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Abstract

In this article, we give more generalized results than in Anwar et al. (2010) and Latif
and Pečarić (2010) in new direction by using second-order divided difference. We
investigate the exponential convexity and logarithmic convexity for majorization type
results by using class of continuous functions in linear functionals. We also construct
positive semi-definite matrices for majorization type results. We will vary on choice of
a family of functions in order to construct different examples of exponentially convex
functions and construct some means. We also prove the monotonic property.
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1. Introduction and preliminaries
Although inequalities play a fundamental role in nearly all branches of mathematics,

inequalities are usually obtained by ad hoc methods rather than as consequences of

some underlying “Theory of Inequalities”. For certain kinds of inequalities, the notion

of majorization leads to such a theory that is sometimes extremely useful and powerful

for deriving inequalities. Moreover, the derivation of an inequality by methods of

majorization is often very helpful both for providing a deeper understanding and for

suggesting natural generalizations [1].

Now we define the notion of majorization as follows: For fixed n ≥ 2, let

x = (x1, . . . , xn) , y =
(
y1, . . . , yn

)
denote two n-tuples and

x[1] ≥ x[2] ≥ · · · ≥ x[n], y[1] ≥ y[2] ≥ · · · ≥ y[n],

be their ordered components.

Definition 1.1. [[1], p. 8] For x, y Î ℝn,

x ≺ y if
{∑k

i=1 x[i] ≤ ∑k
i=1 y[i], k = 1, ..., n − 1;∑n

i=1 x[i] =
∑n

i=1 y[i],

when x ≺ y , x is said to be majorized by y (y majorizes x).

The following theorem is well-known in literature as the majorization theorem and a

convenient reference for its proof is Marshall et al. [[1], p. 15, p. 157], which is due to

Hardy et al. [[2], p. 75] and can also be found in [[3], p. 320]. For a discussion con-

cerning the matter of priority see Mitrinović [[4], p. 169].

Khan et al. Journal of Inequalities and Applications 2012, 2012:105
http://www.journalofinequalitiesandapplications.com/content/2012/1/105

© 2012 Khan et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:asif_rizkhan@yahoo.com
http://creativecommons.org/licenses/by/2.0


Here J be any interval in ℝ.

Theorem 1.2. Let x and y be two n-tuples such that xi, yi Î J, i = 1, . . . , n; then

�1(f ) =
n∑
i=1

f (yi) −
n∑
i=1

f (xi) ≥ 0, (A1)

holds for all continuous convex functions f : ℝ ® ℝ iff x ≺ y.

If f(x) is a strictly convex function then equality in (A1) is valid iff x[i] = y[i], i = 1, . . .

, n.

In 1947, Fuchs gave a weighted generalization of the well-known majorization theo-

rem for convex functions and two sequences monotonic in the same sense [5], (see

also [[3], p. 323], [[1], p. 580]).

Theorem 1.3. Let x and y be two decreasing real n-tuples, let p = (p1, . . . , pn) be a

real n-tuple such that

k∑
i=1

pixi ≤
k∑
i=1

piyi for k = 1, . . . ,n − 1; (1)

and

n∑
i=1

pixi =
n∑
i=1

piyi; (2)

then, for every continuous convex function f : J ® ℝ, we have

�2(f ) =
n∑
i=1

pif (yi) −
n∑
i=1

pif (xi) ≥ 0. (A2)

A number of important inequalities arise from the logarithmic convexity of some

functions as one can see in [1]. Logarithmic convexity plays an important role in fields

of application such as reliability and survival analysis, and in economics. We also find

its applications in applied mathematics as well.

Here, we give an important result from Anwar et al. [6] which is given in recent

book of Marshall et al. [1].

Proposition 1.4. If p Î ℝn and x, y are decreasing n-tuples such that (1) and (2)

hold and �s : (0, ∞) ® ℝ defined as,

ϕs(x) =

⎧⎨
⎩

xs

s(s−1) , s �= 0, 1;
− ln x, s = 0;
x ln x, s = 1;

(3)

then, Λ2(�s) is log-convex as a function of s Î ℝ, with x, y, and p fixed.

The following theorem is consequence of Theorem 1 in [7] (see also [[3], p. 328]):

Theorem 1.5. Let x, y : [a, b] ® ℝ be increasing continuous functions and let H : [a,

b] ® ℝ be a function of bounded variation. If

b∫
ν

x(z) dH(z) ≤
b∫

ν

y(z) dH(z) for every ν ∈ (a, b),
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and

b∫
a

x(z) dH(z) =

b∫
a

y(z) dH(z)

hold. Then for every continuous convex function f, we have

�3(f ) =

b∫
a

f (y(z)) dH(z) −
b∫

a

f (x(z)) dH(z) ≥ 0. (A3)

Here we give another important result from Anwar et. al. [6] which is also given in

[1].

Proposition 1.6. If x, y : [0, 1] ® ℝ are decreasing continuous functions, H : [0, 1] ®
ℝ is a function of bounded variation, and

u∫
0

x(z) dH(z) ≤
u∫

0

y(z) dH(z), u ∈ (0, 1),

1∫
0

x(z) dH(z) =

1∫
0

y(z) dH(z),

are valid. Then

�(ϕs) =

1∫
0

ϕs(y(z)) dH(z) −
1∫

0

ϕs(x(z)) dH(z)

is log-convex in s.

We can find variety of applications of the Propositions 1.4 and 1.6 in article [8] but

we quote here an application in Statistics which is given in the book of Marshall et al.

[1].

Corollary 1.7. If W is positive random variable for which expectation exist and a ≥

b, then the function

g(t) =
EWαt − (EWβt)(EWα

/
EWβ)t

t(t − 1)
, t �= 0, 1;

g(t) = (log EWα − E logWα) − (logEWβ − E logWβ), t = 0;

g(t) = E(Wα logWα) − (EWα)(logEWα) − E(Wβ logWβ)

−(EWβ)(log EWβ)(EWα
/
EWβ), t = 1

is log convex.

The Propositions 1.4 and 1.6 give us log-convexity but we can find more generalized

results proved by Anwar et al. [6] which give us positive semi-definite matrices and

exponential convexity for positive n-tuples × and y. Also in [8] we find similar results

for non-negative and for real n-tuples. But, in this article, we give much more general

results than results of [6,8] in new direction by using second-order divided difference.

Let F(z) and G(z) be two real, continuous and increasing functions for z ≥ 0 such

that F(0) = G(0) = 0 and define

Khan et al. Journal of Inequalities and Applications 2012, 2012:105
http://www.journalofinequalitiesandapplications.com/content/2012/1/105

Page 3 of 13



F̄(z) = 1 − F(z), Ḡ(z) = 1 − G(z) for z ≥ 0.

Definition 1.8. [[3], p. 330] G(z) is said to be majorized by F(z) , in symbol,

G(z) ≺ F(z), for z Î [0, ∞) if

s∫
0

Ḡ(z) dz ≤
s∫

0

F̄(z) dz for all s > 0,

and

∞∫
0

Ḡ(z)dz =

∞∫
0

F̄(z)dz < ∞.

The following result was obtained by Boland and Proschan [9] (see also [[3], p. 331]):

Theorem 1.9. G(z) ≺ F(z)for z Î [0, ∞) holds iff

�4(f ) =

∞∫
0

f (z) dG(z) −
∞∫
0

f (z) dF(z) ≥ 0, (A4)

holds for all convex functions f, provided the integrals are finite.

Here I stands for open interval in ℝ.

The following useful definitions are extracted from [10].

Definition 1.10. A positive function ψ is log-convex in the J-sense on I, if for each x,

y Î I,

ψ2
(x + y

2

)
≤ ψ(x)ψ(y).

Remark 1.11. A positive function ψ is log-convex in the J-sense on I iff the relation

u2ψ(x) + 2uvψ
(x + y

2

)
+ v2ψ(y) ≥ 0

holds ∀u, v Î ℝ; x, y Î I.

Definition 1.12. A function ψ : I ® (0, ∞) is said to be a log-convex function if for

every x, y Î I and every l Î [0, 1], we have

ψ(λx + (1 − λ)y) ≤ ψλ(x)ψ1−λ(y).

The following definition is originally given by Bernstein [11] (see also [6,12-15]).

Definition 1.13. A function ψ : I ® ℝ is exponentially convex on I if it is continuous

and

n∑
i,j=1

ξiξjψ(xi + xj) ≥ 0

∀n Î N and all choices ξi Î R; i = 1, . . . , n such that xi + xj Î I; 1 ≤ i, j ≤ n.

Example 1.14. For constants c ≥ 0 and k Î ℝ; x ↦ cekx, is an example of exponen-

tially convex function.

The following proposition is given in [13]:
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Proposition 1.15. Let ψ : I ® ℝ, the following propositions are equivalent:

(i) ψ is exponentially convex on I.

(ii) ψ is continuous and

n∑
i,j=1

ξiξjψ
(xi + xj

2

)
≥ 0,

∀ξi Î ℝ and every xi Î I; 1 ≤ i ≤ n.

Corollary 1.16. If ψ is exponentially convex function on I, then the matrix[
ψ

(xi + xj
2

)]n
i,j=1

is a positive semi-definite matrix. Particularly

det
[
ψ

( xi + xj
2

)]n
i,j=1

≥ 0,

∀n Î N, xi Î I; i = 1, . . . , n.

Corollary 1.17. If ψ : I ® (0, ∞) is exponentially convex function, then ψ is a log-con-

vex function.

Definition 1.18. [[3], p. 2] A function ψ is convex on an interval J ⊆ ℝ, if

(x3 − x2)ψ(x1) + (x1 − x3)ψ(x2) + (x2 − x1)ψ(x3) ≥ 0

holds for every x1 < x2 < x3; x1, x2, x3 Î J.

This article has been divided into three sections. In Section 1, we have given intro-

duction and preliminaries. In Section 2, we investigate the log-convexity and exponen-

tial convexity for majorization type results for discrete as well as continuous cases by

using classes of continuous functions in linear functionals defined in (A1), . . . , (A4).

We also construct positive semi-definite matrices for majorization type results. In Sec-

tion 3, we will vary on choice of a family of functions in order to construct different

examples of exponentially convex functions and construct some means. We also prove

the monotonic property.

2. Main results
Let f be a real-valued function defined on [a, b], a second-order divided difference of f

at distinct points z0, z1, z2 Î [a, b] is defined (as in [[3], p. 14]) recursively by

[zi; f ] = f (zi), for i = 0, 1, 2;

[zi, zi+1; f ] =
f (zi+1) − f (zi)

zi+1 − zi
, for i = 0, 1;

and

[z0, z1, z2; f ] =
[z1, z2; f ] − [z0, z1; f ]

z2 − z0
.

The value [z0, z1, z2; f] is independent of the order of the points z0, z1, and z2. By tak-

ing limits this definition may be extended to include the cases in which any two or all
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three points coincide as follows: ∀z0, z1, z2 Î [a, b]

[z0, z0, z2; f ] = lim
z1→z0

[z0, z1, z2; f ] =
f (z2) − f (z0) − f ′(z0)(z2 − z0)

(z2 − z0)
2 , z2 �= z0

given that f’ exists on [a, b] and

[z0, z0, z0; f ] = lim
zi→z0

[z0, z1, z2; f ] =
f ′′(z0)

2
for i = 1, 2

provided that f” exists on [a, b].

Let K2[a, b] be the class of all functions from C[a, b] that are convex. So, f Î K2[a,

b] if [z0, z1, z2; f] ≥ 0; for any three points z0 , z1, z2 Î [a, b].

Let us define some classes to be used in the following theorem as follows:

For any open interval I ⊆ ℝ, and [a, b] ⊆ D(f) where D(f) stands for domain of f, we

have

D1 = {ft : t Î I} be a class of functions from C[a, b] such that the function t ↦ [z0, z1,

z2; ft] is log-convex in J-sense on I for any three distinct points z0, z1, z2 Î [a, b].

D2 = {ft : t Î I} be a class of differentiable functions such that the function t ↦ [z0,

z0, z2; ft] is log-convex in J-sense on I for any two distinct points z0, z2 Î [a, b].

D3 = {ft : t Î I} be a class of twice differentiable functions such that the function t ↦

[z0, z0, z0; ft] is log-convex in J-sense on I for any point z0 Î [a, b].

Theorem 2.1. Let Λk be linear functionals for k = 1, . . . , 4 as defined in (A1) , . . . ,

(A4). Let I be any open interval in ℝ and ft Î Dj, j = 1, 2, 3, t Î I, we also assume that

for Λ1(ft), x[i] ≠ y[i] , i = 1, . . . , n; and Λk(ft) are positive for k = 2, 3, 4, then the follow-

ing statements are valid for Λk; k = 1, . . . , 4:

(a) The function t ↦ Λk(ft) is log-convex in J-sense on I.

(b) If the function t ↦ Λk(ft) is continuous on I, then the function t ↦ Λk(ft) is log-

convex on I. Also, the following inequality holds for r < s < t; r, s, t Î I

[�k(fs)]t−r ≤ [�k(fr)]t−s[�k(ft)]s−r (4)

which is called Lyapunov’s inequality.

(c) If the function t ↦ Λk(ft) is derivable on I, then ∀s ≤ u and t ≤ v; s, t, u, v Î I;

we have

μs,t(�k, Dj) ≤ μu,v(�k, Dj) for j = 1, 2, 3;

where

μs,t(�k, Dj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�k(fs)
�k(ft)

) 1
s−t , s �= t

exp

(
d
ds

�k(fs)

�k(fS)

)
, s = t.

(5)

Proof. (a) Since, the function t ↦ [z0, z1, z2; ft] is log-convex in J-sense on I which

implies that [z0, z1, z2; ft] >0. So, ft is strictly convex and x[i] ≠ y[i] for i = 1, . . . , n;

which shows that by using Theorem 1.2, Λ1(ft) is positive and also by our assumptions

that Λk(ft) for k = 2, 3, 4 are positive.
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Now for any fixed p, q Î ℝ and s, t Î I, we define the following function

g(z) = p2fs(z) + 2pqf s+t
2
(z) + q2ft(z)

by using Remark 1.11, the log-convexity in J-sense of the function t ↦ [z0, z1, z2; ft]

gives us the positive definiteness of the quadratic form

[z0, z1, z2; g] = p2[z0, z1, z2; fs] + 2pq[z0, z1, z2; f s+t
2
] + q2[z0, z1, z2; ft] ≥ 0

which implies g is convex function and clearly g is continuous therefore g Î K2[a, b]

and we have Λk(g) ≥ 0 for k = 1, . . . , 4. Hence we have

p2�k(fs) + 2pq�k(f s+t
2
) + q2�k(ft) ≥ 0

so, the function t ↦ Λk(ft) is log-convex in J-sense on I for k = 1, . . . , 4.

(b) If the function t ↦ Λk(ft) is in addition continuous, then from (a) we conclude

that the function is log-convex on I.

As the function t ↦ Λk(ft) is log-convex, i.e., ln Λk(ft) is convex, so by using Defini-

tion 1.18, we have

ln [�k(fs)]t−r ≤ ln [�k(fr)]t−s + ln [�k(ft)]s−r , k = 1, . . . , 4;

which gives us (4).

(c) By definition of convex function j, we have the following inequality [3, p. 2]

φ(s) − φ(t)
s − t

≤ φ(u) − φ(v)
u − v

, (6)

∀s, t, u, v Î I with s ≤ u, t ≤ v, s ≠ t, u ≠ v.

Since by (b), Λk(ft) is log-convex for k = 1, . . . , 4 so in (6) we set j(x) = ln Λk(fx), to

get

ln�k(fs) − ln�k(ft)
s − t

≤ ln�k(fu) − ln�k(fv)
u − v

; k = 1, . . . , 4 (7)

which gives us

μs,t(�k,Dj) ≤ μu,v(�k,Dj) for j = 1, 2, 3 and k = 1, . . . , 4.

If s = t ≤ u we apply the limit limt→s to (7) concluding

μs,s(�k,Dj) ≤ μu,v(�k,Dj) for j = 1, 2, 3 and k = 1, . . . , 4.

Other possible cases can be treated in the same way. □
Now, we give two important remarks and one useful corollary from [10], which we

will use in some examples in third section.

Remark 2.2. For μs,t(Λk, D) defined with (5) we will refer as mean if

a ≤ μs,t(�k,D) ≤ b

for s, t Î I and k = 1, . . . , 4.

We can find mean value theorems of Cauchy’s type for Λk(ft) for k = 1, . . . , 4 as in

[6,8]. We can also apply second mean value theorem of Cauchy’s type for Λk(ft), k = 1,
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. . . , 4 in order to get criteria for recognition of means as in [10]. This theorem gives

us the following corollary:

Corollary 2.3. Let a, b Î ℝ and Λk be linear functionals for k = 1, . . . , 4 as defined

in (A1), . . . , (A4). Let D = {ft : t Î I} be a family of functions in C2[a, b]. If

a ≤
(

d2fs
dx2

d2ft
dx2

) 1
s−t

(ξ) ≤ b,

for ξ Î [a, b]; s, t Î I; then μs,t(Λk, D) is a mean for k = 1, . . . , 4.

Remark 2.4. In some examples, we will have very simple recognition of means:

(
d2fs
dx2

d2ft
dx2

) 1
s−t

(ξ) = ξ , ξ ∈ [a, b], s �= t.

Let us define some new classes to be used in next theorem as follows:

For any open interval I ⊆ R, and [a, b] ⊆ D(f) where D(f) stands for domain of f, we

have

D̃1 = {ft : t ∈ I} be a class of functions from C[a, b] such that the function t ↦ [z0, z1,

z2; ft] is exponentially convex on I for any three distinct points z0, z1, z2 Î [a, b].

D̃2 = {ft : t ∈ I} be a class of differentiable functions such that the function t ↦ [z0,

z0, z2; ft] is exponentially convex on I for any two distinct points z0, z2 Î [a, b].

D̃3 = {ft : t ∈ I} be a class of twice differentiable functions such that the function t ↦

[z0, z0, z0; ft] is exponentially convex on I for any point z0 Î [a, b].

Theorem 2.5. Let Λk be linear functionals for k = 1, . . . , 4 as defined in (A1), . . . ,

(A4) and let I be any open interval in ℝ, then for ft ∈ D̃j , j = 1, 2, 3 and t Î I, the fol-

lowing statements are valid for Λk; k = 1, . . . , 4:

(a) For every n Î N and t1, . . . , tn Î I, the matrix

[
�k(f ti+tj

2
)
]n

i,j=1
is a positive

semi-definite. Particularly

det
[
�k(f ti+tj

2
)
]n

i,j=1
≥ 0. (8)

(b) If the function t ↦ Λk(ft) is continuous on I, then it is exponentially convex on I.

(c) If Λk(ft) be positive for k = 2, 3, 4 and for Λ1(ft) we assume that ft is strictly con-

vex with condition x[i] ≠ y[i] for i = 1, . . . , n and the function t ↦ Λk(ft) is derivable

on I then∀s ≤ u and t ≤ v, we have

μs,t(�k, D̃j) ≤ μu,v(�k, D̃j) for j = 1, 2, 3;

where μs,t(�k, D̃j) is as defined in (5).
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Proof. (a) We consider the function

hl(z) =
l∑

i,j=1

uiujf ti+tj
2
(z)

for l = 1, . . . , n and ft ∈ D̃1 , where z Î [a, b], ui Î ℝ and ti Î I.

Since [z0, z1, z2; f ti+tj
2
] is exponentially convex function for z0, z1, z2 Î [a, b], so

[z0, z1, z2; hl] =
l∑
i,j

uiuj[z0, z1, z2; f ti+tj
2
] ≥ 0

which shows that hl is a convex function for l = 1, . . . , n and z0, z1, z2 Î [a, b].

Now by using Theorem 1.2,

n∑
m=1

hl(ym) −
n∑

m=1

hl(xm) ≥ 0, for l = 1, . . . ,n

we get

n∑
m=1

⎛
⎝ l∑

i,j=1

uiujf ti+tj
2

(
ym

)⎞⎠ −
n∑

m=1

⎛
⎝ l∑

i,j=1

uiujf ti+tj
2

(xm)

⎞
⎠ ≥ 0,

for l = 1, . . . , n or

l∑
i,j=1

uiuj�k(f ti+tj
2
) ≥ 0, for l = 1, . . . ,n and k = 1, . . . , 4

which shows that the matrix

[
�k(f ti+tj

2
)
]n

i,j=1
is a positive semi-definite, and by using

Sylvester criteria we get (8).

(b) By our assumption Λk(ft) is continuous for t Î I and k = 1, . . . , 4; then by using

Proposition 1.15, we get exponential convexity of the function t ↦ Λk(ft) on I for k = 1,

. . . , 4.

(c) As Λk(ft) is positive and the function t ↦ Λk(ft) is derivable for k = 1, . . . , 4 by

our assumption, hence the result follows directly by using (c) part of Theorem 2.1. □

3. Examples
In this section, we will vary on choice of a family D = {ft : t Î I} for any open I ⊂ ℝ in

order to construct different examples of exponentially convex functions and construct

some means.

Let us consider some examples:

Example 3.1. Let

D = {ϕs : (0,∞) → R : s ∈ R}

be a family of functions defined in (3). Since d2

dx2 ϕs(x) = xs−2 = e(s−2)lnx for x >0 so

s 
→ d2

dx2 ϕs is exponentially convex function with respect to s by Example 1.14. So, Λk

(�s), k = 1, . . . , 4 are exponentially convex by Theorem 2.5 and by Corollary 1.17
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every positive exponentially convex function is log-convex. So, if we choose class of

functions given in (3) in Theorem 2.5 then for Λ1 we get Theorems 2.4 and 2.5 of [6]

and similarly for Λk, k = 2, 3; the Theorems 2.6, 2.7, 4.4, 4.5, 4.11, and 4.12 of [6] all

become special cases of Theorem 2.5 of this article. We can also obtain similar results

for Λ4 as in [6].

Further, in this choice of family D we have

(
d2ϕs
dx2

d2ϕt
dx2

) 1
s−t

(ξ) = ξ , ξ ∈ [a, b], s �= t, where a, b ∈ (0,∞).

So, using Remark 2.4 we have an important conclusion that μs,t(Λk, D) is in fact

mean for k = 1, . . . , 4. We can extend these means in other cases as given in [6].

Example 3.2. Let

D̄ = {ϕ̄s : [0,∞) → R : s ∈ (0,∞)}

be a family of functions defined as

ϕ̄s(x) =
{ xs

s(s−1) , s �= 1;
x ln x, s = 1,

(9)

here, we use the convention 0 ln 0 = 0.

Since, d2

dx2 ϕ̄s(x) = xs−2 = e(s−2)lnx for x >0 so by same argument given in previous

example we conclude that �k(ϕ̄s) , k = 1, . . . , 4 are exponentially convex functions

with respect to s. So, if we choose class of functions given in (9) in Theorem 2.5 then

we get Theorems 18 and 19 of [8] for Λ1 and similarly for Λk, k = 2, 3, 4; Theorems

20, 26, 27, 28, and 29 of [8] become special cases of Theorem 2.5 of this article.

Further, in this choice of family D̄ we have

(
d2ϕ̄s
dx2

d2 ϕ̄t
dx2

) 1
s−t

(ξ) = ξ , ξ ∈ [a, b], s �= t, where a, b ∈ (0,∞).

So, using Remark 2.4 we have an important conclusion that μs,t(�k, D̄) is in fact

mean for k = 1, . . . , 4. We can extend these means in other cases as given in [8]. All

the means μs,t(�k, D̄) are calculated for two parameters s and t, now we move

towards three parameters namely s, t, r. For r >0 by substituting

xi = xri , yi = yri , t =
t
r , s =

s
r in μs,t(�k, D̄) , we get similar results as given in [8].

Example 3.3. Let

� = {ψs : R → [0,∞) : s ∈ R}

defined as

ψs(x) =
{ 1

s2 e
sx, s �= 0;

1
2x

2, s = 0.

Since, d2

dx2 ψs(x) = esx for x Î ℝ so by same argument given in Example 3.1 we con-

clude that Λk(ψs), k = 1, . . . , 4 are exponentially convex functions with respect to s.
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So, if we choose this class of function in Theorem 2.5 then for Λ1 we get Theorem 32

of [8] and similarly for Λk, k = 2, 3, 4; the Theorems 34, 40, 41, and 42 of [8] all

become special cases of Theorem 2.5 of this article.

Monotonicity: if s, t, u, v Î ℝ such that s ≤ u, t ≤ v, then by using Theorem 2.5 we

have

μs,t(�k,�) ≤ μu,v(�k,�) for k = 1, . . . , 4.

We observe here that

(
d2ψs
dx2

d2ψt
dx2

) 1
s−t

(ln ξ) = ξ is a mean for ξ Î [a, b] where a, b Î ℝ.

We also note that after the substitution (xi, yi) ® (ln xi, ln yi); i = 1, . . . , n in Λk, k

= 1, 2 in Theorem 2.5 we will get the Corollaries 36 and 38 of [8]. We can also obtain

similar results for Λ3 and Λ4 by this substitution in Theorem 2.5.

Example 3.4. Let

� = {θs : (0,∞) → (0,∞) : s ∈ (0,∞)}

be family of functions defined with

θs(x) =
e−x

√
s

s
.

Since d2

dx2 θs(x) = e−x
√
s , for x >0 so by same argument given in Example 3.1 we con-

clude that Λk(θs), k = 1, . . . , 4 are exponentially convex functions with respect to s.

For this family of functions we have the following possible cases of μs,t:

μs,t(�1, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�1(θs)
�1(θt)

) 1
s−t , s �= t;

exp

( ∑n
i=1 yie

−yi
√
s−∑n

i=1 xie
−xi

√
s

2
√
s
(∑n

i=1 e
−xi

√
s−∑n

i=1 e
−yi

√
s
) − 1

s

)
, s = t,

μs,t(�2, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�2(θs)
�2(θt)

) 1
s−t , s �= t;

exp

( ∑n
i=1 piyie

−yi
√
s−∑n

i=1 pixie
−xi

√
s

2
√
s
(∑n

i=1 pie
−xi

√
s−∑n

i=1 pie
−yi

√
s
) − 1

s

)
, s = t,

μs,t(�3, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�3(θs)
�3(θt)

) 1
s−t , s �= t;

exp

(∫ b
a y(z)e−y(z)

√
sdH(z)−∫ b

a x(z)e−x(z)
√
sdH(z)

2
√
s
(∫ b

a e−x(z)
√
sdH(z)−∫ b

a e−y(z)
√
sdH(z)

) − 1
s

)
, s = t,

μs,t(�4, �) =

⎧⎪⎪⎨
⎪⎪⎩

(
�4(θs)
�4(θt)

) 1
s−t , s �= t;

exp
( ∫ ∞

0 ze−z
√
sdG(z)−∫ ∞

0 ze−z
√
sdF(z)

2
√
s(

∫ ∞
0 e−z

√
sdF(z)−∫ ∞

0 e−z
√
sdG(z))

− 1
s

)
, s = t.

Monotonicity: if s, t, u, v Î (0, ℝ) such that s ≤ u, t ≤ v, then by using Theorem 2.5

we have
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μs,t(�k,�) ≤ μu,v(�k,�) for k = 1, . . . , 4.

Example 3.5. Let

� = {φs : (0,∞) → (0,∞) : s ∈ (0,∞)}

be family of functions defined with

φs(x) =

{
s−x

(ln s)2
, s �= 1;

x2

2 , s = 1.

Since d2

dx2 φs(x) = s−x = e−xlns > 0 , for x >0, so by same argument given in Example 3.1

we conclude that Λk(js), k = 1, . . . , 4 are exponentially convex functions with respect

to s.

For this family of function we have the following possible cases of μs,t:

μs,t(�1, �) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�1(φs)
�1(φt)

) 1
s−t , s �= t;

exp
(∑n

i=1 yis
−yi−∑n

i=1 xis
−xi

s(
∑n

i=1 s
−xi−∑n

i=1 s
−yi )

− 2
s ln s

)
, s = t �= 1;

exp
(
1
3

∑n
i=1 y

3
i −

∑n
i=1 x

3
i∑n

i=1 x
2
i −

∑n
i=1 y

2
i

)
, s = t = 1,

μs,t(�2,�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�2(φs)
�2(φt)

) 1
s−t , s �= t;

exp
(∑n

i=1 piyis
−yi−∑n

i=1 pixis
−xi

s(
∑n

i=1 pis
−xi−∑n

i=1 pis
−yi)

− 2
s ln s

)
, s = t �= 1;

exp
(
1
3

∑n
i=1 piy

3
i −

∑n
i=1 pix

3
i∑n

i=1 pix
2
i −

∑n
i=1 piy

2
i

)
, s = t = 1,

μs,t(�3,�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�3(φs)
�3(φt)

) 1
s−t , s �= t;

exp

(∫ b
a y(z)s−y(z)dH(z)−∫ b

a x(z) s−x(z)dH(z)

s
(∫ b

a s−x(z)dH(z)−∫ b
a s−y(z)dH(z)

) − 2
s ln s

)
, s = t �= 1;

exp
(

1
3

∫ b
a y3(z)dH(z)−∫ b

a x3(z)dH(z)∫ b
a x2(z)dH(z)−∫ b

a y2(z)dH(z)

)
, s = t = 1,

μs,t(�4,�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�4(φs)
�4(φt)

) 1
s−t , s �= t;

exp
( ∫ ∞

0 zs−zdG(z)−∫ ∞
0 zs−zdF(z)

s(
∫ ∞
0 s−zdF(z)−∫ ∞

0 s−zdG(z))
− 2

s ln s

)
, s = t �= 1;

exp
(
1
3

∫ ∞
0 z3dG(z)−∫ ∞

0 z3dH(z)∫ ∞
0 z2dF(z)−∫ ∞

0 z2dG(z)

)
, s = t = 1.

Monotonicity: if s, t, u, v Î (0, ∞) such that s ≤ u, t ≤ v, then by using Theorem 2.5

we have

μs,t(�k,�) ≤ μu,v(�k,�) for k = 1, . . . , 4.
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