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Abstract

In this paper, we prove both the local and global L�-norm inequalities for Green’s
operator applied to minimizers for functionals defined on differential forms in
L�-averaging domains. Our results are extensions of Lp norm inequalities for Green’s
operator and can be used to estimate the norms of other operators applied to
differential forms.
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1. Introduction
Let Ω be a bounded domain in ℝn, n ≥ 2, B and s B with s > 0 be the balls with the

same center and diam(s B) = sdiam(B) throughout this paper. The n-dimensional

Lebesgue measure of a set E ⊆ ℝn is expressed by |E|. For any function u, we denote

the average of u over B by uB = 1
|B|

∫
B udx. All integrals involved in this paper are the

Lebesgue integrals.

A differential 1-form u(x) in ℝn can be written as u(x) =
∑n

i=1 ui(x1, x2, · · · , xn)dxi,
where the coefficient functions ui(x1, x2,..., xn), i = 1, 2,..., n, are differentiable. Similarly,

a differential k-form u(x) can be denoted as

u(x) =
∑
I

uI(x)dxI =
∑

ui1i2 ···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

where I = (i1, i2, ..., ik), 1 ≤ i1 <i2 < ... <ik ≤ n. See [1-5] for more properties and some

recent results about differential forms. Let ∧l = ∧l(ℝn) be the set of all l-forms in ℝn,

D’(Ω, ∧ l) be the space of all differential l-forms in Ω, and Lp(Ω, ∧l) be the Banach

space of all l-forms u(x) = ΣI uI(x)dxI in Ω satisfying

‖ u‖p,E =
(∫

E
|u(x)|pdx

)1/p

=

⎛
⎝∫

E

(∑
I

|uI(x)|2
)p/2

dx

⎞
⎠

1/p

for all ordered l-tuples I, l = 1, 2,..., n. It is easy to see that the space ∧l is of a basis

{dxi1 ∧ dxi2 ∧ · · · ∧ dxil , 1 ≤ i1 < i2 < · · · < il ≤ n},
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and hence dim(∧l) = dim(∧l(Rn)) =

(
n

l

)
and

dim(∧) =
n∑
l=0

dim(∧l(Rn)) =
n∑
l=0

(
n

l

)
= 2n.

We denote the exterior derivative by d : D’(Ω, ∧l ) ® D’(Ω, ∧l+1) for l = 0, 1,..., n - 1.

The exterior differential can be calculated as follows

dω(x) =
n∑

k=1

∑
1≤i1<···<il≤n

∂ωi1 i2 ···il(x)
∂xk

dxk ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxil .

Its formal adjoint operator d⋆ which is called the Hodge codifferential is defined by

d⋆ = (-1)nl+1 ⋆ d⋆: D’(Ω, ∧l+1) ® D’(Ω, ∧l), where l = 0, 1,..., n - 1, and ⋆ is the well

known Hodge star operator. We say that u ∈ L1loc(∧l�) has a generalized gradient if,

for each coordinate system, the pullbacks of the coordinate function of u have general-

ized gradient in the familiar sense, see [6]. We write W(∧l�) = {u ∈ L1loc(∧l�): u has

generalized gradient}. As usual, the harmonic l-fields are defined by

H(∧l�) = {u ∈ W(∧l�) : du = d�u = 0, u ∈ Lp for some 1 < p < ∞}, The orthogonal

complement of H in L1 is defined by H⊥ = {u ∈ L1 :< u, h >= 0 for all h ∈ H}. Greens’
operator G is defined as G : C∞(∧l�) → H⊥ ∩ C∞(∧l�) by assigning G(u) be the

unique element of H⊥ ∩ C∞(∧l�) satisfying Poisson’s equation ΔG(u) = u - H(u),

where H is either the harmonic projection or sometimes the harmonic part of u and Δ

is the Laplace-Beltrami operator, see [2,7-11] for more properties of Green’s operator.

In this paper, we alway use G to denote Green’s operator.

2. Local inequalities
The purpose of this paper is to establish the L�-norm inequalities for Green’s operator

applied to the following k-quasi-minimizer. We say a differential form

u ∈ W1,1
loc (�, ��) is a k-quasi-minimizer for the functional

I(�; v) =
∫

�

(|dv|)dx (2:1)

if and only if, for every ϕ ∈ W1,1
loc (�, ��) with compact support,

I(supp ϕ; u) ≤ k · I(supp ϕ; u + ϕ),

where k > 1 is a constant. We say that � satisfies the so called Δ2-condition if there

exists a constant p > 1 such that

ϕ(2t) ≤ pϕ(t) (2:2)

for all t > 0, from which it follows that �(lt) ≤ l p� (t) for any t > 0 and l ≥ 1, see

[12].

We will need the following lemma which can be found in [13] or [12].

Lemma 2.1. Let f(t) be a nonnegative function defined on the interval [a, b] with a ≥

0. Suppose that for s, t Î [a, b] with t <s,
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f (t) ≤ M

(s − t)α
+N + θ f (s)

holds, where M, N, a and θ are nonnegative constants with θ < 1. Then, there exists a

constant C = C(a, θ ) such that

f (ρ) ≤ C
(

M
(R − ρ)α

+N
)

for any r, R Î [a, b] with r <R.

A continuously increasing function � : [0, ∞) ® [0, ∞) with � (0) = 0, is called an

Orlicz function.

The Orlicz space L�(Ω) consists of all measurable functions f on Ω such that∫
�

ϕ
( |f |

λ

)
dx < ∞ for some l = l(f) >0. L�(Ω) is equipped with the nonlinear Luxem-

burg functional

‖ f‖ϕ(�) = inf {λ > 0 :
∫

�

ϕ
( |f |

λ

)
dx ≤ 1}.

A convex Orlicz function � is often called a Young function. A special useful Young

function � : [0, ∞) ® [0, ∞), termed an N-function, is a continuous Young function

such that �(x) = 0 if and only if x = 0 and limx ® 0 �(x)/x = 0, limx ® ∞ �(x)/x = +∞.

If � is a Young function, then || · ||� defines a norm in L�(Ω), which is called the Lux-

emburg norm.

Definition 2.2[14]. We say a Young function � lies in the class G(p, q, C), 1 ≤ p

<q < ∞, C ≥ 1, if (i) 1/C ≤ �(t1/p)/F(t) ≤ C and (ii) 1/C ≤ �(t1/q)/Ψ (t) ≤ C for all t

> 0, where F is a convex increasing function and Ψ is a concave increasing function

on [0, ∞).

From [14], each of �, F and Ψ in above definition is doubling in the sense that its

values at t and 2t are uniformly comparable for all t > 0, and the consequent fact that

C1t
q ≤ −1(ϕ(t)) ≤ C2t

q, C1t
p ≤ �−1(ϕ(t)) ≤ C2t

p, (2:3)

where C1 and C2 are constants. It is easy to see that � Î G(p, q, C) satisfies the Δ2-

condition. Also, for all 1 ≤ p1 <p <p2 and a Î ℝ, the function ϕ(t) = tplogα
+ t belongs to

G(p1, p2, C) for some constant C = C(p, a, p1, p2). Here log+(t) is defined by log+(t) = 1

for t ≤ e; and log+(t) = log(t) for t > e. Particularly, if a = 0, we see that �(t) = tp lies in

G(p1, p2, C), 1 ≤ p1 <p <p2.

Theorem 2.3. Let u ∈ W1,1
loc (�, ��)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be a bounded domain and G be Green’s operator. Then, there exists a constant C, inde-

pendent of u, such that∫
B

ϕ(|G(u) − (G(u))B|)dx ≤ C
∫
2B

ϕ(|u − c|)dx (2:4)

for all balls B = Br with radius r and 2B ⊂ Ω, where c is any closed form.

Proof. Using Jensen’s inequality for Ψ -1, (2.3), and noticing that � and Ψ are dou-

bling, for any ball B = Br ⊂ Ω, we obtain
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∫
B

ϕ
(|G(u) − (G(u))B|

)
dx = 

(
−1

(∫
B

ϕ(|G(u) − (G(u))B|)dx
))

≤ 

(∫
B
−1 (

ϕ(|G(u) − (G(u))B|)
)
dx

)

≤ 

(
C1

∫
B
|G(u) − (G(u))B|qdx

)

≤ C2ϕ

((
C1

∫
B
|G(u) − (G(u))B|qdx

)1/q
)

≤ C3ϕ

((∫
B
|G(u) − (G(u))B|qdx

)1/q
)
.

(2:5)

Using the Poincaré-type inequality for differential forms G(u) and noticing that

‖ G(u) ‖ p,B ≤ C4||u||p,B

holds for any differential form u, we obtain

(∫
B
|G(u) − (G(u))B|np/(n−p)dx

)(n−p)/np

≤ C5

(∫
B
|d(G(u))|pdx

)1/p

≤ C5

(∫
B
|G(du)|pdx

)1/p

≤ C6

(∫
B
|du|pdx

)1/p

.

(2:6)

If 1 <p <n, by assumption, we have q <
np
n−p. Then,(∫

B
|G(u) − (G(u))B|qdx

)1/q

≤ C7

(∫
B
|du|pdx

)1/p

. (2:7)

Note that the Lp-norm of |G(u) - (G(u))B| increases with p and np
n−p → ∞ as p ® n,

it follows that (2.7) still holds when p ≥ n. Since � is increasing, from (2.5) and (2.7),

we obtain

∫
B

ϕ
(|G(u) − (G(u))B|

)
dx ≤ C3ϕ

(
C7

(∫
B
|du|pdx

)1/p
)
. (2:8)

Applying (2.8), (i) in Definition 2.2, Jensen’s inequality, and noticing that � and F are

doubling, we have

∫
B
ϕ

(|G(u) − (G(u))B|
)
dx ≤ C3ϕ

(
C7

(∫
B
|du|pdx

)1/p
)

≤ C3�

(
C8

(∫
B
|du|pdx

))

≤ C9

∫
B
�(|du|p)dx.

(2:9)

Agarwal and Ding Journal of Inequalities and Applications 2011, 2011:66
http://www.journalofinequalitiesandapplications.com/content/2011/1/66

Page 4 of 10



Using (i) in Definition 1.1 again yields∫
B

�(|du|p)dx ≤ C10

∫
B

ϕ(|du|)dx. (2:10)

Combining (2.9) and (2.10), we obtain∫
B

ϕ
(|G(u) − (G(u))B|

)
dx ≤ C11

∫
B

ϕ(|du|)dx (2:11)

for any ball B ⊂ Ω. Next, let B2r = B(x0, 2r) be a ball with radius 2r and center x0, r

<t <s < 2r. Set h(x) = g(|x - x0|), where

g(τ ) =

⎧⎨
⎩

1, 0 ≤ τ ≤ t
affine, τ < t < s
0, τ ≥ s.

Then, η ∈ W1,∞
0 (Bs), h (x) = 1 on Bt and

|dη(x)| =
{
(s − t)−1, t ≤ |x − x0| ≤ s

0, otherwise.
(2:12)

Let v(x) = u(x) + (h(x))p(c - u(x)), where c is any closed form. We find that

dv = (1 − ηp)du + ηpp
dη
η
(c − u(x)). (2:13)

Since ψ is an increasing convex function satisfying the Δ2-condition, we obtain

ϕ(|dv|) ≤ (1 − ηp)ϕ(|du|) + ηpϕ(p
|dη|
η

|c − u(x)|). (2:14)

Using the definition of the k-quasi-minimizer and (2.2), it follows that∫
Bs

ϕ(|du|)dx ≤ k
∫
Bs

ϕ(|dv|)dx

≤ k
(∫

Bs\Bt

(1 − ηp)ϕ(|du|)dx +
∫
Bs

ηpϕ

(
p
|dη|
η

|c − u(x)|
)
dx

)

≤ k
(∫

Bs\Bt

ϕ(|du|)dx + pp
∫
Bs

ϕ (|dη||u − c|)dx
)
.

(2:15)

Applying (2.15), (2.12)) and (2.3), we have∫
Bt

ϕ(|du|)dx ≤
∫
Bs

ϕ(|du|)dx

≤ k
(∫

Bs\Bt

ϕ(|du|)dx + pp
∫
Bs

ϕ

(
4r

|u − c|
(s − t)2r

)
dx

)

≤ k
(∫

Bs\Bt

ϕ(|du|)dx + (4pr)p

(s − t)p

∫
Bs

ϕ

( |u − c|
2r

)
dx

)
.

(2:16)

Adding k
∫
Bt

ϕ(|du|)dx to both sides of inequality (2.16) yields∫
Bt

ϕ(|du|)dx ≤ k
k + 1

(∫
Bs

ϕ(|du|)dx + (4pr)p

(s − t)p

∫
Bs

ϕ

( |u − c|
2r

)
dx

)
. (2:17)
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In order to use Lemma 2.1, we write

f (t) =
∫
Bt

ϕ(|du|)dx, f (s) =
∫
Bs

ϕ(|du|)dx, M = (4pr)p
∫
Bs

ϕ

( |u − c|
2r

)
dx

and N = 0. From (2.17), we find that the conditions of Lemma 2.1 are satisfied.

Hence, using Lemma 2.1 with r = r and a = p, we obtain∫
Br

ϕ(|du|)dx ≤ C12

∫
B2r

ϕ

( |u − c|
2r

)
dx, (2:18)

Note that � is doubling, B = Br and 2B = B2r. Then, (3.18) can be written as∫
B
ϕ(|du|)dx ≤ C13

∫
2B

ϕ (|u − c|)dx. (2:19)

Combining (2.11) and (2.19) yields∫
B

ϕ
(|G(u) − (G(u))B|

)
dx ≤ C14

∫
2B

ϕ (|u − c|)dx. (2:20)

The proof of Theorem 2.3 has been completed. □
Since each of �, F and Ψ in Definition 2.2 is doubling, from the proof of Theorem

2.3 or directly from (2.3), we have

∫
B

ϕ

( |G(u) − (G(u))B|
λ

)
dx ≤ C

∫
2B

ϕ

( |u − c|
λ

)
dx (2:21)

for all balls B with 2B ⊂ Ω and any constant l > 0. From definition of the Luxem-

burg norm and (2.21), the following inequality with the Luxemburg norm

‖ G(u) − (G(u))B‖ϕ(B) ≤ C ‖ u − c‖ϕ(2B) (2:22)

holds under the conditions described in Theorem 2.3.

Note that in Theorem 2.3, c is any closed form. Hence, we may choose c = 0 in The-

orem 2.3 and obtain the following version of �-norm inequality which may be conveni-

ent to be used.

Corollary 2.4. Let u ∈ W1,1
loc (�, ��)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be a bounded domain and G be Green’s operator. Then, there exists a constant C, inde-

pendent of u, such that∫
B

ϕ(|G(u) − (G(u))B|)dx ≤ C
∫
2B

ϕ (|u|)dx (2:23)

for all balls B = Br with radius r and 2B ⊂ Ω.

3. Global inequalities
In this section, we extend the local Poincaré type inequalities into the global cases in

the following L�-averaging domains, which are extension of John domains and Ls-aver-

aging domain, see [15,16].

Definition 3.1[16]. Let� be an increasing convex function on [0, ∞) with �(0) = 0.

We call a proper subdomain Ω ⊂ ℝn an L�-averaging domain, if |Ω| < ∞ and there
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exists a constant C such that∫
�

ϕ(τ |u − uB0 |)dx ≤ C sup
B⊂�

∫
B

ϕ(σ |u − uB|)dx (3:1)

for some ball B0 ⊂ Ω and all u such that ϕ(|u|) ∈ L1loc(�), where τ, s are constants

with 0 <τ < ∞, 0 < s < ∞ and the supremum is over all balls B ⊂ Ω.

From above definition we see that Ls-averaging domains and Ls(μ)-averaging domains

are special L�-averaging domains when �(t) = ts in Definition 3.1. Also, uniform

domains and John domains are very special L�-averaging domains, see [1,15,16] for

more results about domains.

Theorem 3.2. Let u ∈ W1,1
loc (�, �0) be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be any bounded L�-averaging domain and G be Green’s operator. Then, there exists a

constant C, independent of u, such that∫
�

ϕ(|G(u) − (G(u))B0 |)dx ≤ C
∫

�

ϕ (|u − c|)dx, (3:2)

where B0 ⊂ Ω is some fixed ball and c is any closed form.

Proof. From Definition 3.1, (2.4) and noticing that � is doubling, we have∫
�

ϕ(|G(u) − (G(u))B0 |)dx ≤ C1 sup
B⊂�

∫
B

ϕ(|G(u) − (G(u))B|)dx

≤ C1 sup
B⊂�

(
C2

∫
2B

ϕ(|u − c|)dx
)

≤ C1 sup
B⊂�

(
C2

∫
�

ϕ(|u − c|)dx
)

≤ C3

∫
�

ϕ(|u − c|)dx.

We have completed the proof of Theorem 3.2. □
Similar to the local inequality, the following global inequality with the Orlicz norm

‖ G(u) − (G(u))B0‖ϕ(�) ≤ C ‖ u‖ϕ(�) (3:3)

holds if all conditions in Theorem 3.2 are satisfied.

We know that any John domain is a special L�-averaging domain. Hence, we have

the following inequality in John domain.

Theorem 3.3. Let u ∈ W1,1
loc (�, �0)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be any bounded John domain and G be Green’s operator. Then, there exists a constant

C, independent of u, such that∫
�

ϕ(|G(u) − (G(u))B0 |)dx ≤ C
∫

�

ϕ (|u − c|)dx, (3:4)

where B0 ⊂ Ω is some fixed ball and c is any closed form.

Choosing ϕ(t) = tplogα
+ t in Theorems 3.2, we obtain the following inequalities with

the Lp(logα
+L)-norms.

Corollary 3.4. Let u ∈ W1,1
loc (�, �0)be a k-quasi-minimizer for the functional (2.1),

ϕ(t) = tplogα
+ t, a Î ℝ, q(n - p) <np for 1 ≤ p <q < ∞ and G be Green’s operator. Then,
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there exists a constant C, independent of u, such that∫
�

|G(u) − (G(u))B0 |plogα
+(|G(u) − (G(u))B0 |)dx ≤ C

∫
�

|u − c|plogα
+(|u − c|)dx (3:5)

for any bounded L�-averaging domain Ω, where B0 ⊂ Ω is some fixed ball and c is

any closed form.

We can also write (3.5) as the following inequality with the Luxemburg norm

‖ G(u) − (G(u))B0‖Lp(logα
+ L)(�) ≤ C ‖ u − c‖Lp(logα

+ L)(�) (3:6)

provided the conditions in Corollary 3.5 are satisfied.

Similar to the local case, we may choose c = 0 in Theorem 3.2 and obtain he follow-

ing version of L�-norm inequality.

Corollary 3.5. Let u ∈ W1,1
loc (�, �0)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be any bounded L� -averaging domain and G be Green’s operator. Then, there exists a

constant C, independent of u, such that∫
�

ϕ(|G(u) − (G(u))B0 |)dx ≤ C
∫

�

ϕ(|u|)dx, (3:2a)

where B0 ⊂ Ω is some fixed ball.

4. Applications
It should be noticed that both of the local and global norm inequalities for Green’s

operator proved in this paper can be used to estimate other operators applied to a

k-quasi-minimizer. Here, we give an example using Theorem 2.3 to estimate the projec-

tion operator H. Using the basic Poincaré inequality to ΔG(u) and noticing that d com-

mute with Δ and G, we can prove the following Lemma 4.1

Lemma 4.1. Let u Î D’(Ω, ∧l ), l = 0, 1,..., n - 1, be an A-harmonic tensor on Ω.

Assume that r > 1 and 1 <s < ∞. Then, there exists a constant C, independent of u,

such that

‖ �G(u) − (�G(u))B‖s,B ≤ Cdiam(B) ‖ du‖s,ρB (4:1)

for any ball B with rB ⊂ Ω.

Using Lemma 4.1 and the method developed in the proof of Theorem 2.3, we can

prove the following inequality for the composition of Δ and G.

Theorem 4.2. Let u ∈ W1,1
loc (�, ��)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be a bounded domain and G be Green’s operator. Then, there exists a constant C, inde-

pendent of u, such that∫
B

ϕ(|�G(u) − (�G(u))B|)dx ≤ C
∫
2B

ϕ(|u − c|)dx (4:2)

for all balls B = Br with radius r and 2B ⊂ Ω, where c is any closed form.

Now, we are ready to develop the estimate for the projection operator applied to a k-

quasi-minimizer for the functional defined by (2.1).
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Theorem 4.3. Let u ∈ W1,1
loc (�, ��)be a k-quasi-minimizer for the functional (2.1), �

be a Young function in the class G(p, q, C), 1 ≤ p <q < ∞, C ≥ 1 and q(n - p) <np, Ω

be a bounded domain and H be projection operator. Then, there exists a constant C,

independent of u, such that∫
B

ϕ(|H(u) − (H(u))B|)dx ≤ C
∫
2B

ϕ (|u − c|)dx (4:3)

for all balls B = Br with radius r and 2B ⊂ Ω, where c is any closed form.

Proof. Using the Poisson’s equation ΔG(u) = u - H(u) and the fact that � is convex

and doubling as well as Theorem 4.2, we have∫
B

ϕ(|H(u) − (H(u))B|)dx ≤
∫
B
ϕ (|u − uB| + |�G(u) − (�G(u))B|)dx

=
∫
B

ϕ ((1/2)2|u − uB|dx + (1/2)2|�G(u) − (�G(u))B|)dx

≤ 1
2

∫
B

ϕ (2|u − uB|)dx + 1
2

∫
B
ϕ (2|�G(u) − (�G(u))B|)dx

≤ C1

2

∫
B

ϕ (|u − uB|)dx + C2

2

∫
B
φ (|�G(u) − (�G(u))B|)dx

≤ C3

2

(∫
B

ϕ (|u − uB|)dx +
∫
B
ϕ (|�G(u) − (�G(u))B|)dx

)

≤ C3

2

(
C4

∫
σB

ϕ (|u − c|)dx + C5

∫
σB

ϕ (|u − c|)dx
)

≤ C6

∫
σB

ϕ (|u − c|)dx,

(4:4)

that is∫
B

ϕ(|H(u) − (H(u))B|)dm ≤ C
∫

σB
ϕ(|u − c|)dm.

We have completed the proof of Theorem 4.3. □
Remark. (i) We know that the Ls-averaging domains uniform domains are the special

L�-averaging domains. Thus, Theorems 3.2 also holds if Ω is tan Ls-averaging domain

or uniform domain. (ii) Theorem 4.3 can also be extended into the global case in L�

(m)-averaging domain.
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