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Abstract

In this article, some inequalities on convolution equations are presented firstly. The
mean square stability of the zero solution of the impulsive stochastic Volterra
equation is studied by using obtained inequalities on Liapunov function, including
mean square exponential and non-exponential asymptotic stability. Several sufficient
conditions for the mean square stability are presented. Results in this article indicate
that not only the impulse intensity but also the time of impulse can influence the
stability of the systems. At last, an example is given to show application of some
obtained results.
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1 Introduction
Study on the stability of stochastic differential equations has gained lots of attention

over the last years. The results and methods have been improved from time to time.

Very recently, Taniguchi [1] studied the exponential stability for stochastic delay partial

differential equations by use of the energy method which overcomes the difficulty of

constructing the Liapunov functional on delay differential equations. Wan and Duan

[2] extended the result of Taniguchi [1] to be applied to more general stochastic partial

differential equations with memory. Another important method is about the fixed-

point theory. It was first used to consider the exponential stability for stochastic partial

differential equations with delays by Luo [3], where the conditions do not require the

monotone decreasing behavior of the delays. This method also employed in Sakthivel

and Luo [4,5] to study the asymptotic stability of the nonlinear impulsive stochastic

differential equations and the impulsive stochastic partial differential equations with

infinite delays.

On considering Volterra equations, there is a significant literature devoted to the

asymptotic stability of the zero solutions of Volterra integro-differential equations. In

the known literature, the properties of linear scalar Voterra equation play an important

role. The equation is
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x′(t) = −ax(t) +

t∫
0

k(t − s)x(s)ds

where the kernel k(t) is continuous, integrable and of a single sign. Brauer [6]

showed that the solution could not be stable if
∫ ∞
0 k(s)ds > a, Burton and Mahfoud [7]

proved the zero solution is asymptotically stable if
∫ ∞

0
k(s)ds < a, Kordonis and Philos

[8] discussed the stability of the solution under condition
∫ ∞
0 k(s)ds = a. Therefore, a

necessary condition for lim
t→∞ x(t) = 0 for all solutions is that

∫ ∞
0 k(s)ds ≤ a. About

exponential asymptotic stability, Murakami [9] showed that the uniform asymptotic

stability and the exponential asymptotic stability of the zero solution of this equation

are equivalent if and only if
∫ ∞
0 k(s)exp(γ s)ds < ∞ for some g > 0. Hence if it fails to

hold, a uniformly asymptotically stable solution cannot be exponentially asymptotically

stable. Some deeper related work on deterministic equations by Appleby can be found

in [10-12], including the so-called “non-exponential decay rate” and “subexponential

solution”. Mao [13] investigated the mean square stability of the generalized equation

dX(t) =

⎛
⎝f (t,X(t)) + g

⎛
⎝t,

t∫
0

G(t, s)X(s)ds

⎞
⎠

⎞
⎠ dt + h

⎛
⎝t,

t∫
0

H(t, s)X(s)ds

⎞
⎠dB(t)

On some special stochastic volterra equations without impulse, we highlight here the

contribution of Appely [14-19]. However real-world systems can be modeled to include

random effects, including stochastic perturbations and impulses. It is natural to ask

how the presence of such random effects can influence the stability of the systems.

Based on the generalized equation [13], in this article, we consider the effect of the

impulse intensity and the impulse time on the mean square exponential and non-expo-

nential asymptotic stability of impulsive stochastic Volterra equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx(t) = f

(
t, x(t),

t∫
τi

F(t − s)x(s)ds

)
dt + g

(
t, x(t),

t∫
τi

G(t − s)x(s)ds

)
dB(t), t ∈ (τi, τi + 1)

�x(τi) = Ii(ξi, x(τ−
i )) t = τi

x(t0) = x0

for all i Î N = {0, 1, 2, ·····} by using Liapunov function, which show that both the

presence of impulses and the time of the presence can influence the stability of the

systems. By choosing the impulse intensity and the impulse time, We find that∫ ∞
0 k(s)exp(γ s)ds < ∞ is not necessary condition for the exponential asymptotic

stability.

The article is organized as follows: some preliminary notations and useful lemmas

are given in Sect. 2. Then, sufficient conditions of the mean square exponential asymp-

totic stability are shown in the first part of Sect. 3, and the second part mainly deals

with the mean square non-exponential asymptotic stability of the solution. Finally, an

example is given.

2 Preliminary notes
Let {τi, i = 1, 2,...} be a series of numbers such that t0 = τ0 < ···<τk <τk+1 < ··· and

. We denote R+ = [0, +1). Consider the impulsive stochastic Volterra equations
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dx(t) = f

(
t, x(t),

t∫
τi

F(t − s)x(s)ds

)
dt + g

(
t, x(t),

t∫
τi

G(t − s)x(s)ds

)
dB(t), t ∈ Di

�x(τi) = Ii(ξi, x(τ−
i )), t = τi

x(t0) = x0

(1)

where Di = (τI, τi+1) for all i Î N. f(t, x, y) : R+ × Rn × Rn ® Rn, g(t, x, y) : R+ × Rn ×

Rn ® Rn. ξi = τi - τi-1, �x(τi) = x(τi) − x(τ−
i ), x(τ−

i ) = lim
t→τi−0

x(t) with respect to prob-

ability distribution for all i = 1, 2,.... Ii(t, x) : R
+ × Rn ® Rn. F (t) and G(t) are both con-

tinuous and integrable matrix-valued functions on R+. B(t) is standard n-dimensional

Brownian motion on a complete filtered probability space Ω, F, (FB (t)) t ≥ 0, P), where

the filtration is defined as F B(t) = s (B(s) : 0 ≤ s ≤ t). Almost sure events are Palmost

sure in this article denoted by “a.s.”. Suppose f(t, 0, y) = 0, g(t, 0, y) = 0 and Ii(t, 0) = 0

for t >t0, then x(t) ≡ 0 is the solution of (1), which is called zero solution of (1). In this

article, we always assume there exists a unique stochastic process satisfying (1), and

assume all solutions of (1) are continuous on the left and limitable on the right. We

further recall the various standard notions of stability of the zero solution required.

Definition 2.1. The zero solution of (1) is said to be

(i) mean square asymptotically stable, if for any ε > 0, there exist constants δ > 0 and

T = T (t0, ε) > 0 such that E (||x (t)||2) <ε for all t >t0 + T when E (||x0||
2) <δ.

(ii) mean square exponentially asymptotically stable, if for any t0 Î R+ there exist l >

0, T > 0 and C = C(x0, t0) > 0 such that E (||x (t)||2)<C exp (-lt) for t >T.

(iii) mean square non-exponentially asymptotically stable, if lim
t→∞ E(||x(t)||2) = 0and

lim
t→∞

log(E(||x(t)||2))
t

= 0hold.

Suppose that a ∨ b = max{a, b}, E(x) is the expectation of x and ||x (t)|| is some

norm in the sequel. Let C1[0, ∞) be the family of all continuous functions on [0, ∞)

which are once continuously differentiable and C1,2(R+ × Rn, R+) denote the family of

all nonnegative functions from R+ × Rn to Rn which are once continuously differenti-

able in t and twice in x. For each V Î C1,2(R+ × Rn, R+), we denote V (t) = E(V (t, x

(t))), V (t-) = E(V (t, x(t-))) and

LV(t, x(t)) = Vt(t, x(t)) + Vx(t, x(t))f

⎛
⎝t, x(t),

t∫
τi

F(t − s)x(s)ds

⎞
⎠

+
1
2
trace

⎛
⎝gT

⎛
⎝t, x(t),

t∫
τi

G(t − s)x(s)ds

⎞
⎠Vxx(t, x(t))g

⎛
⎝t, x(t),

t∫
τi

G(t − s)x(s)ds

⎞
⎠

⎞
⎠

where Vt(t, x(t)) =
∂V(t, x(t))

∂t
,V(t, x(t)x =

(
∂V(t, x(t))

∂x1
,
∂V(t, x(t))

∂x2
, . . .

∂V(t, x(t))
∂xn

)
and

V(t, x(t)xx =
(

∂2V(t, x(t))
∂xi∂xj

)
n×n

.

Before going to the main results, let’s consider some lemmas about linear Volterra

equation without impulses.

Lemma 2.2. Suppose k(t) > 0 is a function on R+. a > 0 is constant. Let z(t) satisfy{
z′(t) = −az(t) +

∫ t
0 k(t − s)z(s)ds

x(0) = 1
(2)
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Then z(t) > 0 and
z(s)
z(t)

≤ exp(a(t − s))for t ≥ s ≥ 0. Moreover,
∫ ∞
0 k(s)ds ≤ aimplies

that z(t) ≤ 1.

Proof. Firstly we claim that z(t) > 0 for all t Î [0, +∞), if not, there exists t > 0 such

that t̄ = inf{t ≥ 0 : z(t) ≤ 0}. Then we have z(t) > 0 for all t ∈ [0, t̄). Since

0 = z(t̄) < z(0), we get that z(t̄) exp (at̄) = 0 < 1 = z(0) exp (a0), then there is t1 ∈ [0, t̄)

satisfying

(z(t)exp(at))′|t=t1 < 0 (3)

From (2),

(z(t) exp (at))′|t=t1 = exp (at1)

t1∫
0

k(t1 − s)z(s)ds ≥ 0

holds, which contradicts with (3). So we get that z(t) > 0 for all t Î [0, +∞). Again

from (2), we get

(z(t) exp (at))′ = exp (at)

t∫
0

k(t − s)z(s)ds.

By integrating on both sides, we get
z(s)
z(t)

≤ exp(a(t − s)) for t ≥ s ≥ 0.

If
∫ ∞
0 k(s)ds ≤ a, by integrating on (2) we get

z(t) = 1 − a

t∫
0

z(u)du +

t∫
0

u∫
0

k(u − v)z(v)dvdu

= 1 − a

t∫
0

z(u)

⎛
⎝a −

t−u∫
0

k(v)dv

⎞
⎠du

≤ 1

The proof is complete.

Lemma 2.3. [[20], Corollary 3.3] Under conditions in Lemma 2.2. Let z(t) be solution

of (2). Suppose

∞∫
0

k(s)ds ≤ a.

Then z(t) is nonincreasing on [0, +∞).

Lemma 2.4. Suppose k(t) > 0 is a function on R+. a > 0 is constant. h(t) ≥ 0 is a func-

tion on R+. Let y(t) satisfy

y′(t) ≤ −ay(t) +

t∫
τi

k(t − s)y(s)ds + h(t)
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for all t Î (τI, τi+1) where i Î N. Then

y(t) ≤ y(τi)
z(τi)

z(t) +

t∫
τi

z(t − s)h(s)ds (4)

is true for all t Î (τI, τi+1).

Proof. If τi = 0,

y(t) = y(0)z(t) +

t∫
0

z(t − s)(h(s) + g(s))ds ≤y(0)z(t) +

t∫
0

z(t − s)(h(s))ds

holds for

g(t) = y′(t) −
⎛
⎝−ay(t) +

t∫
0

k(t − s)y(s)ds + h(t)

⎞
⎠ ≤ 0.

If τ i> 0, we have
∫ τi
0 k(t − s)z(s)ds > 0. By supposing p(t) =

y(τi)
z(τi)

z(t) +
∫ t
τi
z(t − s)h(s)ds

for all t Î [τI, τi+1), we get

p′(t) = −ap(t) +

t∫
τi

k(t − s)p(s)ds +

τi∫
0

k(t − s)p(s)ds + h(t) (5)

where z(t) is solution of (2). Now we prove that y(t) ≤ p(t) for all t Î [τi, τi+1). If it is

not true, then there exist t1 Î (τI, τi+1) such that y(t1) >p(t1). Denote

t̄ = inf
{
t ≥ τi : y(t) > p(t)

}
, then y(t̄) = p(t̄) and

y(t) ≤ p(t) (6)

for all t ∈ [τi, t̄). Therefore (y(t) − p(t))′|t=t+0 ≥ 0 holds, which implies

(y(t) exp (at))′|t=t+0 ≥ (p(t) exp (at))′|t=t+0 (7)

From (4), we have

(y(t) exp (at))′ ≤ exp (at)

t∫
τi

k(t − s)y(s)ds + exp (at)h(t) (8)

for all t ∈ [τi, t̄). From (5), we get

(p(t)exp(at))′ = exp(at)

t∫
τi

k(t − s)p(s)ds + exp(at)

τi∫
0

k(t − s)p(s)ds + exp(at)h(t)

> exp(at)

t∫
τi

k(t − s)p(s)ds + exp(at)h(t)

(9)

for all t ∈ [τi, t̄). By combining (6)(8) and (9), we obtain

(y(t)exp(at))′|t=t+0 < (p(t)exp(at))′|t=t+0 which contradicts with (7). From above all, we

arrive at the desired result.
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3 Main results
In this section, we consider the nonlinear volterra equation with impulsive effect and

denote the solution of (1) by x(t). Several sufficient conditions of mean square stability

are presented by comparison method with Liapunov function, which include mean

square exponential asymptotic stability and mean square non-exponential asymptotic

stability.

3.1 Mean square exponential asymptotic stability

Theorem 3.1. If there exist positive numbers c1, c2 and V Î C1,2(R+ × Rn, R+) satisfying

(i) c1 ||x||
p ≤ V (t, x) ≤ c2 ||x||

p;

(ii) there exist two continuous and integrable functions k, h : R+ ® R+ and constant a

> 0 such that

LV(t, x(t)) ≤ −aV(t, x(t)) +
t∫

τi−1

k(t − s)V(s, x(s))ds + h(t), t ∈ (τi−1, τi)

for any i = 1, 2,...;

(iii) there exist constants ωi such that for any i = 1, 2,..., we have

EV(τi, x(τi)) ≤ ωiEV(τi, x(τ
−
i ));

(iv)
+∞∏
j=1

(1 ∨ ωj) < +∞and
∫ +∞
0 h(s) exp (as)ds < +∞;

(v) there exists g > 0 such that
∫ +∞
0 k(s) exp (γ s)ds < +∞and

∫ +∞
0 k(s)ds < a.

Then zero solution of (1) is mean square exponentially asymptotically stable.

Proof. From (ii), we have

D+V(t) ≤ −aV(t) +

t∫
τi

k(t − s)V(s)ds + h(t)

where D+ denotes the right Dini derivative. By Lemma 2.4,

V(t) ≤ V(t0)
z(t)
z(τi)

+

t∫
τi

z(t − s)h(s)ds (10)

for all t Î [τi -1, τi). Now let’s prove that

V(t) ≤ V(t0)
z(t)
z(t0)

i−1∏
l=1

ωl +

t∫
τi−1

z(t − s)h(s)ds +
i−1∑
l=1

z(t)
z(τl)

i−1∏
j=i

ωj

τl∫
τl−1

z(τl − s)h(s)ds (11)

holds for all tÎ [τi -1, τi) by mathematical induction for i = 1, 2,.... We stipulate
i−1∏
j=1

(·) = 1 and
i∑

j=1
(·) = 0 as i = 1 here and in the sequel. (11) is true for i = 1 immedi-

ately from (10). Assume that (11) holds for any i ≥ 1, then for t = τi we get
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V(τi) ≤ V(t0)
z(τi)
z(t0)

i∏
l=1

ωl + ωi

t∫
τi−1

z(t − s)h(s)ds +
i−1∑
l=1

z(τi)
z(τl)

i∏
j=i

ωj

τl∫
τl−1

z(τl − s)h(s)ds

= V(t0)
z(τi)
z(t0)

i∏
l=1

ωl +
i∑

l=1

z(τi)
z(τl)

i∏
j=i

ωj

τl∫
τl−1

z(τl − s)h(s)ds

From assumption (iii) Then by use of (10) for all t Î [τi, τi+1) we get

V(t) ≤ V(t0)
z(t)
z(t0)

i∏
l=1

ωl +

t∫
τi

z(t − s)h(s)ds +
i∑

l=1

z(t)
z(τl)

i∏
j=i

ωj

τl∫
τl−1

z(τl − s)h(s)ds.

Thus by mathematical induction (11) is true for i = 1, 2,....

By Lemma 2.2, it follows (11) that

V(t) ≤ z(t)

⎛
⎝V(t0)

z(t0)

∞∏
l=1

(1 ∨ ωl) +

∞∫
t0

h(s) exp (as)ds

⎞
⎠ .

Then the mean square exponential asymptotic stability of (1) inherits from that of

solutions of (2) under assumptions (iv) and (v). The proof is complete.

Corollary 3.2. If there exist positive numbers c1, c2 and V Î C1,2(R+ × Rn, R+) satisfy-

ing (i)-(iii) and

(v) in Theorem 3.1 and

(H1)
∞∫
0
h(s) exp (as)ds < ∞;

(H2) there exists 0 <r < 1 such that max
j∈N\{0}

{ωj} ≤ ρ.

Then zero solution of (1) is mean square exponentially asymptotically stable.

Proof. Since max
j∈N\{0}

{ωj} ≤ ρ implies
+∞∏
j=1

(1 ∨ ωj) < +∞, the result is proved by Theo-

rem 3.1.

Theorem 3.3. If there exist positive numbers c1, c2 and V Î C1,2(R+ × Rn, R+)

satisfying

(i) c1 ||x||
p ≤ V (t, x) ≤ c2 ||x||

p;

(ii) there exist continuous and integrable function k : R+ ® R+ and positive constant a

such that for any i = 1, 2,...

LV(t, x(t)) ≤ −aV(t, x(t)) +

t∫
τi−1

k(t − s)V(s, x(s))ds, t ∈ (τi−1, τi)

holds when E||x (τi-1)||
2 <θ for some constant θ > 0;

(iii) there exist positive constants ωi such that for any i = 1, 2,..., we have

EV(τi, x(τi)) ≤ ωiEV(τi, x(τ
−
i ));

(iv) there exists 0 <r < 1 such that max
j∈N\{0}

{ωj} ≤ ρ;

(v)
∫ ∞
0 k(s)ds ≤ a;

(vi) τi ≤ t0 + i for all i Î N.

Then zero solution of (1) is mean square exponentially asymptotically stable.
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Proof. Assumption (ii) implies

D+V(t) ≤ −aV(t) +

t∫
τi

k(t − s)V(s)ds.

From Lemma 2.4, let h(t) = 0, for all t Î [τi-1, τi) we get

V(t) ≤ V(τi−1)
z(τi−1)

z(t). (12)

By denoting
δ0 =

c1z(t0)θ

c2

(
1 + max

j∈N
{z(τj)}

) ∞∏
j=1

(1 ∨ ωj)
, it can be proved that when ||x0||

2 <δ0,

E
(||x(τi−1)||2

)
< θ (13)

Holds for all i = 1,2,..., and

V(t, x (t)) ≤ V(t0, x(t0))
z(t)
z(t0)

i−1∏
j=0

ωj (14)

holds for all t Î [τi-1, τi) by mathematical induction. From (12), it is obviously true

for i = 1. Assume that (14) is true for any i ≥ 1, then for all t Î [τi-1, τi)), it is true that

E
(||x(τi−1)||2

) ≤ θz(τi−1)(
1 + max

j∈N
{z(τj)}

) ∞∏
j=i

(1 ∨ ωj)
< θ

and

V(t, x (t)) ≤ V(t0, x(t0))
z(t)
z(t0)

i−1∏
j=0

ωj.

From assumption (iii), we have that

E
(||x(τi)||2) ≤ θz(τi)(

1 + max
j∈N

{z(τj)}
) ∞∏

j=i+1
(1 ∨ ωj)

< θ .

Then by (ii),

V(t) ≤ V(τi)
z(t)
z(τi)

≤ ωiV(τ−
i )

z(t)
z(τi)

≤ V(t0)
z(t)
z(t0)

i∏
j=1

ωj

for z(τi) = z(τ−
i ). Then by mathematical induction (14) is true for i = 1,2,....

Combining z(t) ≤ 1, (iv) (vi) and the above results,

V(t) ≤ V(t0)
z(t0)

ρ i−1 =
V(t0)
ρz(t0)

exp(−i|lnρ|)

≤ V(t0)
ρt0+1z(t0)

exp(−τi|lnρ|)

≤ V(t0)
ρt0+1z(t0)

exp(−t|ln ρ|)
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since τi-1 ≤ t ≤ τi ≤ t0 + i.

Therefore E
(||x(t)||2) ≤ c1E

(||x0||2)
c2ρt0+1

exp( − t|ln ρ|) holds. The proof is complete.

Remark 1. Theorem 3.3 is not a simple corollary of Theorem 3.1, since the conditions

(ii) and (v) in Theorem 3.3 is weaker than that in Theorem 3.1.

Remark 2. Theorem 3.3 shows that
∫ ∞
0 k(s)exp(γ s)ds < ∞is not necessary condition

for exponential asymptotical stability, which can also be found in Theorem 3.5.

3.2 Mean square non-exponential asymptotic stability

To show that the solution of (1) is mean square non-exponentially asymptotically

stable, we have to prove that lim
t→∞ E

(||x(t)||2) = 0 and lim
t→∞

log(E(||x(t)||2))
t

= 0. Now

we prove the solution convergent to zero firstly.

Theorem 3.4. If there exist positive numbers c1, c2 and V Î C1,2(R+ × Rn, R+)

satisfying

(i) c1 ||x||
p ≤ V (t, x) ≤ c2 ||x||

p;

(ii) there exist two continuous and integrable functions k, h : R+ ® R+ such that for

any i = 1, 2, ······

LV(t, x(t)) ≤ −aV(t, x(t)) +

t∫
τi

k(t − s)V(s, x(s))ds + h(t), t ∈ (τi−1, τi)

holds for some constant a > 0;

(iii) there exist constants ωi such that for any i = 1, 2,······, we have

EV(τi, x(τi)) ≤ ωiEV(τi, x(τ
−
i ));

(iv) there exists 0 <r < 1 such that max
j∈N\{0}

{ωj} ≤ ρ;

(v)
∫ ∞
0 k(s)ds ≤ a.

Then zero solution of (1) is mean square asymptotically stable.

Proof. From (11), by Lemma 2.2 and by Lemma 2.3,

V(t) ≤ V(t0)
z(t0)

ρ i−1 +

t∫
τi−1

z(t − s)h(s)ds +
i−1∑
l=1

ρ i−1−j

τl∫
τl−1

z(τl − s)h(s)ds (15)

for t Î [τi-1, τi). Noticing 0 <r < 1, for any ε > 0, there is k0 > 0 such that ρk < c1ε
4M0

where M0 =
V(t0)
z(t0)

+
1

1 − ρ
+

∫ ∞

0
h(s)ds > 1. For h(t) is integrable, for any ε defined

above, there is k̄ > 0 such that
∫ ∞
τk−1

h(s)ds <
c1ε

4M0
for k > k̄. It follows that
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i−1∑
l=1

ρ i−1−j

τl∫
τl−1

h(s)ds =
k̄∑
l=1

ρ i−1−j

τl∫
τl−1

h(s)ds +
i−1∑
l=k̄+1

ρ i−1−j

τl∫
τl−1

h(s)ds

≤ εc1
4M0

∞∑
j=0

ρ j +
εc1
4M0

∞∫
t0

h(s)ds

≤ εc1
4M0

⎛
⎝ 1
1 − ρ

+

∞∫
t0

h(s)ds

⎞
⎠

for i > k̄ + k0 + 1. By choosing δ =
1
c2
, it follows (15) directly that for any ε > 0, we

have E
(||x(t)||2) < ε for t > τk̄+k0+2 when E

(||x0||2) < δ. The proof is complete.

Theorem 3.5. If there exist positive numbers c1, c2 and V Î C1,2(R+ × Rn, R+) satisfy-

ing (i)-(v) in theorem 3.3 and

(H1) there exist continuous and integrable function h̄ : R+ → R+satisfying

h̄(t) ≤ h(t)and constant āsatisfying ā ≥ asuch that

LV(t, x(t)) ≥ −aV(t, x(t)) + h̄(t), t ∈ (τi−1, τi)

for any i = 1, 2,...;

(H2) there exist constants 0 ≤ ω̄i ≤ ωisuch that for any i = 1, 2,..., we have

EV(τi, x(τi)) ≥ ω̄iEV(τi, x(τ
−
i )) ;

(H3) h̄(t) ∈ C1[0, +∞)satisfies h̄(t) > 0 and lim
t→∞

h̄′(t)
h̄(t)

= 0;

(H4) there is constant 1 >d > 0 such that min
j∈N\{0}

{ω̄j} ≥ d;

(H5) log (τi - t0) ≥ i for all i = 1, 2,....

Then zero solution of (1) is mean square non-exponentially asymptotically stable.

Proof. By use of Theorem 3.3, we obtain

lim
t→∞ E (|| x(t) ||2) = 0.

From (H1), we have that

V (t) ≥ V (τi−1) exp (−āt) +

t∫
τi−1

exp(−ā(t − s)) h̄ (s) ds

for all t Î [τi-1, τi). Consequently, we get

V(t) ≥exp (−ā(t − τ0))
i−1∏
j=1

ωj +

t∫
τi−1

exp (−ā(t − s)) h̄(s) ds

+
i−1∑
j=1

i∏
l=j

ωl

τj∫
τj−1

exp(−ā(t − s))h̄(s) ds

for all t Î [τi-1, τi) for i = 1, 2,... by mathematical induction from (H1)-(H2). From

assumption
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V(t) ≥ di−1
∫ t
τ0
exp (ās)h̄(s) ds

exp (āt)
.

Since h̄(t) ∈ C1[0, +∞) satisfies h̄(t) > 0 and lim
t→∞

h̄′(t)
h̄(t)

= 0, then

lim
t→∞ inf exp (āt)h̄(t) = ∞.

By L’Hospital rule

lim
t→∞ inf

1
t
log

∫ t
τ0
exp (ās)h̄(s) ds

exp (āt)
≥ −ā + lim

t→∞ inf
log

∫ t
τ0
exp (ās)h̄(s) ds

t

≥ −ā + lim
t→∞ inf

exp (āt)h̄(t)∫ t
τ0
exp (ās)h̄(s) ds

≥ −ā + lim
t→∞ inf

ā exp (āt)h̄)(t) + exp (āt)h̄′(t)
exp (āt)h̄(t)

= 0.

(16)

From (H5) and d < 1,

lim
t→∞ inf

log (di−1)
t

≥ lim
t→∞ inf

i log (d) − log (d)
t

≥ lim
t→∞ inf

log (t − t0) log (d) − log (d)
t

= 0.

(17)

Thus, combine (16) and (17) to show

lim
t→∞ inf

log E
(|| x(t) ||2)
t

≥ lim
t→∞ inf

logV(t) − log c2
t

≥ 0.

Since lim
t→∞ E

(||x(t)||2) = 0 holds under assumptions (i)-(v) in Theorem 3.3, we get

lim
t→∞ sup

logE
(|| x(t) ||2)
t

≤ 0.

Therefore

lim
t→∞

log E
(|| x(t) ||2)
t

= 0.

The proof is complete.

Remark 3. Assumption (H5) in Theorem 3.5 can be replaced by lim
i→∞

i
τi

= 0.

4 Example
Example 1. Consider a nonlinear impulsive stochastic Volterra equation of the form⎧⎨

⎩
dx1 =

(
−x1 + x2

∫ t
τk
x2x1exp(t − s) ds

)
+

√∫ t
τk
(x21 + x22)exp (−3(t − s)) dsdB1(t)

dx2 =
(
−5x2 − x1

∫ t
τk
x1x2 exp (t − s) ds

)
+ exp (−√

t)dB2(t)
(18)
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for t Î (τk, τk + 1) with

⎧⎪⎨
⎪⎩

x1(0) = 1

x2(0) = 1
, where τk = 2k and the impulse is defined as

x1(τk) = x1(τk)λ1(k)

x2(τk) = x2(τk)λ2(k)
(19)

for all k Î N. l1(k) and l2(k) are random variables on

[
1
6
,
3
4

]
. Then the zero solution

of (18) and (19) is mean square non-exponentially asymptotically stable.

Proof. By putting V(t, x(t)) = || x(t) ||2 = x21 + x22, we have that

LV(t, x(t)) = 2x1

⎛
⎝−x1 + x2

t∫
τk

x2x1exp (t − s) ds

⎞
⎠

+ 2x2

⎛
⎝−5x2 + x1

t∫
τk

x1x2exp (t − s) ds

⎞
⎠

+

t∫
τk

(x21 + x22)exp (−3 (t − s)) ds + exp( − 2
√
t)

= −(2x21 + 10x22) +

t∫
τk

(x21 + x22) exp (−3 (t − s)) ds + exp( − 2
√
t)

(20)

It follows that

LV(t, x(t)) ≤ −2V(t, x(t)) +

t∫
τk

(x21 + x22) exp (−3(t − s)) ds + exp( − 2
√
t).

Since

EV (τk, x(τk)) = E (x21(τk) + x22(τk)) = E (λ2
1(k)x

2
1(τ

−
k ) + λ2

2(k)x
2
2(τ

−
k )) ,

we have

1
36

≤ ω̄j ≤ ωj ≤ 9
16

for all j > 0. In addition,

∞∫
0

k(s) exp (2s) ds =

∞∫
0

exp (−3s) exp (2s) ds = 1 < 2

and

∞∫
0

exp(−2
√
s)ds =

1
2

< ∞

hold. By Theorem 3.4, it is true that

lim
t→∞E

(|| x(t) ||2) = 0.
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Next, we prove

lim
t→∞

log E
(|| x(t) ||2)
t

= 0.

From (20),

LV(t, x(t)) ≥ −10V(t, x(t)) + exp
(
−2

√
t
)
.

Since lim
t→∞

(exp(−2
√
t))′

exp(−2
√
t)

= lim
t→∞

1

−√
t
= 0 and log τk = k, we finish the proof by The-

orem 3.5.
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