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Abstract

In this paper, we introduce the obstacle problem about the nonhomogeneous
A-harmonic equation. Then, we prove the existence and uniqueness of solutions to
the nonhomogeneous A-harmonic equation and the obstacle problem.
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1 Introduction
In this paper, we study the nonhomogeneous A-harmonic equation

−divA(x,∇u(x)) = f (x),

where A : Rn × Rn → Rn is an operator and f is a function satisfying some assump-

tions given in the next section. We give the definition of solutions to the nonhomoge-

neous A-harmonic equation and the obstacle problem. In the mean time, we show

some properties of their solutions. Then, we prove the existence and uniqueness of

solutions to the Dirichlet problem for the nonhomogeneous A-harmonic equation with

Sobolev boundary values.

Let ℝn be the real Euclidean space with the dimension n. Throughout this paper, all

the topological notions are taken with respect to ℝn. E ⋐ F means that Ē is a compact

subset of F. C(Ω) is the set of all continuous functions u : Ω ® ℝ. sptu is the smal-

lest closed set such that u vanishes outside sptu.

Ck(�) = {ϕ : � → R : the kth - derivative of ϕ is continuous},
Ck
0(�) = {ϕ ∈ Ck(�) : sptϕ � �},

C∞(�) =
∞⋂
k=1

Ck(�)

and

C∞
0 (�) = {ϕ ∈ C∞(�) : sptϕ � �}.

Let Lp(Ω) = {�: Ω ® ℝ: ∫Ω |�|p dx < ∞} and Lp(Ω; ℝn) = {�: Ω ® ℝn : ∫Ω |�|p dx <

∞}, 1 <p < ∞. Denote the norm of Lp(Ω) and Lp(Ω; ℝn) by || · ||p,
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||φ||p =
⎛
⎝∫

�

|φ|pdx
⎞
⎠

1/p

,

where j Î Lp(Ω)(or Lp(Ω; ℝn)).

For � Î C∞(Ω), let

||ϕ||1,p = (
∫
�

|ϕ|pdx)1/p + (
∫
�

|∇ϕ|pdx)1/p ,

where ▽� = (∂1�, ..., ∂n�) is the gradient of �. The Sobolev space H1,p(Ω) is defined

to be the completion of the set {� Î C∞(Ω): ||�||1,p <∞} with respect to the norm || ·

||1,p. In other words, u Î H1,p(Ω) if and only if u Î Lp(Ω) and there is a function v Î
Lp(Ω; ℝn) and a sequence �i Î C∞(Ω), such that

∫
�

|ϕi − u|pdx → 0 and

∫
�

|∇ϕi − v|pdx → 0, i → ∞.

We call v the gradient of u in H1,p(Ω) and write v = ▽u.
The space H1,p

0 (�) is the closure of C∞
0 (�) in H1,p(Ω). Obviously, H1,p(Ω) and

H1,p
0 (�) are Banach space with respect to the norm ||·||1,p. Moreover, ||·||1,p is uni-

formly convex and the Sobolev space H1,p(Ω) and H1,p
0 (�) are reflexive; see [1] for

details.

u ∈ H1,p
loc (�) if and only if u ∈ H1,p(�′) for each open set �′ � �.

The Dirichlet space L1,p(Ω) and L1,p0 (�) are defined as follows: u Î L1,p(Ω) if and

only if u ∈ H1,p
loc (�) and ▽u Î Lp(Ω); L1,p0 (�) is the closure of C∞

0 (�) with respect to

the semi-norm p(u) = (∫Ω|▽u|p)1/p. In other words, L1,p0 (�) is the set of all functions u

Î L1,p(Ω), for which there is a sequence ϕj ∈ C∞
0 (�) such that ▽�j ® ▽u in Lp(Ω; ℝn).

Lemma 1.1 [2]Let 1 < p <∞ and fi be a bounded sequence in Lp(Ω), i.e. fi Î Lp(Ω)

and sup
i

||fi||p < ∞. If fi ® f a.e. in Ω, then fi converges to f weakly in Lp(Ω).

Lemma 1.2 [3](1) If u ∈ H1,p
0 (�) with ▽u = 0, then u = 0.

(2) If u, v Î H1,p(Ω), then min{u, v} and max{u, v} are in H1,p(Ω) with

∇ max{u, v} =
{∇u, u ≥ v

∇v, u ≤ v
and∇ min{u, v} =

{ ∇v, u ≥ v
∇u, u ≤ v

.

(3) If u, v ∈ H1,p
0 (�), then min{u, v} and max{u, v} are in H1,p

0 (�). Moreover, if

u ∈ H1,p
0 (�)is nonnegative, then there is a sequence of nonnegative functions

ϕi ∈ C∞
0 (�)converging to u in H1,p(Ω).

2 The nonhomogeneous A-harmonic equation
The following nonlinear elliptic equation

−divA(x,∇u) = f (x) (2:1)

is called the nonhomogeneous A-harmonic equation, where A : Rn × Rn → Rn is an

operator satisfying the following assumptions for some constants 0 < a ≤ b <∞:
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(I)
the mapping x 	→ A(x, ξ) is measurable for all ξ ∈ Rnand

the mapping ξ 	→ A(x, ξ) is continuous for a.e. x ∈ Rn;

for all ξ Î ℝn and almost all x Î ℝn,

(II) A(x, ξ) · ξ ≥ α|ξ |p,
(III) |A(x, ξ)| ≤ β|ξ |p−1,

(IV) (A(x, ξ1) − A(x, ξ2)) · (ξ1 − ξ2) > 0,

whenever ξ1, ξ2 Î ℝn, ξ1 ≠ ξ2; and

(V) A(x,λξ) = λ|λ|p−2A(x, ξ)

whenever l Î ℝ, l ≠ 0, and f is a function satisfying f Î Lp/(p-1)(Ω).

If f = 0, the equation (2.1) degenerates into the homogeneous A-harmonic equation

−divA(x,∇u(x)) = 0. (2:2)

A continuous solution to (2.2) in Ω is called A-harmonic function. Many well-known

results have been developed about (2.2), especially as (2.2) is the corresponding A-har-

monic equation of differential forms; see [4-10].

Definition 2.1 A function u ∈ H1,p
loc (�)is a (weak) solution to the equation (2.1) in Ω,

if −divA(x,∇u) = f weakly in Ω, i.e.
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = 0

for all ϕ ∈ C∞
0 (�).

A function u ∈ H1,p
loc (�)is a supersolution to (2.1) in Ω, if −divA(x,∇u) ≥ f in

weakly Ω, i.e.
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx ≥ 0

whenever ϕ ∈ C∞
0 (�)is nonnegative.

A function u ∈ H1,p
loc (�)is a subsolution to (2.1) in Ω, if −divA(x,∇u) ≤ f weakly in

Ω, i.e.
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx ≤ 0

whenever ϕ ∈ C∞
0 (�)is nonnegative.

Remark: If u is a solution (a supersolution or a subsolution), then u+τ is also a solu-

tion (a supersolution or a subsolution), but lu + τ, l, τ Î ℝ may not.

Proposition 2.1 A function u is a solution (a supersolution or a subsolution) to (2.1)

in Ω if and only if Ω can be covered by open sets where u is a solution (a supersolution

or a subsolution).

Proof. We just give the proof in the case that u is a solution and the others are

similar.

(i) Since Ω is covered by itself, it is easy to know that Ω can be covered by open sets

where u is a solution.

(ii) Let� =
⋃
λ∈I

�λ and u be the solution to (2.1) in Ωl for each l Î I, where I is an index

set. For each ϕ ∈ C∞
0 (�), there is a subset {Ω1, ..., Ωm} of {Ωl}lÎI such that
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sptϕ ⊂ ⋃m
i=1 �i = D. Choose a partition of unity of D, {g1, ..., gm}, subordinate to the cover-

ing Ωi, such that gi ∈ C∞
0 (�i), 0 ≤ gi ≤ 1 and

m∑
i=1

gi ≡ 1 in D; see Lemma 2.3.1 in [11]. Thus,

∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx =
∫
D

(A(x,∇u) · ∇ϕ − fϕ)dx

=
∫
D

(A(x,∇u) · ∇(
m∑
i=1

giϕ) − f (
m∑
i=1

giϕ))dx

=
m∑
i=1

∫
D

(A(x,∇u) · ∇(giϕ) − giϕf )dx.

Note that gi ∈ C∞
0 (�i) and ϕ ∈ C∞

0 (�), it is easy to see that giϕ ∈ C∞
0 (�i). Since u is

solution in Ωi, we have
∫
D

(A(x,∇u) · ∇(giϕ) − giϕf )dx =
∫
�i

(A(x,∇u) · ∇(giϕ) − giϕf )dx = 0.

Therefore,
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = 0.

It means that u is a solution in Ω.

Lemma 2.1 If u ∈ L1,p(�) is a solution (respectively, a supersolution or a subsolution)

to (2.1), then
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = 0 (respectively, ≥ 0 or ≤ 0)

for all ϕ ∈ H1,p
0 (�)(respectively, for all nonnegative ϕ ∈ H1,p

0 (�)or for all nonnegative

ϕ ∈ H1,p
0 (�)).

Proof. For all ϕ ∈ H1,p
0 (�), there is a sequence ϕi ∈ C∞

0 (�), such that �i ® � in H1,p(Ω).

Since A satisfies the assumption (III), f Î Lp/(p-1)(Ω) and u Î Ω L1,p(Ω), it follows

that
∣∣∣∣∣∣
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx−
∫
�

(A(x,∇u) · ∇ϕi − fϕi)dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫
�

(A(x,∇u) · (∇ϕ − ∇ϕi) − f (ϕ − ϕi))dx

∣∣∣∣∣∣
≤

∫
�

|A(x,∇u)||∇ϕ − ∇ϕi|dx+
∫
�

|f ||ϕ − ϕi|dx

≤ β

∫
�

|∇u|p−1|∇ϕ − ∇ϕi|dx+
∫
�

|f ||ϕ − ϕi|dx

≤ β(
∫
�

|∇u|pdx)1− 1
p (

∫
�

|∇ϕ − ∇ϕi|pdx)
1
p + (

∫
�

|f |p/(p−1)dx)
1− 1

p (
∫
�

|ϕ − ϕi|pdx)
1
p

≤ M{(
∫
�

|∇ϕ − ∇ϕi|pdx)
1
p + (

∫
�

|ϕ − ϕi|pdx)
1
p }

= M||ϕ − ϕi||1,p → 0,
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where M = max{β(∫
�

|∇u|pdx)1− 1
p , (

∫
�

|f |p/(p−1)dx)
1− 1

p } < ∞.

Since u is a solution,
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = lim
i→∞

∫
�

(A(x,∇u) · ∇ϕi − fϕi)dx = 0.

If u Î L1,p(Ω) is a supersolution or a subsolution, by Lemma 1.2, there is a sequence

of nonnegative functions ϕi ∈ C∞
0 (�) converging to the nonnegative function � in H1,p

(Ω). By the same discussion, the lemma follows.

Remark: Using the similar method as above, it is easy to prove that, if u is a solution

(a supersolution or a subsolution),
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = 0 (≥ 0 or ≤ 0)

for all (nonegative) ϕ ∈ H1,p
0 (�) with compact support.

Proposition 2.2 A function u is a solution to (2.1) if and only if u is a supersolution

and a subsolution.

Proof. Obviously, u is both a supersolution and a subsolution if u is a solution.

To establish the converse, for each ϕ ∈ C∞
0 (�), let �+ be the positive part and �- be

the negative part of �. Then, both �+ and �- are in H1,p
0 (�) and have compact support.

Since u is both a supersolution and a subsolution and �+ ≥ 0, -�- ≥ 0, the following

inequalities hold,
∫
�

(A(x,∇u) · ∇ϕ+ − fϕ+)dx ≥ 0,

∫
�

(A(x,∇u) · ∇(−ϕ−) − f (−ϕ−)) dx ≥ 0,

∫
�

(A(x,∇u) · ∇ϕ+ − fϕ+)dx ≤ 0

and
∫
�

(A(x,∇u) · ∇(−ϕ−) − f (−ϕ−))dx ≤ 0.

By the above inequalities,
∫
�

(A(x,∇u) · ∇ϕ+ − fϕ+)dx = 0 and

∫
�

(A(x,∇u) · ∇ϕ− − fϕ−)dx = 0.

Then,
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx =
∫
�

(A(x,∇u) · ∇ϕ+ − fϕ+)dx+
∫
�

(A(x,∇u) · ∇ϕ− − fϕ−)dx = 0

This proves that u is a solution to (2.1).

Lemma 2.2 (Comparison Lemma) Let u Î H1,p(Ω) be a supersolution and v Î H1,p

(Ω) be a subsolution to (2.1). If η = min{u − v, 0} ∈ H1,p
0 (�), then u ≥ v a.e. in Ω.
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Proof. By h = min {u - v, 0} and Lemma 1.2, h ≤ 0 and ∇η =
{∇u − ∇v, u < v
0, u ≥ v

.

Since u Î H1,p(Ω) is a supersolution and v Î H1,p(Ω) is a subsolution, the following

inequalities hold,

−
∫
�

(A(x,∇u) · ∇η − fη)dx =
∫
�

(A(x,∇u) · ∇(−η) − f (−η))dx ≥ 0,

and
∫
�

(A(x,∇v) · ∇η − fη)dx ≥ 0.

Then, by the assumption (IV),

0 ≤
∫
�

(A(x,∇v) · ∇η − fη)dx −
∫
�

(A(x,∇u) · ∇η − fη)dx

=
∫
�

(A(x,∇v) − (A(x,∇u)) · ∇η dx

=
∫

{u<v}
(A(x,∇v) − (A(x,∇u)) · ∇(u − v)dx

= −
∫

{u<v}
(A(x,∇v) − (A(x,∇u)) · ∇(v − u)dx

= −
∫

{u<v}∩{∇u
=∇v}
(A(x,∇v) − (A(x,∇u)) · ∇(v − u)dx ≤ 0

Therefore, the Lebesgue measure of the set {u < v} ∩ {▽u ≠ ▽v} is zero. That is ▽h =

0 a.e. in Ω By η ∈ H1,p
0 (�) and Lemma 1.2, h = 0 a.e. in Ω. Thus, u ≥ v a.e. in Ω.

3 The obstacle problem
Suppose that Ω is bounded in ℝn, ψ : Ω ® [-∞,∞] is a function and ϑ Î H1,p(Ω)). Let

Kψ ,ϑ = Kψ ,ϑ(�) = {v ∈ H1,p(�) : v ≥ ψ a.e. in � and v − ϑ ∈ H1,p
0 (�)}.

If ψ = ϑ, write Kψ ,ψ (�) = Kψ(�).

The problem is to find a function u in Kψ,ϑ such that
∫
�

(A(x,∇u) · (∇v − ∇u) − f (v − u))dx ≥ 0 (3:1)

whenever v ∈ Kψ ,ϑ. We call the function ψ an obstacle.

Definition 3.1 If a function u ∈ Kψ ,ϑ(�) satisfies (3.1) for all v ∈ Kψ ,ϑ(�), we say

that u is a solution to the obstacle problem with obstacle ψ and boundary vales ϑ or a

solution to the obstacle problem in Kψ ,ϑ(�).

If u is a solution to the obstacle problem in Kψ ,u(�), we say that u is a solution to

the obstacle problem with obstacle ψ.

Proposition 3.1 (1) A solution u to the obstacle problem is always a supersolution to

(2.1) in Ω.
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(2) If u is a supersolution to (2.1) in Ω, u is a solution to the obstacle problem in

Ku,u(D)for each open sets D ⋐ Ω. Moreover, if Ω is bounded, u is a solution to the

obstacle problem in Ku,u(�).

(3) A solution u to the obstacle problem in K−∞,u(�)is a solution to (2.1) in Ω.

(4) If u is a solution to (2.1) in Ω, u is a solution to the obstacle problem in

K−∞,u(D)for each open set D ⋐ Ω. Moreover, if Ω is bounded, u is a solution to the

obstacle problem in K−∞,u(�).

Theorem 3.1 Suppose u is a solution to the obstacle problem in Kψ ,ϑ(�). If v Î H1,p

(Ω) is a supersolution to (2.1) in Ω, such that min{u, v} ∈ Kψ ,ϑ(�), then v ≥ u a.e. in

Ω.

The proof is similar to Lemma 2.2.

4 The existence of solutions
In this section, we introduce the main work of this paper, to prove the existence and

the uniqueness of solutions to the nonhomogeneous A- harmonic equation. We can

see this work for the A-harmonic equation (2.2) in [3, Chapter 3 and Appendix I] for

details. We use the similar method to prove our results.

First, we introduce the following proposition as the theoretical basis for our work,

which is a general result in the theory of monotone operators; see [12]. Let X be a

reflexive Banach space and denote its dual by X’. Let || · || be the norm of X and 〈·, ·〉

be a pairing between X’ and X. K is a closed convex subset of X.

Definition 4.1 A mapping L : K → X′ is called monotone, if

〈L u − L v, u − v〉 ≥ 0 (4:1)

for all u, v in K.

L is called coercive on K, if there exists � Î K such that

〈L uj − L ϕ, uj − ϕ〉
||uj − ϕ|| → ∞ (4:2)

for each sequence uj in K with ||uj || ® ∞.

L is called weakly continuous on K, if L uj converges to L u weakly in X’, i.e.

〈L uj, v〉 → 〈L u, v〉 for each v ∈ X, (4:3)

whenever uj Î K converges to u Î K in X.

Proposition 4.1 Let K be a nonempty closed convex subset of X and let L : K ® X’

be monotone, coercive and weakly continuous on K. Then there exists an element u in

K such that

〈L u, v − u〉 ≥ 0 (4:4)

whenever v Î K.

Lemma 4.1 Let xi be a sequence of X. For any subsequence xij of xi, there is a subse-

quence xijk of, xijsuch that xijkconverges to x0 weakly in X and the weak limit x0 is inde-

pendent of the choice of the subsequence of xi. Then xi converges to x0 weakly in X.

Proof. Suppose that xi does not converge to x0 weakly in X. Then, there exist ε0 >0,

y0 Î X’ and a subsequence xij of xi, such that
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〈y0, xij − x0〉 ≥ ε0

for each j Î N.

Obviously, for any subsequence xijk of xij , xijk cannot converge to x0 weakly in X. This

contradicts the condition of the lemma.

Therefore, xi converges to x0 weakly in X.

Now let X = Lp(Ω) × Lp(Ω; ℝn). Then, X is a reflexive Banach space and its dual X’ =

Lp/(p-1)(Ω) × Lp/(p-1)(Ω; ℝn). The norm of X is

||g|| = ||g1||p + ||g2||p
for all g = (g1, g2) Î X. 〈·, ·〉 is the usual pairing between X’ and X,

〈h, g〉 =
∫
�

(h1g1 + h2 · g2)dx,

where g = (g1, g2) is in X and h = (h1, h2) in X’.

Let Ω be a bounded open set in ℝn, ϑ Î H1,p(Ω) and ψ: Ω ® [-∞,∞] be any function.

Construct the obstacle set

Kψ ,ϑ = Kψ ,ϑ(�) = {v ∈ H1,p(�) : v ≥ ψ a.e. in � and v − ϑ ∈ H1,p
0 (�)}

and suppose that Kψ ,ϑ is not empty.

Let K = {(v,∇v) : v ∈ Kψ ,ϑ }. Then, K is also not empty.

Lemma 4.2 K is a nonempty closed convex subset of X.

Proof. (i) Suppose that (v, ▽v) Î K. Because v ∈ Kψ ,ϑ, v is in H1.p(Ω). Then, v Î Lp

(Ω) and ▽v Î Lp(Ω). That means (v, ▽v) Î X. Therefore, K ⊂ X.

(ii) If (vi, ▽vi) Î K is a sequence which converges to (v, �) in X, where � = (�1, ..., �n)

Î Lp(Ω; ℝn), it follows that
∫
�

|(vi − ϑ) − (v − ϑ)|pdx =
∫
�

|vi − v|pdx → 0,

and
∫
�

|(∇vi − ∇ϑ) − (ϕ − ∇ϑ)|pdx =
∫
�

|∇vi − ϕ|pdx → 0.

Since vi − ϑ ∈ H1,p
0 (�),v − ϑ ∈ H1,p

0 (�) and ▽ν = �.

Since vi ® v in Lp(Ω), there exists a subsequence vij, such that vij → v a.e. in Ω. By vi
≥ ψ a.e. in Ω, v ≥ ψ a.e. in Ω.

By the argumentation above, we have v ∈ Kψ ,ϑ and ▽v = �. So (v, �) = (v, ▽v) Î K.

This means K is closed in X.

(iii) Let (u, ▽u) Î K, (v, ▽v) Î K and l Î [0, 1].

λu + (1 − λ)v ≥ λψ + (1 − λ)ψ = ψ a.e. in �,

λu + (1 − λ)v − ϑ = λ(u − ϑ) + (1 − λ)(v − ϑ) ∈ H1,p
0 (�).

It means that lu + (1 - l)v Î Kψ,ϑ. Then,

λ(u,∇u) + (1 − λ)(v,∇v) = (λu + (1 − λ)v,∇(λu + (1 − λ)v)) ∈ K.
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Therefore, K is convex in X.

Define a mapping L : K → X′ by L (v,∇v) = (−f ,A(x,∇v)) for each (v, ▽v) Î K.

For convenience, we denote L (v,∇v) simply by L v. For any element h = (h1, h2) Î X,

〈L v, h〉 =
∫
�

((−f )h1 +A(x,∇v) · h2)dx =
∫
�

(A(x,∇v) · h2 − f h1)dx.

Since f Î Lp/(p-1)(Ω), by the assumption (III) and the Hölder inequality, we have

|
∫
�

(A(x,∇v) · h2 − f h1)dx|

≤
∫
�

|A(x,∇v)||h2|dx +
∫
�

|f ||h1|dx

≤ β

∫
�

|∇v|p−1|h2|dx +
∫
�

|f ||h1|dx

≤ β(
∫
�

|∇v|pdx)
1−

1
p (

∫
�

|h2|
1
p dx)

1
p + (

∫
�

|f |
p

p − 1 dx)
1−

1
p (

∫
�

|h1|
1
p dx)

1
p

≤ M[(
∫
�

|h2|
1
p dx)

1
p + (

∫
�

|h1|
1
p dx)

1
p ]

= M||h||,

(4:5)

where M = max{β(∫
�

|∇v|pdx)
1−

1
p , (

∫
�

|f |
p

p − 1 dx)
1−

1
p } < ∞.

By the inequality (4.5), L v ∈ X′ for each (v, ▽v) Î K. The mapping L is well

defined.

The following three lemmas show that L is monotone, coercive and weakly continu-

ous on K.

Lemma 4.3 L is monotone on K, i.e. 〈L u − L v, u − v〉 ≥ 0 for all (u, ▽u), (v, ▽v) in
K.

Proof. For all (u, ▽u), (v, ▽v) in K, L u = (−f ,A(x,∇u)) and L v = (−f ,A(x,∇v)).

Then, L u − L v = (−f ,A(x,∇u)) − (−f ,A(x,∇v)) = (0,A(x,∇u) − A(x,∇v)).

Since (u - v, ▽u - ▽v) Î X, by the assumption (IV), we have

〈L u − L v, u − v〉 =
∫
�

(A(x,∇u) − A(x,∇v)) · (∇u − ∇v)dx ≥ 0.

This proves the lemma.

Lemma 4.4 L is coercive on K, i.e. there exists � Î K such that

〈L uj − L ϕ, uj − ϕ〉
||uj − ϕ|| → ∞

for each sequence uj in K with ||uj|| ® ∞.

Proof. Fix (�, ▽�) Î K. For each (u, ▽u) Î K, by assumptions (II), (III) and the

Hölder inequality,
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〈L u − L ϕ, u − ϕ〉 =
∫
�

(A(x,∇u) − A(x,∇ϕ)) · (∇u − ∇ϕ)dx

≥ α(||∇u||pp + ||∇ϕ||pp) − β(||∇u||p−1
p ||∇ϕ||p + ||∇u||p||∇ϕ||p−1

p ).

(4:6)

Using the inequality (a + b)r ≤ 2r(ar + br) for all a ≥ 0, b ≥ 0 and r >0, the following

inequalities hold.

||∇u + ∇ϕ||pp ≤ (||∇u||p + ||∇ϕ||p)p ≤ 2p(||∇u||pp + ||∇ϕ||pp),
||∇u||p−1

p ≤ (||∇u||p + ||∇ϕ − ∇u||p)p−1 ≤ 2p−1(||∇u||p−1
p + ||∇u − ∇ϕ||p−1

p )

and

||∇u||p ≤ ||∇u||p + ||∇ϕ − ∇u||p.

Putting the above inequalities into (4.6), we get

〈L u − L ϕ, u − ϕ〉n ≥ α2−p||∇u − ∇ϕ||pp − β2p−1||∇ϕ||p(||∇ϕ||p−1
p + ||∇u − ∇ϕ||p−1

p )

− β||∇ϕ||p−1
p (||∇ϕ||p + ||∇u − ∇ϕ||p)

= α2−p||∇u − ∇ϕ||pp − β2p−1||∇ϕ||p||∇u − ∇ϕ||p−1
p

− β||∇ϕ||p−1
p ||∇u − ∇ϕ||p − β(2p−1 + 1)||∇ϕ||pp.

Then, we have

〈L u − L ϕ, u − ϕ〉
||∇u − ∇ϕ||p ≥α2−p||∇u − ∇ϕ||p−1

p − β2p−1||∇ϕ||p||∇u − ∇ϕ||p−2
p

− β||∇ϕ||p−1
p − β(2p−1 + 1)||∇ϕ||pp

1
||∇u − ∇ϕ||p .

(4:7)

Since (u,▽u), (�, ▽�) Î K, both u and � are in Kψ ,ϑ. Thus,

u − ϕ = u − ϑ − (ϕ − ϑ) ∈ H1,p
0 (�).

By the Poincaré inequality,

||u − ϕ||p ≤ Cdiam�||∇u − ∇ϕ||p, (4:8)

where C is a constant independent of u and �.

By the definition of the norm of X and the inequality (4.8), we obtain

||∇u− ∇ϕ||p ≤ ||u− ϕ||p + ||∇u− ∇ϕ||p = ||u− ϕ|| ≤ (Cdiam� + 1))||∇u− ∇ϕ||p. (4:9)

Combining the inequality ||uj - �|| ≥ ||uj|| - ||�|| and (4.9), we have

(C diam� + 1)||∇uj − ∇ϕ||p ≥ ||uj − ϕ|| ≥ ||uj|| − ||ϕ||.

For each sequence (uj, ▽uj) Î K with ||uj|| ® ∞, ||▽uj - ▽�||p ® ∞.

Thus,

α2−p||∇uj − ∇ϕ||p−1
p − β2p−1||∇ϕ||p||∇uj − ∇ϕ||p−2

p

= ||∇uj − ∇ϕ||p−1
p (α2−p − β2p−1||∇ϕ||p 1

||∇uj − ∇ϕ||p ) → ∞,

β(2p−1 + 1)||∇ϕ||pp
1

||∇u − ∇ϕ||p → 0.

(4:10)
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Combining (4.10) with (4.7), we obtain

〈L u − L ϕ, u − ϕ〉
||∇u − ∇ϕ||p → ∞.

Using (4.9), we conclude

〈L u − L ϕ, u − ϕ〉
||∇u − ∇ϕ|| ≥ 〈L u − L ϕ, u − ϕ〉

(Cdiam� + 1)||∇u − ∇ϕ||p → ∞.

It follows that L is coercive on K.

Lemma 4.5 L is weakly continuous on K, that means L ujconverges to L uweakly in

X’, i.e.

〈L uj, v〉 → 〈L u, v〉 for all v = (v1, v2) ∈ X, (4:11)

whenever (uj, ▽uj) Î K converges to (u, ▽u) Î K in X.

Proof. Let (uj, ▽uj) Î K be any sequence that converges to an element (u, ▽u) Î K in

X. It suffices to prove that L uj converges to L u weakly in X’, i.e.

〈L uj − L u, v〉 → 0 for all v = (v1, v2) ∈ X.

By the definition of L ,

〈L uj − L u, v〉 =
∫
�

(A(x,∇uj) − A(x,∇u)) · v2dx.

By the definition of X and (uj, ▽uj) ® (u, ▽u) in X, ▽uj ® ▽u in Lp(Ω; ℝn). There

exists a subsequence ujk such that ∇ujk → ∇u a.e. in Ω.

Since A satisfies the assumption (I), A(x,∇ujk(x)) → A(x,∇u(x)) a.e. in Ω.

By the assumption (III), we obtain
∫
�

|A(x,∇uj)|p/(p−1)dx ≤
∫
�

(β|∇uj|p−1)p/(p−1)dx = βp/(p−1)
∫
�

|∇uj|pdx. (4:12)

Since ▽uj ® ▽u in Lp(Ω; ℝn), (4.12) shows Lp/(p-1)(Ω; ℝn) - norms of A(x,∇uj) are

uniformly bounded. By Lemma 1.1, A(x,∇ujk) converges to A(x,∇u) weakly in Lp/(p-1)

(Ω; ℝn).

By the same discussion, we know that, for any subsequence ∇ujk of ∇uj, there exists a

subsequence ∇ujkl of ∇ujk, such that A(x,∇ujkl ) converges to A(x,∇u) weakly in Lp/(p-1)

(Ω; ℝn).

Since the weak limit A(x,∇u) is independent of the choice of the subsequence and

by Lemma 4.1, it follows that A(x,∇uj) converges to A(x,∇u) weakly in Lp/(p-1)(Ω; ℝn).

Consequently, for all v = (v1, v2) Î X,

〈L uj − L u, v〉 =
∫
�

(A(x,∇uj) − A(x,∇u)) · v2dx → 0.

Then, 〈L uj, v〉 → 〈L u, v〉for allv Î X. Hence, L is weakly continuous on K.

Based on the above lemmas, we can prove our main results.

Theorem 4.1 Let Ω ⊂ ℝnis a bounded open set, ϑ Î H1,p(Ω) and ψ: Ω ® [-∞, ∞] be

any function. If Kψ ,ϑ 
= ∅, then there is a unique function u in Kψ ,ϑ, such that
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∫
�

(A(x,∇u) · (∇v − ∇u) − f (v − u))dx ≥ 0

whenever v ∈ Kψ ,ϑ. That is, if Kψ ,ϑ 
= ∅, there is a unique solution u to the obstacle

problem in Kψ ,ϑ.

Proof. (i) Construct X, K and L as Lemmas 4.2, 4.3, 4.4 and 4.5. By the proposition

(4.1) and Lemmas 4.2, 4.3, 4.4 and 4.5, there exists an element u in K such that

〈L u, v − u〉 ≥ 0

whenever ν Î K.

This means that there is a function u in Kψ ,ϑ, such that
∫
�

(A(x,∇u) · (∇v − ∇u) − f (v − u))dx ≥ 0

Whenever v ∈ Kψ ,ϑ.

(ii) Suppose that u1 and u2 are two solutions to the obstacle problem in Kψ ,ϑ. Then

min{u1, u2} ∈ Kψ ,ϑ and both u1 and u2 are supersolutions to (2.1) in Ω. By Lemma

3.1, u1 ≥ u2 a.e. in Ω and u2 ≥ u1 a.e. in Ω. Thus, u1 = u2 a.e. in Ω and the uniqueness

is proved.

Theorem 4.2 Let Ω ⊂ ℝn be a bounded open set and ϑ Î H1,p(Ω). There is a unique

function u Î H1·p(Ω) with u − ϑ ∈ H1,p
0 (�)such that

∫
�

(A(x,∇u) · (∇ϕ) − fϕ)dx = 0

whenever ϕ ∈ H1,p
0 (�). That is u is the unique solution to (2.1) with u − ϑ ∈ H1,p

0 (�).

Proof. (i) Choose ψ ≡ -∞. Since ϑ ≥ -∞ = ψ and ϑ − ϑ = 0 ∈ H1,p
0 (�), ϑ ∈ Kψ ,ϑ 
= ∅.

By Theorem 4.1, there is a function u in Kψ ,ϑ such that
∫
�

(A(x,∇u) · (∇v − ∇u) − f (v − u))dx ≥ 0

whenever v ∈ Kψ ,ϑ.

For each ϕ ∈ H1,p
0 (�),

u + ϕ ≥ −∞ = ψ ,

u − ϕ ≥ −∞ = ψ ,

u + ϕ − ϑ = (u − ϑ) + ϕ ∈ H1,p
0 (�),

u − ϕ − ϑ = (u − ϑ) − ϕ ∈ H1,p
0 (�).

Therefore, both u + � and u - ϑ are in Kψ ,ϑ for all ϕ ∈ H1,p
0 (�) Then,

∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx ≥ 0
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and
∫
�

(A(x,∇u) · ∇(−ϕ) − f (−ϕ))dx ≥ 0.

Thus,
∫
�

(A(x,∇u) · ∇ϕ − fϕ)dx = 0.

(ii) Let u1 and u2 are two solutions to (2.1) with ui − ϑ ∈ H1,p
0 (�), i = 1, 2. Since ϑ Î

H1,p(Ω), u1, u2 Î H1,p(Ω) and u1 − u2 = (u1 − ϑ) − (u2 − ϑ) ∈ H1,p
0 (�). Then,

η1 = min{u1 − u2, 0} ∈ H1,p
0 (�). Since u1 and u2 are two solutions and by Proposition

2.2, u1 is a supersolution and u2 is a subsolution. By Lemma 2.2, u1 ≥ u2 a.e in Ω.

Similarly, u2 ≥ u1 a.e in Ω. Thus, u1 = u2 a.e. in Ω and the uniqueness is proved.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11071048).

Authors’ contributions
All authors contributed equally in this paper. They read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 13 April 2011 Accepted: 7 October 2011 Published: 7 October 2011

References
1. Yosida, K: Functional Analysis. Springer, Berlin, Sixth (1980)
2. Hewitt, E, Stromberg, K: Real and Abstract Analysis. Springer, Berlin (1965)
3. Heinonen, J, Kilpeläinen, T, Martio, O: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical

Monographs, Oxford University Press, New York, NY, USA (1993)
4. Nolder, CA: Hardy-littlewood theorems for A- harmonic tensors. Ill J Math. 43, 613–631 (1999)
5. Nolder, CA: Global intergrability theorems for A- harmonic tensors. J Math Anal Appl. 247, 236–245 (2000). doi:10.1006/

jmaa.2000.6850
6. Ding, S: Weighted caccioppoli-type estimates and weak reverse Hölder inequalities for A - harmonic tensor. Proc Am

Math Soc. 127, 2657–2664 (1999). doi:10.1090/S0002-9939-99-05285-5
7. Ding, S, Liu, B: Generalized poincaré inequalities for solutions to the A- harmonic equation in certain domain. J Math

Anal Appl. 252, 538–548 (2000). doi:10.1006/jmaa.2000.6951
8. Wang, Y, Li, G: Weighted decomposition estimates for differential forms. J Inequalities Appl. (2010)
9. Bao, G: Ar(λ)-weighted integral inequalities for A - harmonic tensor. J Math Anal Appl. 247, 466–477 (2000). doi:10.1006/

jmaa.2000.6851
10. Wang, Y, Wu, C: Global poincaré inequalities for Green’s operator applied to the solutions of the nonhomogeneous

harmonic equation. Comput Math Appl. 47, 1545–1554 (2004). doi:10.1016/j.camwa.2004.06.006
11. Zimer, WP: Weakly differential functions: sobolev spaces and functions of bounded variation. New York: Graduate texts

in mathematics 120, Springer (1989)
12. Kinderlehrer, D, Stampacchia, G: An introduction to variational inequalities and their applications. Academic Press, New

York (1980)

doi:10.1186/1029-242X-2011-80
Cite this article as: Li et al.: The existence of solutions to the nonhomogeneous A-harmonic equation. Journal of
Inequalities and Applications 2011 2011:80.

Li et al. Journal of Inequalities and Applications 2011, 2011:80
http://www.journalofinequalitiesandapplications.com/content/2011/1/80

Page 13 of 13


	Abstract
	1 Introduction
	2 The nonhomogeneous A-harmonic equation
	3 The obstacle problem
	4 The existence of solutions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

