2M if r(ξ, ζ) ≥ δ. Set

k2 = [|ϕ(ζ )| + ε]max
ξ∈�

λ(ξ) + sup
ξ∈�

|f (ξ)| , and k = max{k1, k2}. Define that w1(ξ): = �(ζ) +

ε + kw(ξ) and w2(ξ): = �(ζ) - ε - kw(ξ). Then we see in view of Lemma 3.10,

Lw1 − λ(ξ)w1 = −k − λ(ξ)ϕ(ζ ) − λ(ξ)ε − kλ(ξ)w(ξ) ≤ f in �.

On the one hand, w1(ξ) = �(ζ) + ε + kw(ξ) ≥ �(ζ) + ε >�(ξ) when r(ξ, ζ) <δ; On the

other hand, w1(ξ) ≥ �(ζ) + ε + 2M >�(ξ) when r(ξ, ζ) ≥ δ. Combining these with

Lemma 3.2 we can conclude that w1(ξ) is a supersolution of (3.1). Analogously, w2(ξ) is

a subsolution of (3.1). Hence from the choice of u and the fact that every supersolution

dominates every subsolution, we have in Ω that

w2(ξ) ≤ u(ξ) ≤ w1(ξ)

and then

|u(ξ) − ϕ(ζ )| ≤ ε + kw(ξ).

Since w(ξ) ® 0 as ξ ® ζ, we obtain u(ξ) ® �(ζ) as ξ ® ζ. □
Remark 3.12. Let f ∈ C∞(�) ∩ C(�̄) and u be the solution of

{
Lu − λ(ξ)u = f , in �,
u = 0, on ∂�.

(3:5)

Elementary calculations show that − 1
min
ξ∈�

λ(ξ) ||f ||L∞(�) and
1

min
ξ∈�

λ(ξ) ||f ||L∞(�) are a sub-

solution and a supersolution of (3.5) respectively. Thus, ||u||L∞(�) ≤ 1
min
ξ∈�

λ(ξ) ||f ||L∞(�) . It

provides a L∞ estimate for the solution of (3.5).

Theorem 3.13. Set � Î C(∂Ω) and f ∈ C(�̄). Then there exists a unique solution

u ∈ C(�̄)to (3.1) in the sense of distribution.

Proof. Take a sequence fn(ξ) ∈ C∞(�) ∩ C(�̄) , n = 1, 2, . . ., so that {fn(ξ)} converges

uniformly to f in Ω. Denote by un the corresponding solution of the Dirichlet problem{
Lv − λ(ξ)v = fn(ξ), in �,
u = ϕ, on ∂�.

We obtain, in view of Remark 3.12,

||un − um||L∞(�) ≤ 1
min
ξ∈�

λ(ξ)
||fn − fm||L∞(�).
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In conclusion, {un} converges uniformly to a continuous function u which is the

required solution. □

4 The monotone iteration scheme for semilinear equation
Let Ω be a bounded open domain in a Carnot group G. Consider Dirichlet problem

(1.1), where f(ξ, u) is a smooth function of ξ and u, � Î C(∂Ω). A function μ ∈ C(�̄)

is called a supersolution of (1.1) if it satisfies{
Lμ + f (ξ , μ) ≤ 0, in �,
μ(ξ) ≥ ϕ(ξ), on ∂�.

Analogously, a function ν ∈ C(�̄) is called a subsolution of (1.1) if it satisfies

{
Lν + f (ξ , ν) ≥ 0, in �,
ν(ξ) ≤ ϕ(ξ), on ∂�.

The above inequalities are both in the sense of distribution. Here, a function T ≥ 0

means that for any positive test function ψ, we have Tψ ≥ 0. In the following we are

ready to construct a smooth solution of (1.1) commencing with a subsolution and a

supersolution in S1,2(Ω, loc) by the monotone iteration scheme. We first prove a maxi-

mum principle.

Lemma 4.1. Assume that u ∈ S1,2(�) ∩ C(�̄) satisfies

Lu − λ(ξ)u ≥ 0,

where λ(ξ) ∈ C(�̄)and l(ξ) > 0. If u ≤ 0 on ∂Ω, then sup
ξ∈�

u(ξ) ≤ 0 .

Proof. Suppose that the conclusion fails. Since u is continuous on �̄ , there exists a

point ξ0 Î Ω such that u(ξ0) > 0. Fix ε > 0 so small that u(ξ0) - ε > 0. Consequently, the

function uε : = max{u - ε, 0} is non-negative and has compact support in Ω as u ≤ 0

on ∂Ω. By the distribution meaning of solutions, we get∫
�

Xu · XuεdG =
∫

�

−uεLudG ≤
∫

�

−λ(ξ)uuεdG ≤ 0. (4:1)

When uε > 0, it follows Xuε = Xu and Xu is not identically zero. In fact, if Xu ≡ 0,

then u ≡ u(ξ0) > 0 in Ω which contradicts the assumption that u ≤ 0 on ∂Ω. Conse-

quently the left hand side of (4.1) is positive, a contradiction. This completes the proof

of the lemma. □
Theorem 4.2. Let Ω be as in Lemma 3.10. Let f Î C∞(G × (a, b)) and � Î C(∂Ω).

Suppose that μ and ν are, respectively, a supersolution and a subsolution of (1.1) with

μ, ν ∈ S1,2(�, loc) ∩ C(�̄) , ν ≤ μ, and a < min ν < max μ <b. Then there exists a solu-

tion u ∈ C∞(�) ∩ C(�̄) of (1.1) satisfying ν ≤ u ≤ μ.

Proof. Take K > 0 such that

∂f
∂u

+ K2 > 0 (4:2)

on �̄ × [min ν,maxμ]. Let v = Tu denote the unique solution in C(�̄) of the

Dirichlet problem (see Theorem 3.11)
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{
(L − K2)v = −[f (ξ , u) + K2u], in �,
v(ξ) = ϕ(ξ), on ∂�.

We claim that the nonlinear transformation T is monotone. To establish this we set

u1 <u2 and notice that

(L − K2)Tu1 = − [f (ξ , u1) + K2u1],

(L − K2)Tu2 = − [f (ξ , u2) + K2u2],

and Tu1 = Tu2 = � on ∂Ω. Letting w = Tu1 - Tu2, we can obtain

(L − K2)w = −[f (ξ , u1) − f (ξ , u2) + K2(u1 − u2)]

and w = 0 on ∂Ω. As f(ξ, u) + K2u is increasing in u by (4.2), it yields (L - K2) w ≥ 0.

From

Lw = K2w − [f (ξ , u1) − f (ξ , u2) + K2(u1 − u2)],

we get w S2,2(Ω, loc) by Lw Î L2(Ω) and Proposition 2.1-(i). It follows that w ≤ 0 in

Ω by applying Lemma 4.1, therefore, Tu1 ≤ Tu2 and T is monotone. We now begin

the iteration scheme.

Let u1 = Tμ. As

(L − K2)u1 = −[f (ξ , μ) + K2μ],

and u1 = � on ∂Ω, we get by a trivial calculation that

(L − K2)(u1 − μ) = −[Lμ + f (ξ , μ)] ≥ 0

and u1 - μ ≤ 0 on ∂Ω. Arguing as in the previous gives u1 ≤ μ in Ω.

Define un+1 = Tun. The monotoneity of T yields

μ ≥ u1 ≥ u2 ≥ · · · .

Analogously, starting from ν, we obtain a nondecreasing sequence

ν ≤ v1 ≤ v2 ≤ · · · ,

where v1 = Tν, vn+1 = Tvn. Moreover, ν ≤ μ implies v1 = Tν ≤ Tμ = u1 and, therefore,

vn ≤ un for each n Î N. Thus

ν ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ un ≤ · · · ≤ u2 ≤ u1 ≤ μ, (4:3)

so that the limit u = lim
n→∞ un is well defined in �̄ . Recall that

(L − K2)un+1 = − [f (ξ , un) + K2un].

The dominated convergence theorem shows that

Lu + f (ξ , u) = 0

in the distributional sense. According to Proposition 2.1-(i) and the fact that f(ξ, u) Î
Lp(Ω) for 1 <p < +∞ one has u Î S2,p(Ω, loc). Iterating the process, we get u Î Sk, p(Ω,

loc) for k ≥ 0. Let ψ ∈ C∞
0 (�) . The definition in Section 2 gives ψu Î Sk, p.
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Furthermore, we obtain u Î C∞(Ω) in view of Proposition 2.1-(ii). Combining this with

(4.3) we have u ∈ C∞(�) ∩ C(�̄) which is the desired solution. □
We assume henceforth that G is of Heisenberg type. Such group was introduced by

Kaplan [14] and has been subsequently studied by several authors, see [4,11,13] and

the references therein.

Let G be a Carnot group of step two whose Lie algebra g̃ = V1 ⊕ V2 . Consider the

map J : V2 ® End(V1) defined by

〈J(ξ2)ξ ′
1, ξ ′′

1 〉 = 〈ξ2, [ξ ′
1, ξ ′′

1 ]〉, for ξ ′
1, ξ ′′

1 ∈ V1 and ξ2 ∈ V2.

G is said of Heisenberg type if for every ξ2 Î V2, with |ξ2| = 1, the map J (ξ2): V1 ®
V1 is orthogonal.

In the case of the Heisenberg type groups, the gauge balls coincide with the level sets

of the fundamental solution (that is a radial function in this class of groups, see [14]),

and the balls BG(e, R) invade G as R tends to +∞ since the vector fields on G satisfy

the Hörmander rank condition. Thus, we get the following existence theorem in the

whole space G by making use of Theorem 4.2 and the result in [4] that the gauge balls

in H-type group satisfy the outer sphere condition.

Theorem 4.3. Let G be a group of Heisenberg type. Let u-(ξ), u+(ξ) S
1,2(G, loc) ∩ C(G)

be respectively a subsolution and a supersolution of the problem

Lu + f (ξ , u) = 0, (4:4)

where f Î C∞(G × (a, b)) and a <u-(ξ) ≤ u+(ξ) <b. Then there exists a solution u Î
C∞(G) of (4.4) satisfying

u− ≤ u ≤ u+

in G.

Proof. Let u0 = u+, set BG(e, m) be the gauge ball of radius m centered at identity e.

We construct um inductively in the following manner. Let vm be the solution of the

Dirichlet problem{
Lv + f (ξ , v) = 0, in BG(e, m),
v(ξ) = u+(ξ), on ∂BG(e, m)

obtained by means of Theorem 4.2 using u- and um-1, respectively, as a subsolution

and a supersolution.

Define

um(ξ) =
{
vm(ξ), ξ ∈ BG(e, m),
u+(ξ), ξ �∈ BG(e, m).

Obviously, u- ≤ um ≤ um-1. We need to prove that um is a supersolution of (4.4). To

see this, take a positive test function ψ(ξ) ∈ C∞
0 (G) . From the divergence theorem,

we obtain∫
BG(e,m)

vmLψdG =
∫
BG(e,m)

ψLvmdG +
∫

∂BG(e,m)
vm〈A∇ψ , �n〉dS

−
∫

∂BG(e,m)
ψ〈A∇vm, �n〉dS
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and ∫
G\BG(e,m)

u+LψdG =
∫
G\BG(e,m)

ψLu+dG +
∫

∂BG(e,m)
ψ〈A∇u+, �n〉dS

−
∫

∂BG(e,m)
u+〈A∇ψ , �n〉dS.

The above two identities give∫
G
umLψdG =

∫
BG(e,m)

ψLvmdG +
∫
G\BG(e,m)

ψLu+dG

+
∫

∂BG(e,m)
ψ〈A∇(u+ − vm), �n〉dS,

(4:5)

where �n denotes the outerward normal to ∂BG(e, m), and A is a fixed positive semi-

definite matrix (see [4,13]). Therefore, we may restrict ourselves to the case in which

〈A∇(u+ − vm), �n〉 represents the derivative of u+ - vm in an outward direction with

respect to ∂BG(e, m). Moreover, since u+ - vm ≥ 0 in BG(e, m) and u+ - vm = 0 on ∂BG

(e, m), it follows

ψ〈A∇(u+ − vm), �n〉 ≤ 0 for ξ ∈ ∂BG(e, m). (4:6)

Substitution in (4.5) gives∫
G
umLψdG ≤ −

∫
BG(e,m)

ψf (ξ , vm)dG −
∫
G\BG(e,m)

ψf (ξ , u+)dG

= −
∫
G

ψf (ξ , um)dG.

This implies that um is a supersolution, and we can restart the monotone iteration

scheme on BG(e, m+1).

In this way we obtain iteratively a sequence of supersolutions {um} satisfying the fol-

lowing properties:

(i) {um} is nonincreasing, and u- ≤ um ≤ u+;

(ii) Every um satisfies Lum + f(ξ, um) = 0 in BG(e, m).

Set u(ξ) = lim
m→∞ um(ξ) . We observe that {um} is a sequence of solutions of (4.4) on

any BG(e, k) for m ≥ k. It follows that u is a solution on BG(e, k). Arguing as in Theo-

rem 4.2 we know u Î C∞ (BG(e, k)). The arbitrariness of k implies u Î C∞(G). There-

fore, it holds that u is the required solution of (4.4). □
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