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Abstract

In this article, we first prove Orlicz norm inequalities for the composition of the
homotopy operator and the projection operator acting on solutions of the
nonhomogeneous A-harmonic equation. Then we develop these estimates to L�(µ)-
averaging domains. Finally, we give some specific examples of Young functions and
apply them to the norm inequality for the composite operator.
2000 Mathematics Subject Classification: Primary 26B10; Secondary 30C65, 31B10,
46E35.

Keywords: Orlicz norm, the projection operator, the homotopy operator, L�?φ?(?µ?)-
averaging domains

1. Introduction
Differential forms as the extensions of functions have been rapidly developed. In recent

years, some important results have been widely used in PDEs, potential theory, non-

linear elasticity theory, and so forth; see [1-7] for details. However, the study on opera-

tor theory of differential forms just began in these several years and hence attracts the

attention of many people. Therefore, it is necessary for further research to establish

some norm inequalities for operators. The purpose of this article is to establish Orlicz

norm inequalities for the composition of the homotopy operator T and the projection

operator H.

Throughout this article, we always let E be an open subset of ℝn, n ≥ 2.

The Lebesgue measure of a set E ⊂ ℝn is denoted by |E|. Assume that B ⊂ ℝn is a

ball, and sB is the ball with the same center as B and with diam(sB) = sdiam(B).

Let ∧k = ∧k(ℝn), k = 0, 1,..., n, be the linear space of all k-forms

ω(x) =
∑

I ωI(x)dxI =
∑

ωi1,i2,...,ik(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxik, where I = (i1, i2,...,ik), 1 ≤

i1 < i2 <... < ik ≤ n. We use D′(E,∧k) to denote the space of all differential k-forms

in E. In fact, a differential k-form ω(x) is a Schwarz distribution in E with value

in ∧k (ℝn). As usual, we still use ⋆ to denote the Hodge star operator, and

use d� : D′(E,∧k+1) → D′(E,∧k) to denote the Hodge codifferential operator defined

by d⋆ = (-1)nk+1 ⋆ d⋆ on D′(E,∧k+1), k = 0, 1, . . . , n − 1. Here

d : D′(E,∧k) → D′(E,∧k+1) denotes the differential operator.

A weight w(x) is a nonnegative locally integrable function on ℝn. Lp(E, ∧k) is a Banach

space equipped with norm ||ω||p,E = (
∫
E |ω(x)|pdx)1/p =

(∫
E (

∑
I |ωI(x)|2)p/2dx

)1/p
. Let D

Bi and Ding Journal of Inequalities and Applications 2011, 2011:69
http://www.journalofinequalitiesandapplications.com/content/2011/1/69

© 2011 Bi and Ding; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:bi_hui2002@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0


be a bounded convex domain in ℝn, n ≥ 2, and C∞ (∧kD) be the space of smooth k-forms

on D, where ∧k D is the kth exterior power of the cotangent bundle. The harmonic k-field

is defined by H(∧kD) = {u ∈ W(∧kD) : dω = d�ω = 0, ω ∈ Lp for some 1 < p < ∞},
whereW(∧kD) = {ω ∈ L1loc(∧kD) : ω has generalized gradient}. If we use H⊥ to denote the

orthogonal complement of H in L1, then the Green’s operator G is defined by

G : C∞(∧kD) → H⊥ ∩ C∞(∧kD) by assigning G(ω) as the unique element of

H⊥ ∩ C∞(∧kD) satisfying ΔG(ω) = ω - H(ω), where H is the projection operator that maps

C∞(∧kD) onto H such that H(ω) is the harmonic part of ω; see [8] for more properties on

the projection operator and Green’s operator. The definition of the homotopy operator for

differential forms was first introduced in [9]. Assume that D ⊂ ℝn is a bounded convex

domain. To each y Î D, there corresponds a linear operator Ky : C
∞(∧kD) ® C∞(∧k-1D)

satisfying that (Kyω)(x; ξ1, ξ2, . . . , ξk−1) =
∫ 1
0 tk−1ω(tx + y − ty; x − y, ξ1, ξ2, . . . , ξk−1)dt.

Then by averaging Ky over all points y in D, The homotopy operator T : C∞(∧kD) ®
C∞(∧k-1D) is defined by Tω =

∫
D ϕ(y)Kyωdy, where ϕ ∈ C∞

0 (D) is normalized so that

∫�(y)dy = 1. In [9], those authors proved that there exists an operator

T : L1loc(D,∧k) → L1loc(D,∧k−1), k = 1, 2, . . . , n, such that

T(dω) + dTω = ω; (1:1)

|Tω(x)| ≤ C
∫
D

|ω(y)|
|y − x|n−1

dy (1:2)

for all differential forms ω Î Lp(D, ∧k) such that dω Î Lp(D, ∧k). Furthermore, we

can define the k-form ωD ∈ D′(D,∧k) by the homotopy operator as

ωD = |D|−1
∫
D

ω(y)dy, k = 0;ωD = d(Tω), k = 1, 2, . . . , n (1:3)

for all ω Î Lp(D, ∧k), 1 ≤ p <∞.

Consider the nonhomogeneous A-harmonic equation for differential forms

d�A(x, dω) = B(x, dω), (1:4)

where A : E x ∧k(ℝn) ® ∧k (ℝn) and B : E x ∧k (ℝn) ® ∧k-1(ℝn) are two operators

satisfying the conditions:

|A(x, ξ)| ≤ a|ξ |p−1, (1:5)

A(x, ξ) · ξ ≥ |ξ |p, (1:6)

|B(x, ξ)| ≤ b|ξ |p−1 (1:7)

for almost every x Î E and all ξ Î ∧k(ℝn). Here, a, b > 0 are some constants and 1 <

p <∞ is a fixed exponent associated with (1.4). A solution to (1.4) is an element of the

Sobolev space W1,p
loc (E,∧k−1) such that∫

E
A(x, dω) · dϕ + B(x, dω) · ϕ = 0 (1:8)

for all ϕ ∈ W1,p
loc (E,∧k−1) with compact support.
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2. Orlicz norm inequalities for the composite operator
In this section, we establish the weighted inequalities for the composite operator T ○ H

in terms of Orlicz norms. To state our results, we need some definitions and lemmas.

We call a continuously increasing function F : [0, ∞) ® [0, ∞) with F(0) = 0 an

Orlicz function. If the Orlicz function F is convex, then F is often called a Young

function. The Orlicz space LF(E) consists of all measurable functions f on E such that

∫EF(|f |/l)dx <∞ for some l = l(f) >0 with the nonlinear Luxemburg functional

||f ||�,E = inf {λ > 0 :
∫
E
�

( |f |
λ

)
dx ≤ 1}. (2:1)

Moreover, if F is a restrictively increasing Young function, then LF(E) is a Banach

space and the corresponding norm || · || F,E is called Luxemburg norm or Orlicz

Norm. The following definition appears in [10].

Definition 2.1. We say that an Orlicz function F lies in the class G(p, q, C), 1 ≤ p < q <∞

and C ≥ 1, if (1) 1/C ≤ F(t1/p)/g(t) ≤ C and (2) 1/C ≤ F(t1/q)/h(t) ≤ C for all t > 0, where g(t)

is a convex increasing function and h(t) is a concave increasing function on [0, ∞).

We note from [10] that each of F, g, and h mentioned in Definition 2.1 is doubling,

from which it is easy to know that

C1t
q ≤ h−1(�(t)) ≤ C2t

q, C1t
p ≤ g−1(�(t)) ≤ C2t

p (2:2)

for all t > 0, where C1 and C2 are constants.

We also need the following lemma which appears in [1].

Lemma 2.2. Let u ∈ Lsloc(D,∧k), k = 1, 2,..., n, 1 < s <∞, be a smooth solution of

the nonhomogeneous A-harmonic equation in a bounded convex domain D, H be the

projection operator and T : C∞(∧kD) ® C∞(∧k-1D) be the homotopy operator. Then

there exists a constant C, independent of u, such that

||T(H(u)) − (T(H(u)))B||s,B ≤ Cdiam(B)||u||s,ρB
for all balls B with rB ⊂ D, where r > 1 is a constant.

The Ar weights, r > 1, were first introduced by Muckenhoupt [11] and play a crucial

role in weighted norm inequalities for many operators. As an extension of Ar weights,

the following class was introduced in [2].

Definition 2.3. We call that a measurable function w(x) defined on a subset E ⊂ ℝn

satisfies the A(a, b, g; E)-condition for some positive constants a, b, g; write w(x) Î A(a,
b, g; E), if w(x) >0 a.e. and

sup
B

(
1
|B|

∫
B
wαdx

)(
1
|B|

∫
B

(
1
w

)β

dx

)γ /β

= cα,β,γ < ∞,

where the supremum is over all balls B ⊂ E.

We also need the following reverse Hölder inequality for the solutions of the

nonhomogeneous A-harmonic equation, which appears in [3].

Lemma 2.4. Let u be a solution of the nonhomogeneous A-harmonic equation, s > 1

and 0 < s, t <∞. Then there exists a constant C, independent of u and B, such that

||u||s,B ≤ C|B|(t−s)/st||u||t,σB
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for all balls B with sB ⊂ E.

Theorem 2.5. Assume that u is a smooth solution of the nonhomogeneous A-harmonic

equation in a bounded convex domain D, 1 < p, q <∞ and w(x) ∈ A(α,β , αq
p ;D)for some

a > 1 and b > 0. Let H be the projection operator and T : C∞(∧kD) ® C∞ (∧k-1D), k = 1,

2,..., n, be the homotopy operator. Then there exists a constant C, independent of u, such

that

(∫
B
|T(H(u)) − (T(H(u)))B|qw(x)dx

)1/q

≤ Cdiam(B)|B|(p−q)/pq
(∫

σB
|u|

p

w(x)dx
)1/p

for all balls with sB ⊂ D for some s > 1.

Proof. Set s = aq and m = bp/(b + 1). From Lemma 2.2 and the reverse Hölder

inequality, we have

(∫
B
|T(H(u)) − (T(H(u)))B|qw(x)dx

)1/q

≤
(∫

B
|T(H(u)) − (T(H(u)))B|

qs
s−q dx

) s−q
sq

(∫
B
(w(x))αdx

) 1
αq

≤ C1diam(B)|B|
1
q −1

s − 1
m

(∫
σB

|u|mdx
)1/m(∫

B
(w(x))αdx

)1/αq

.

(2:3)

Let n = pm
p−m, then

1
p +

1
n = 1

m. Thus, using the Hölder inequality, we obtain

(∫
σB

|u|mdx
)1/m

=
(∫

σB
|u|m(w

1
p · w

−1
p )

m

dx
)1/m

≤
(∫

σB
|u|pw(x)dx

)1/p(∫
σB

w
−n
p dx

)1
n
.

(2:4)

Note that w(x) ∈ A(α,β , αq
p ;D). It is easy to find that

(∫
B
(w(x))αdx

)1/αq
(∫

σB
w

−n
p
dx

) 1
n

=
(∫

B
(w(x))αdx

)1/αq(∫
σB

w−βdx
) 1

βp

≤ |σB|
1
s +

1
n

⎡
⎣(

1
|σB|

∫
σB

(w(x))αdx
)(

1
|σB|

∫
σB

w−βdx
) αq

βp

⎤
⎦

1/αq

≤ C1/αq

α,β,
αq
p

|σB|
1
s +

1
n .

(2:5)
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Combining (2.3)-(2.5) immediately yields that

(∫
B
|T(H(u)) − (T(H(u)))B|qw(x)dx

)1/q

≤ C2diam(B)|B|
1
q −1

s − 1
m |σB|

1
s +

1
n

(∫
σB

|u|pw(x)dx
)1/p

≤ C3diam(B)|B|(p−q)/pq
(∫

σB
|u|pw(x)dx

)1/p

.

This ends the proof of Theorem 2.5.

If we choose p = q in Theorem 2.5, we have the following corollary.

Corollary 2.6. Assume that u is a solution of the nonhomogeneous A-harmonic equa-

tion in a bounded convex domain D, 1 < q <∞ and w(x) Î A(a, b, a; D) for some a >

1 and b > 0. Let H be the projection operator and T : C∞(∧kD) ® C∞(∧k-1D), k = 1,

2,..., n, be the homotopy operator. Then there exists a constant C, independent of u,

such that

(∫
B
|T(H(u)) − (T(H(u)))B|qw(x)dx

)1/q

≤ Cdiam(B)
(∫

σB
|u|qw(x)dx

)1/q

for all balls with sB ⊂ D for some s > 1.

Next, we prove the following inequality, which is a generalized version of the one

given in Lemma 2.2. More precisely, the inequality in Lemma 2.2 is a special case of

the following result when �(t) = tp.

Theorem 2.7. Assume that � is a Young function in the class G(p, q, C0), 1 < p < q

<∞, C0 ≥ 1 and D is a bounded convex domain. If u Î C∞(∧kD), k = 1, 2,..., n, is a solu-

tion of the nonhomogeneous A-harmonic equation in D, ϕ(|u|) ∈ L1loc(D, dx)and 1/p - 1/

q ≤ 1/n, then there exists a constant C, independent of u, such that∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dx ≤ C

∫
σB

ϕ(|u|)dx

for all balls B with sB ⊂ D, where s > 1 is a constant.

Proof. From Lemma 2.2, we know that

||T(H(u)) − (T(H(u)))B||s,B ≤ C1diam(B)||u||s,σB
for 1 < s <∞. Note that u is a solution of the nonhomogeneous A-harmonic equa-

tion. Hence, by the reverse Hölder inequality, we have

(∫
B
|T(H(u)) − (T(H(u)))B|qdx

)1/q

≤ C1diam(B)
(∫

σ1B
|u|qdx

)1/q

≤ C2diam(B)|σ1B|(p−q)/pq
(∫

σ2B
|u|pdx

)1/p

,

(2:6)

where s2 > s1 >1 are some constants. Thus, using that � and g are increasing func-

tions as well as Jensen’s inequality for g, we deduce that
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ϕ

((∫
B
|T(H(u)) − (T(H(u)))B|qdx

)1/q
)

≤ ϕ

(
C2diam(B)|σ1B|(p−q)/pq

(∫
σ2B

|u|pdx
)1/p

)

≤ ϕ

((
Cp
2(diam(B))p|σ1B|(p−q)/q

∫
σ2B

|u|pdx
)1/p

)

≤ C3g
(
Cp
2(diam(B))p|σ1B|(p−q)/q

∫
σ2B

|u|pdx
)

= C3g
(∫

σ2B
Cp
2(diam(B))p|σ1B|(p−q)/q|u|pdx

)

≤ C3

∫
σ2B

g(Cp
2(diam(B))p|σ1B|(p−q)/q|u|p)dx.

(2:7)

Since 1/p - 1/q ≤ 1/n, we have

diam(B)|σ1B|
p−q
pq ≤ C4|D|

1
n +

1
q−1

p ≤ C5. (2:8)

Applying (2.7) and (2.8) and noting that g(t) ≤ C0�(t
1/p), we have∫

σ2B
g(Cp

2(diam(B))p|σ1B|(p−q)/q|u|p)dx

≤ C0

∫
σ2B

ϕ(C2diam(B)|σ1B|(p−q)/pq|u|)dx

≤ C0

∫
σ2B

ϕ(C6|u|)dx.

(2:9)

It follows from (2.7) and (2.9) that

ϕ

((∫
B
|T(H(u)) − (T(H(u)))B|qdx

)1/q
)

≤ C7

∫
σ2B

ϕ(C6|u|)dx.
(2:10)

Applying Jensen’s inequality once again to h-1 and considering that � and h are dou-

bling, we have∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dx

= h
(
h−1

(∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dx

))

≤ h
(∫

B
h−1(ϕ(|T(H(u)) − (T(H(u)))B|)dx)

)

≤ h
(
C8

∫
B
|T(H(u)) − (T(H(u)))B|qdx

)

≤ C0ϕ

((
C8

∫
B
|T(H(u)) − (T(H(u)))B|qdx

)1/q
)

≤ C9

∫
σ2B

ϕ (C6|u|)dx

≤ C10

∫
σ2B

ϕ (|u|)dx.

This ends the proof of Theorem 2.7.
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To establish the weighted version of the inequality obtained in the above Theorem

2.7, we need the following lemma which appears in [4].

Lemma 2.8. Let u be a solution of the nonhomogeneous A-harmonic equation in a

domain E and 0 < p, q <∞. Then, there exists a constant C, independent of u, such that

(∫
B
|u|qdμ

)1/q

≤ C(μ(B))
p−q
pq

(∫
σB

|u|pdμ
)1/p

for all balls B with sB ⊂ E for some s > 1, where the Radon measure µ is defined by

dµ = w(x)dx and w Î A(a, b, a; E), a > 1, b > 0.

Theorem 2.9. Assume that � is a Young function in the class G(p, q, C0), 1 < p < q

<∞, C0 ≥ 1 and D is a bounded convex domain. Let dµ = w(x)dx, where w(x) Î A(a, b,
a; D) for a > 1 and b > 0. If u Î C∞(∧kD), k = 1, 2,..., n, is a solution of the nonhomo-

geneous A-harmonic equation in D, ϕ(|u|) ∈ L1loc(D, dμ), then there exists a constant C,

independent of u, such that∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dμ ≤ C

∫
σB

ϕ(|u|)dμ

for all balls B with sB ⊂ D and |B| ≥ d0 >0, where s > 1 is a constant.

Proof. From Corollary 2.6 and Lemma 2.8, we have

(∫
B
|T(H(u)) − (T(H(u)))B|qdμ

)1/q

≤ C1diam(B)
(∫

σ1B
|u|qdμ

)1/q

≤ C2diam(B)(μ(B))(p−q)/pq
(∫

σ2B
|u|pdμ

)1/p

,

(2:11)

where s2 > s1 >1 is some constant. Note that � and g are increasing functions and g

is convex in D. Hence by Jensen’s inequality for g, we deduce that

ϕ

((∫
B
|T(H(u)) − (T(H(u)))B|qdμ

)1/q
)

≤ ϕ

(
C2diam(B)(μ(B))(p−q)/pq

(∫
σ2B

|u|pdμ
)1/p

)

= ϕ

((
Cp
2(diam(B))p(μ(B))(p−q)/q

∫
σ2B

|u|pdμ
)1/p

)

≤ C3g
(
Cp
2(diam(B))p(μ(B))(p−q)/q

∫
σ2B

|u|pdμ
)

= C3g
(∫

σ2B
Cp
2(diam(B))p(μ(B))(p−q)/q|u|pdμ

)

≤ C3

∫
σ2B

g
(
Cp
2(diam(B))p(μ(B))(p−q)/q|u|p

)
dμ.

(2:12)

Set D1 = {x Î D : 0 < w(x) <1} and D2 = {x Î D : w(x) ≥ 1}. Then D = D1 ∪ D2. We

let w̃(x) = 1, if x Î D1 and w̃(x) = w(x), if x Î D2. It is easy to check that w(x) Î A(a,
b, a; D) if and only if w̃(x) ∈ A(α,β ,α;D). Thus, we may always assume that w(x) ≥ 1

a.e. in D. Hence, we have µ(B) = ∫B w(x)dx ≥ |B| for all balls B ⊂ D. Since p < q and |
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B| = d0 >0, it is easy to find that

diam(B)μ(B)(p−q)/pq ≤ diam(D)d(p−q)/pq
0 ≤ C3. (2:13)

It follows from (2.13) and g(t) ≤ C0�(t
1/p) that∫

σ2B
g(Cp

2(diam(B))p(μ(B))(p−q)/q|u|p)dμ

≤ C0

∫
σ2B

ϕ(C2diam(B)(μ(B))(p−q)/pq|u|)dμ

≤ C0

∫
σ2B

ϕ(C4|u|)dμ.

(2:14)

Applying Jensen’s inequality to h-1 and considering that � and h are doubling, we have∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dμ

= h
(
h−1

(∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dμ

))

≤ h
(∫

B
h−1(ϕ(|T(H(u)) − (T(H(u)))B|)dμ)

)

≤ h
(
C8

∫
B
|T(H(u)) − (T(H(u)))B|qdμ

)

≤ C0ϕ

((
C8

∫
B
|T(H(u)) − (T(H(u)))B|qdμ

)1/q
)

≤ C9

∫
σ2B

ϕ(C6|u|)dμ

≤ C10

∫
σ2B

ϕ(|u|)dμ.

This ends the proof of Theorem 2.9.

Note that if we remove the restriction on balls B, then we can obtain a weighted

inequality in the class A(α,β , αq
p ;D), for which the method of proof is analogous to

the one in Theorem 2.9. We now give the statement as follows.

Theorem 2.10. Assume that � is a Young function in the class G(p, q, C0), 1 < p < q

<∞, C0 ≥ 1 and D is a bounded convex domain. Let dµ = w(x)dx, where

w(x) ∈ A(α,β , αq
p ;D)for a > 1 and b > 0. If u Î C∞(∧kD), k = 1, 2,..., n, is a solution of

the nonhomogeneous A-harmonic equation in D, ϕ(|u|) ∈ L1loc(D, dμ)and 1/p - 1/q ≤ 1/

n, then there exists a constant C, independent of u, such that∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dμ ≤ C

∫
σB

ϕ(|u|)dμ

for all balls B with sB ⊂ D, where s > 1 is a constant.

Directly from the proof of Theorem 2.7, if we replace |T(H(u))-(T(H(u)))B| by
1
λ
|T(H(u)) − (T(H(u)))B|, then we immediately have∫

B
ϕ

( |T(H(u)) − (T(H(u)))B|
λ

)
dx ≤ C

∫
σB

ϕ

( |u|
λ

)
dx (2:15)
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for all balls B with sB ⊂ D and l > 0. Furthermore, from the definition of the Orlicz

norm and (2.15), the following Orlicz norm inequality holds.

Corollary 2.11. Assume that � is a Young function in the class G(p, q, C0), 1 < p < q

<∞, C0 ≥ 1 and D is a bounded convex domain. If u Î C∞(∧kD), k = 1, 2,..., n, is a solu-

tion of the nonhomogeneous A-harmonic equation in D, ϕ(|u|) ∈ L1loc(D, dx)and 1/p - 1/

q ≤ 1/n, then there exists a constant C, independent of u, such that

||T(H(u)) − (T(H(u)))B||ϕ,B ≤ C||u||ϕ,σB (2:16)

for all balls B with sB ⊂ D, where s > 1 is a constant.

Next, we extend the local Orlicz norm inequality for the composite operator to the

global version in the L�(µ)-averaging domains.

In [12], Staples introduced Ls-averaging domains in terms of Lebesgue measure.

Then, Ding and Nolder [6] developed Ls-averaging domains to weighted versions and

obtained a similar characterization. At the same time, they also established a global

norm inequality for conjugate A-harmonic tensors in Ls(µ)-averaging domains. In the

following year, Ding [5] further generalized Ls-averaging domains to L�(µ)-averaging

domains, for which Ls(µ)-averaging domains are special cases when �(t) = ts. The

following definition appears.

Definition 2.12. Let � be an increasing convex function defined on [0, ∞) with �(0) =

0. We say a proper subdomain Ω ⊂ ℝn an L�(µ)-averaging domain, if µ(Ω) <∞ and

there exists a constant C such that∫


ϕ(τ |u − uB0 |)dμ ≤ C sup
B

∫
B
ϕ(σ |u − uB|)dμ

for some balls B0 ⊂ Ω and all u such that ϕ(|u|) ∈ L1loc(, dμ), where 0 < τ, s <∞ are

constants and the supremum is over all balls B ⊂ Ω.

Theorem 2.13. Let � be a Young function in the class G(p, q, C0), 1 < p < q <∞, C0

≥ 1 and D is a bounded convex L�(dx)-averaging domain. Suppose that �(|u|) Î L1(D,

dx), u Î C∞(∧1D) is a solution of the nonhomogeneous A-harmonic equation in D and

1/p - 1/q ≤ 1/n. Then there exists a constant C, independent of u, such that∫
D

ϕ(|T(H(u)) − (T(H(u)))B0 |)dx ≤ C
∫
D

ϕ(|u|)dx, (2:17)

where B0 ⊂ D is a fixed ball.

Proof. Since D is an L�(dx)-averaging domain and � is doubling, from Theorem 2.7,

we have∫
D

ϕ(|T(H(u)) − (T(H(u)))B0 |)dx

≤ C1 sup
B⊂D

∫
B
ϕ(|T(H(u)) − (T(H(u)))B|)dx

≤ C1 sup
B⊂D

(
C2

∫
σB

ϕ(|u|)dx
)

≤ C3

∫
D

ϕ(|u|)dx.

We have completed the proof of Theorem 2.13.
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Clearly, (2.17) implies that

||T(H(u)) − (T(H(u)))B0 ||ϕ,D ≤ C||u||ϕ,D. (2:18)

Similarly, we also can develop the inequalities established in Theorems 2.9 and 2.10

to L�(µ)-averaging domains, for which dµ = w(x)dx and w(x) Î A(a, b, a; D) and

A(α,β , αq
p ;D), respectively.

3. Applications
The homotopy operator provides a decomposition to differential forms ω Î Lp(D, ∧k) such
that dω Î Lp(D, ∧k+1). Sometimes, however, the expression of T(H(u)) or (TH(u))B may be

quite complicated. However, using the estimates in the previous section, we can obtain

the upper bound for the Orlicz norms of T(H(u)) or (TH(u))B. In this section, we give

some specific estimates for the solutions of the nonhomogeneous A-harmonic equation.

Meantime, we also give several Young functions that lie in the class G(p, q, C) and then

establish some corresponding norm inequalities for the composite operator.

In fact, the nonhomogeneous A-harmonic equation is an extension of many familiar

equations. Let B = 0 and u be a 0-form in the nonhomogeneous A-harmonic equation

(1.4). Thus, (1.4) reduces to the usual A-harmonic equation:

divA(x,∇u) = 0. (3:1)

In particular, if we take the operator A(x, ξ) = ξ|ξ|p-2, then Equation 3.1 further

reduces to the p-harmonic equation

div(∇u|∇u|p−2) = 0. (3:2)

It is easy to verify that the famous Laplace equation Δu = 0 is a special case of p = 2

to the p-harmonic equation.

In ℝ3, consider that

ω =
1
r3
(x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2), (3:3)

where r =
√
x21 + x22 + x23. It is easy to check that dω = 0 and |ω| = 1

r2|. Hence, ω is a

solution of the nonhomogeneous A-harmonic equation. Let B be a ball with the origin

O ∉ sB, where s > 1 is a constant. Usually the term
∫
B
ϕ(|T(H(ω)) − (T(H(ω)))B|)dx

is not easy to estimate due to the complexity of the operators T and H as well as the

function �. However, by Theorem 2.7, we can give an upper bound of Orlicz norm.

Specially, if the Young function � is not very complicated, sometimes it is possible to

obtain a specific upper bound. For instance, take �(t) = tplog+t, where log+ t = 1 if t ≤

e and log+ t = log t if t > e. It is easy to verify that �(t) = tplog+t is a Young function

and belongs to G(p1, p2, C) for some constant C = C(p1, p2, p). Let 0 < M <∞ be the

upper bound of |ω| in sB. Thus, we have∫
B
|T(H(ω)) − (T(H(ω)))B|plog+|T(H(ω)) − (T(H(ω)))B|dx

≤
∫

σB
|ω|plog+(|ω|)dx ≤

∫
σB

Mplog+Mdx = Mplog+M|σB|,
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where s > 1 is some constant. Also, if we let �(t) = tplog+t in Theorem 2.13, we can

obtain a global estimate in a bounded convex L�(dx)-averaging domain D without the

origin. That is∫
D

|T(H(ω)) − (T(H(ω)))B0 |plog+|T(H(ω)) − (T(H(ω)))B0 |dx

≤
∫
D

|ω|plog+(|ω|)dx ≤
∫
D
Nplog+Ndx = Nplog+N|D|,

where B0 ⊂ D is a fixed ball and N is the upper bound of |ω| in D.

Next we give some examples of Young functions that lie in G(p, q, C) and then apply

them to Theorem 2.9.

Consider the function �(t) = tplogα
+ t, 1 < p <∞, a Î ℝ. Obviously, if we take a = 1,

then Ψ (t) reduces to �(t) = tplog+ t mentioned above. It is easy to check that for all 1

≤ p1 < p < p2 <∞ and a Î ℝ, the function Ψ(t) Î G(p1, p2, C), where C is dependent

on p, p1, p2 and a. However, Ψ(t) is not always a Young function. More precisely, Ψ

(t) cannot guarantee to be both increasing and convex. However, note that for Ψ (t),

we can always find K > 1 depending on p and a such that the function Ψ (t) is increas-

ing and convex on both [0, 1] and [K, ∞). Furthermore, if let ΨK(t) = Ψ(t) on [0, 1] ∪

[K, ∞) and �K(t) = �(1) + �(K)−�(1)
K−1 (t − 1) in (1, K), then ΨK(t) still lies in G(p1, p2,

C) for some C = C(p, a, p1, p2). It is worth noting that after such modification ΨK(t) is

convex in the entire interval [0, ∞), in the sense that ΨK(t) is a Young function that

lies in the class G(p, q, C); see [10] for more details on ΨK(t). Thus, we have the fol-

lowing result.

Corollary 3.1. Assume that u Î C∞(∧kD), k = 1, 2,..., n, is a solution of the nonhomo-

geneous A-harmonic equation in D, where D is a bounded convex domain. Let dµ = w

(x)dx and �K(|u|) ∈ L1loc(D, dμ), where w(x) Î A(a, b, a; D) for a > 1 and b > 0. Then,

for the composition of the homotopy operator T and the projection operator H, we have∫
B
�K(|T(H(u)) − (T(H(u)))B|)dμ ≤ C

∫
σB

�K(|u|)dμ

for all balls B with sB ⊂ D and |B| ≥ d0 >0. Here s and C are constants and C is

independent of u.

For the other example consider the function F(t) = tp sin t, on [0, π
2 ] and F(t) = tp,

in (π
2 ,∞), 3 < p < ∞. It is easy to check that F(t) is a Young function and for all 0 <

p1 < p + 1 < p2 < ∞, F(t) Î G(p1, p2,C), where C = C(p, p1, p2) ≥ 1 is some constant.

Thus, Theorem 2.9 holds for F(t) and we have the following corollary.

Corollary 3.2. Assume that u Î C∞(∧kD), k = 1, 2,..., n, is a solution of the nonhomo-

geneous A-harmonic equation in D, where D is a bounded convex domain. Let dμ = w

(x)dx and �(|u|) ∈ L1loc(D, dμ), where w(x) Î A(a, b, a; D) for a > 1 and b > 0. Then,

for the composition of the homotopy operator T and the projection operator H, we have∫
B
�(|T(H(u)) − (T(H(u)))B|)dμ ≤ C

∫
σB

�(|u|)dμ

for all balls B with sB ⊂ D and |B| ≥ d0 >0. Here s and C are constants and C is

independent of u.
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