Inequalities for Green's operator applied to the minimizers

Ravi P Agarwal ${ }^{1}$ and Shusen Ding ${ }^{2 *}$

[^0]
Abstract

In this paper, we prove both the local and global L^{ϕ}-norm inequalities for Green's operator applied to minimizers for functionals defined on differential forms in L^{ϕ}-averaging domains. Our results are extensions of L^{p} norm inequalities for Green's operator and can be used to estimate the norms of other operators applied to differential forms. 2000 Mathematics Subject Classification: Primary: 35J60; Secondary 31B05, 58A10, 46 E35.

Keywords: Green's operator, minimizers, inequalities and differential forms

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geq 2, B$ and σB with $\sigma>0$ be the balls with the same center and $\operatorname{diam}(\sigma B)=\sigma \operatorname{diam}(B)$ throughout this paper. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^{n}$ is expressed by $|E|$. For any function u, we denote the average of u over B by $u_{B}=\frac{1}{|B|} \int_{B} u d x$. All integrals involved in this paper are the Lebesgue integrals.

A differential 1-form $u(x)$ in \mathbb{R}^{n} can be written as $u(x)=\sum_{i=1}^{n} u_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) d x_{i}$, where the coefficient functions $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right), i=1,2, \ldots, n$, are differentiable. Similarly, a differential k-form $u(x)$ can be denoted as

$$
u(x)=\sum_{I} u_{I}(x) d x_{I}=\sum u_{i_{1} i_{2} \cdots i_{k}}(x) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}
$$

where $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right), 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$. See [1-5] for more properties and some recent results about differential forms. Let $\Lambda^{l}=\Lambda^{l}\left(\mathbb{R}^{n}\right)$ be the set of all l-forms in \mathbb{R}^{n}, $D^{\prime}\left(\Omega, \Lambda^{l}\right)$ be the space of all differential l-forms in Ω, and $L^{p}\left(\Omega, \Lambda^{l}\right)$ be the Banach space of all l-forms $u(x)=\Sigma_{I} u_{I}(x) d x_{I}$ in Ω satisfying

$$
\|u\|_{p, E}=\left(\int_{E}|u(x)|^{p} d x\right)^{1 / p}=\left(\int_{E}\left(\sum_{I}\left|u_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p}
$$

for all ordered l-tuples $I, l=1,2, \ldots, n$. It is easy to see that the space Λ^{l} is of a basis

$$
\left\{d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}, 1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n\right\}
$$

$$
\begin{aligned}
& \text { and hence } \operatorname{dim}\left(\wedge^{l}\right)=\operatorname{dim}\left(\wedge^{l}\left(\mathbb{R}^{n}\right)\right)=\binom{n}{l} \text { and } \\
& \qquad \operatorname{dim}(\wedge)=\sum_{l=0}^{n} \operatorname{dim}\left(\wedge^{l}\left(\mathbb{R}^{n}\right)\right)=\sum_{l=0}^{n}\binom{n}{l}=2^{n} .
\end{aligned}
$$

We denote the exterior derivative by $d: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \Lambda^{l+1}\right)$ for $l=0,1, \ldots, n-1$. The exterior differential can be calculated as follows

$$
d \omega(x)=\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{1} \leq n} \frac{\partial \omega_{i_{1} i_{2} \cdots i_{i}}(x)}{\partial x_{k}} d x_{k} \wedge d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{i}} .
$$

Its formal adjoint operator d^{\star} which is called the Hodge codifferential is defined by $d^{\star}=(-1)^{n l+1} \star d \star: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l}\right)$, where $l=0,1, \ldots, n-1$, and \star is the well known Hodge star operator. We say that $u \in L_{l o c}^{1}\left(\wedge^{l} \Omega\right)$ has a generalized gradient if, for each coordinate system, the pullbacks of the coordinate function of u have generalized gradient in the familiar sense, see [6]. We write $\mathcal{W}\left(\wedge^{l} \Omega\right)=\left\{u \in L_{\text {loc }}^{1}\left(\wedge^{l} \Omega\right)\right.$: u has generalized gradient $\}$. As usual, the harmonic l-fields are defined by $\mathcal{H}\left(\wedge^{l} \Omega\right)=\left\{u \in \mathcal{W}\left(\wedge^{l} \Omega\right): d u=d^{*} u=0, u \in L^{p}\right.$ for some $\left.1<p<\infty\right\}$, The orthogonal complement of \mathcal{H} in L^{1} is defined by $\mathcal{H}^{\perp}=\left\{u \in L^{1}:<u, h>=0\right.$ for all $\left.h \in \mathcal{H}\right\}$. Greens' operator G is defined as $G: C^{\infty}\left(\wedge^{l} \Omega\right) \rightarrow \mathcal{H}^{\perp} \cap C^{\infty}\left(\wedge^{l} \Omega\right)$ by assigning $G(u)$ be the unique element of $\mathcal{H}^{\perp} \cap C^{\infty}\left(\wedge^{l} \Omega\right)$ satisfying Poisson's equation $\Delta G(u)=u-H(u)$, where H is either the harmonic projection or sometimes the harmonic part of u and Δ is the Laplace-Beltrami operator, see [2,7-11] for more properties of Green's operator. In this paper, we alway use G to denote Green's operator.

2. Local inequalities

The purpose of this paper is to establish the L^{ϕ}-norm inequalities for Green's operator applied to the following k-quasi-minimizer. We say a differential form $u \in W_{\text {loc }}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ is a k-quasi-minimizer for the functional

$$
\begin{equation*}
I(\Omega ; v)=\int_{\Omega}(|d v|) d x \tag{2.1}
\end{equation*}
$$

if and only if, for every $\varphi \in W_{l o c}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ with compact support,

$$
I(\operatorname{supp} \varphi ; u) \leq k \cdot I(\operatorname{supp} \varphi ; u+\varphi),
$$

where $k>1$ is a constant. We say that ϕ satisfies the so called Δ_{2}-condition if there exists a constant $p>1$ such that

$$
\begin{equation*}
\varphi(2 t) \leq p \varphi(t) \tag{2.2}
\end{equation*}
$$

for all $t>0$, from which it follows that $\phi(\lambda t) \leq \lambda^{p} \phi(t)$ for any $t>0$ and $\lambda \geq 1$, see [12].
We will need the following lemma which can be found in [13] or [12].
Lemma 2.1. Let $f(t)$ be a nonnegative function defined on the interval $[a, b]$ with $a \geq$ 0. Suppose that for $s, t \in[a, b]$ with $t<s$,

$$
f(t) \leq \frac{M}{(s-t)^{\alpha}}+N+\theta f(s)
$$

holds, where M, N, α and θ are nonnegative constants with $\theta<1$. Then, there exists a constant $C=C(\alpha, \theta)$ such that

$$
f(\rho) \leq C\left(\frac{M}{(R-\rho)^{\alpha}}+N\right)
$$

for any $\rho, R \in[a, b]$ with $\rho<R$.
A continuously increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$, is called an Orlicz function.
The Orlicz space $L^{\phi}(\Omega)$ consists of all measurable functions f on Ω such that $\int_{\Omega} \varphi\left(\frac{|f|}{\lambda}\right) d x<\infty$ for some $\lambda=\lambda(f)>0 . L^{\phi}(\Omega)$ is equipped with the nonlinear Luxemburg functional

$$
\|f\|_{\varphi(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega} \varphi\left(\frac{|f|}{\lambda}\right) d x \leq 1\right\} .
$$

A convex Orlicz function ϕ is often called a Young function. A special useful Young function $\phi:[0, \infty) \rightarrow[0, \infty)$, termed an N-function, is a continuous Young function such that $\phi(x)=0$ if and only if $x=0$ and $\lim _{x \rightarrow 0} \phi(x) / x=0, \lim _{x} \rightarrow \infty \phi(x) / x=+\infty$. If ϕ is a Young function, then $\|\cdot\| \|_{\phi}$ defines a norm in $L^{\phi}(\Omega)$, which is called the Luxemburg norm.
Definition 2.2[14]. We say a Young function ϕ lies in the class $G(p, q, C), 1 \leq p$ $<q<\infty, C \geq 1$, if (i) $1 / C \leq \phi\left(t^{1 / p}\right) / \Phi(t) \leq C$ and (ii) $1 / C \leq \phi\left(t^{1 / q}\right) / \Psi(t) \leq C$ for all t >0, where Φ is a convex increasing function and Ψ is a concave increasing function on $[0, \infty)$.
From [14], each of ϕ, Φ and Ψ in above definition is doubling in the sense that its values at t and $2 t$ are uniformly comparable for all $t>0$, and the consequent fact that

$$
\begin{equation*}
C_{1} t^{q} \leq \Psi^{-1}(\varphi(t)) \leq C_{2} t^{q}, C_{1} t^{p} \leq \Phi^{-1}(\varphi(t)) \leq C_{2} t^{p}, \tag{2.3}
\end{equation*}
$$

where C_{1} and C_{2} are constants. It is easy to see that $\phi \in G(p, q, C)$ satisfies the $\Delta_{2}{ }^{-}$ condition. Also, for all $1 \leq p_{1}<p<p_{2}$ and $\alpha \in \mathbb{R}$, the function $\varphi(t)=t^{p} \log _{+}^{\alpha} t$ belongs to $G\left(p_{1}, p_{2}, C\right)$ for some constant $C=C\left(p, \alpha, p_{1}, p_{2}\right)$. Here $\log _{+}(t)$ is defined by $\log _{+}(t)=1$ for $t \leq e$; and $\log _{+}(t)=\log (t)$ for $t>e$. Particularly, if $\alpha=0$, we see that $\phi(t)=t^{p}$ lies in $G\left(p_{1}, p_{2}, C\right), 1 \leq p_{1}<p<p_{2}$.
Theorem 2.3. Let $u \in W_{l o c}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be a bounded domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \leq C \int_{2 B} \varphi(|u-c|) d x \tag{2.4}
\end{equation*}
$$

for all balls $B=B_{r}$ with radius r and $2 B \subset \Omega$, where c is any closed form.
Proof. Using Jensen's inequality for $\Psi^{-1},(2.3)$, and noticing that ϕ and Ψ are doubling, for any ball $B=B_{r} \subset \Omega$, we obtain

$$
\begin{align*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x & =\Psi\left(\Psi^{-1}\left(\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x\right)\right) \\
& \leq \Psi\left(\int_{B} \Psi^{-1}\left(\varphi\left(\left|G(u)-(G(u))_{B}\right|\right)\right) d x\right) \\
& \leq \Psi\left(C_{1} \int_{B}\left|G(u)-(G(u))_{B}\right|^{q} d x\right) \tag{2.5}\\
& \leq C_{2} \varphi\left(\left(C_{1} \int_{B}\left|G(u)-(G(u))_{B}\right|^{q} d x\right)^{1 / q}\right) \\
& \leq C_{3} \varphi\left(\left(\int_{B}\left|G(u)-(G(u))_{B}\right|^{q} d x\right)^{1 / q}\right) .
\end{align*}
$$

Using the Poincaré-type inequality for differential forms $G(u)$ and noticing that

$$
\|G(u)\|_{p, B} \leq C_{4}\|u\|_{p, B}
$$

holds for any differential form u, we obtain

$$
\begin{align*}
& \left(\int_{B}\left|G(u)-(G(u))_{B}\right|^{n p /(n-p)} d x\right)^{(n-p) / n p} \\
& \leq C_{5}\left(\int_{B}|d(G(u))|^{p} d x\right)^{1 / p} \tag{2.6}\\
& \leq C_{5}\left(\int_{B}|G(d u)|^{p} d x\right)^{1 / p} \\
& \leq C_{6}\left(\int_{B}|d u|^{p} d x\right)^{1 / p} .
\end{align*}
$$

If $1<p<n$, by assumption, we have $q<\frac{n p}{n-p}$. Then,

$$
\begin{equation*}
\left(\int_{B}\left|G(u)-(G(u))_{B}\right|^{q} d x\right)^{1 / q} \leq C_{7}\left(\int_{B}|d u|^{p} d x\right)^{1 / p} . \tag{2.7}
\end{equation*}
$$

Note that the L^{p}-norm of $\left|G(u)-(G(u))_{B}\right|$ increases with p and $\frac{n p}{n-p} \rightarrow \infty$ as $p \rightarrow n$, it follows that (2.7) still holds when $p \geq n$. Since ϕ is increasing, from (2.5) and (2.7), we obtain

$$
\begin{equation*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \leq C_{3} \varphi\left(C_{7}\left(\int_{B}|d u|^{p} d x\right)^{1 / p}\right) . \tag{2.8}
\end{equation*}
$$

Applying (2.8), (i) in Definition 2.2, Jensen's inequality, and noticing that ϕ and Φ are doubling, we have

$$
\begin{align*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x & \leq C_{3} \varphi\left(C_{7}\left(\int_{B}|d u|^{p} d x\right)^{1 / p}\right) \\
& \leq C_{3} \Phi\left(C_{8}\left(\int_{B}|d u|^{p} d x\right)\right) \tag{2.9}\\
& \leq C_{9} \int_{B} \Phi\left(|d u|^{p}\right) d x .
\end{align*}
$$

Using (i) in Definition 1.1 again yields

$$
\begin{equation*}
\int_{B} \Phi\left(|d u|^{p}\right) d x \leq C_{10} \int_{B} \varphi(|d u|) d x \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10), we obtain

$$
\begin{equation*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \leq C_{11} \int_{B} \varphi(|d u|) d x \tag{2.11}
\end{equation*}
$$

for any ball $B \subset \Omega$. Next, let $B_{2 r}=B\left(x_{0}, 2 r\right)$ be a ball with radius $2 r$ and center x_{0}, r $<t<s<2 r$. Set $\eta(x)=g\left(\left|x-x_{0}\right|\right)$, where

$$
g(\tau)=\left\{\begin{array}{cc}
1, & 0 \leq \tau \leq t \\
\text { affine, } & \tau<t<s \\
0, & \tau \geq s .
\end{array}\right.
$$

Then, $\eta \in W_{0}^{1, \infty}\left(B_{s}\right), \eta(x)=1$ on B_{t} and

$$
|d \eta(x)|=\left\{\begin{array}{c}
(s-t)^{-1}, t \leq\left|x-x_{0}\right| \leq s \tag{2.12}\\
0, \\
\text { otherwise } .
\end{array}\right.
$$

Let $v(x)=u(x)+(\eta(x))^{p}(c-u(x))$, where c is any closed form. We find that

$$
\begin{equation*}
d v=\left(1-\eta^{p}\right) d u+\eta^{p} p \frac{d \eta}{\eta}(c-u(x)) . \tag{2.13}
\end{equation*}
$$

Since ψ is an increasing convex function satisfying the Δ_{2}-condition, we obtain

$$
\begin{equation*}
\varphi(|d v|) \leq\left(1-\eta^{p}\right) \varphi(|d u|)+\eta^{p} \varphi\left(p \frac{|d \eta|}{\eta}|c-u(x)|\right) \tag{2.14}
\end{equation*}
$$

Using the definition of the k-quasi-minimizer and (2.2), it follows that

$$
\begin{align*}
\int_{B_{s}} \varphi(|d u|) d x & \leq k \int_{B_{s}} \varphi(|d v|) d x \\
& \leq k\left(\int_{B_{s} \backslash B_{t}}\left(1-\eta^{p}\right) \varphi(|d u|) d x+\int_{B_{s}} \eta^{p} \varphi\left(p \frac{|d \eta|}{\eta}|c-u(x)|\right) d x\right) \tag{2.15}\\
& \leq k\left(\int_{B_{s} \backslash B_{t}} \varphi(|d u|) d x+p^{p} \int_{B_{s}} \varphi(|d \eta||u-c|) d x\right)
\end{align*}
$$

Applying (2.15), (2.12)) and (2.3), we have

$$
\begin{align*}
\int_{B_{t}} \varphi(|d u|) d x & \leq \int_{B_{s}} \varphi(|d u|) d x \\
& \leq k\left(\int_{B_{s} \backslash B_{t}} \varphi(|d u|) d x+p^{p} \int_{B_{s}} \varphi\left(4 r \frac{|u-c|}{(s-t) 2 r}\right) d x\right) \tag{2.16}\\
& \leq k\left(\int_{B_{s} \backslash B_{t}} \varphi(|d u|) d x+\frac{(4 p r)^{p}}{(s-t)^{p}} \int_{B_{s}} \varphi\left(\frac{|u-c|}{2 r}\right) d x\right) .
\end{align*}
$$

Adding $k \int_{B_{t}} \varphi(|d u|) d x$ to both sides of inequality (2.16) yields

$$
\begin{equation*}
\int_{B_{t}} \varphi(|d u|) d x \leq \frac{k}{k+1}\left(\int_{B_{s}} \varphi(|d u|) d x+\frac{(4 p r)^{p}}{(s-t)^{p}} \int_{B_{s}} \varphi\left(\frac{|u-c|}{2 r}\right) d x\right) . \tag{2.17}
\end{equation*}
$$

In order to use Lemma 2.1, we write

$$
f(t)=\int_{B_{t}} \varphi(|d u|) d x, f(s)=\int_{B_{s}} \varphi(|d u|) d x, M=(4 p r)^{p} \int_{B_{s}} \varphi\left(\frac{|u-c|}{2 r}\right) d x
$$

and $N=0$. From (2.17), we find that the conditions of Lemma 2.1 are satisfied. Hence, using Lemma 2.1 with $\rho=r$ and $\alpha=p$, we obtain

$$
\begin{equation*}
\int_{B_{r}} \varphi(|d u|) d x \leq C_{12} \int_{B_{2 r}} \varphi\left(\frac{|u-c|}{2 r}\right) d x \tag{2.18}
\end{equation*}
$$

Note that ϕ is doubling, $B=B_{r}$ and $2 B=B_{2 r}$. Then, (3.18) can be written as

$$
\begin{equation*}
\int_{B} \varphi(|d u|) d x \leq C_{13} \int_{2 B} \varphi(|u-c|) d x . \tag{2.19}
\end{equation*}
$$

Combining (2.11) and (2.19) yields

$$
\begin{equation*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \leq C_{14} \int_{2 B} \varphi(|u-c|) d x . \tag{2.20}
\end{equation*}
$$

The proof of Theorem 2.3 has been completed.
Since each of ϕ, Φ and Ψ in Definition 2.2 is doubling, from the proof of Theorem 2.3 or directly from (2.3), we have

$$
\begin{equation*}
\int_{B} \varphi\left(\frac{\left|G(u)-(G(u))_{B}\right|}{\lambda}\right) d x \leq C \int_{2 B} \varphi\left(\frac{|u-c|}{\lambda}\right) d x \tag{2.21}
\end{equation*}
$$

for all balls B with $2 B \subset \Omega$ and any constant $\lambda>0$. From definition of the Luxemburg norm and (2.21), the following inequality with the Luxemburg norm

$$
\begin{equation*}
\left\|G(u)-(G(u))_{B}\right\|_{\varphi(B)} \leq C\|u-c\|_{\varphi(2 B)} \tag{2.22}
\end{equation*}
$$

holds under the conditions described in Theorem 2.3.
Note that in Theorem 2.3, c is any closed form. Hence, we may choose $c=0$ in Theorem 2.3 and obtain the following version of ϕ-norm inequality which may be convenient to be used.
Corollary 2.4. Let $u \in W_{\text {loc }}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be a bounded domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \leq C \int_{2 B} \varphi(|u|) d x \tag{2.23}
\end{equation*}
$$

for all balls $B=B_{r}$ with radius r and $2 B \subset \Omega$.

3. Global inequalities

In this section, we extend the local Poincaré type inequalities into the global cases in the following L^{ϕ}-averaging domains, which are extension of John domains and L^{s}-averaging domain, see $[15,16]$.

Definition 3.1[16]. Let ϕ be an increasing convex function on [$0, \infty$) with $\phi(0)=0$. We call a proper subdomain $\Omega \subset \mathbb{R}^{n}$ an L^{ϕ}-averaging domain, if $|\Omega|<\infty$ and there
exists a constant C such that

$$
\begin{equation*}
\int_{\Omega} \varphi\left(\tau\left|u-u_{B_{0}}\right|\right) d x \leq C \sup _{B \subset \Omega} \int_{B} \varphi\left(\sigma\left|u-u_{B}\right|\right) d x \tag{3.1}
\end{equation*}
$$

for some ball $B_{0} \subset \Omega$ and all u such that $\varphi(|u|) \in L_{l o c}^{1}(\Omega)$, where τ, σ are constants with $0<\tau<\infty, 0<\sigma<\infty$ and the supremum is over all balls $B \subset \Omega$.

From above definition we see that L^{s}-averaging domains and $L^{s}(\mu)$-averaging domains are special L^{ϕ}-averaging domains when $\phi(t)=t^{s}$ in Definition 3.1. Also, uniform domains and John domains are very special L^{ϕ}-averaging domains, see $[1,15,16]$ for more results about domains.

Theorem 3.2. Let $u \in W_{\text {loc }}^{1,1}\left(\Omega, \Lambda^{0}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be any bounded L^{ϕ}-averaging domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{\Omega} \varphi\left(\left|G(u)-(G(u))_{B_{0}}\right|\right) d x \leq C \int_{\Omega} \varphi(|u-c|) d x \tag{3.2}
\end{equation*}
$$

where $B_{0} \subset \Omega$ is some fixed ball and c is any closed form.
Proof. From Definition 3.1, (2.4) and noticing that ϕ is doubling, we have

$$
\begin{aligned}
\int_{\Omega} \varphi\left(\left|G(u)-(G(u))_{B_{0}}\right|\right) d x & \leq C_{1} \sup _{B \subset \Omega} \int_{B} \varphi\left(\left|G(u)-(G(u))_{B}\right|\right) d x \\
& \leq C_{1} \sup _{B \subset \Omega}\left(C_{2} \int_{2 B} \varphi(|u-c|) d x\right) \\
& \leq C_{1} \sup _{B \subset \Omega}\left(C_{2} \int_{\Omega} \varphi(|u-c|) d x\right) \\
& \leq C_{3} \int_{\Omega} \varphi(|u-c|) d x .
\end{aligned}
$$

We have completed the proof of Theorem 3.2. \square
Similar to the local inequality, the following global inequality with the Orlicz norm

$$
\begin{equation*}
\left\|G(u)-(G(u))_{B_{0}}\right\|_{\varphi(\Omega)} \leq C\|u\|_{\varphi(\Omega)} \tag{3.3}
\end{equation*}
$$

holds if all conditions in Theorem 3.2 are satisfied.
We know that any John domain is a special L^{ϕ}-averaging domain. Hence, we have the following inequality in John domain.

Theorem 3.3. Let $u \in W_{l o c}^{1,1}\left(\Omega, \Lambda^{0}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be any bounded John domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{\Omega} \varphi\left(\left|G(u)-(G(u))_{B_{0}}\right|\right) d x \leq C \int_{\Omega} \varphi(|u-c|) d x \tag{3.4}
\end{equation*}
$$

where $B_{0} \subset \Omega$ is some fixed ball and c is any closed form.
Choosing $\varphi(t)=t^{p} \log _{+}^{\alpha} t$ in Theorems 3.2, we obtain the following inequalities with the $L^{p}\left(\log _{+}^{\alpha} L\right)$-norms.

Corollary 3.4. Let $u \in W_{l o c}^{1,1}\left(\Omega, \Lambda^{0}\right)$ be a k-quasi-minimizer for the functional (2.1), $\varphi(t)=t^{p} \log _{+}^{\alpha} t, \alpha \in \mathbb{R}, q(n-p)<n p$ for $1 \leq p<q<\infty$ and G be Green's operator. Then,
there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{\Omega}\left|G(u)-(G(u))_{B_{0}}\right|^{p} \log _{+}^{\alpha}\left(\left|G(u)-(G(u))_{B_{0}}\right|\right) d x \leq C \int_{\Omega}|u-c|^{p} \log _{+}^{\alpha}(|u-c|) d x \tag{3.5}
\end{equation*}
$$

for any bounded L^{ϕ}-averaging domain Ω, where $B_{0} \subset \Omega$ is some fixed ball and c is any closed form.

We can also write (3.5) as the following inequality with the Luxemburg norm

$$
\begin{equation*}
\left\|G(u)-(G(u))_{B_{0}}\right\|_{L^{p}\left(\log _{+}^{\alpha} L\right)(\Omega)} \leq C\|u-c\|_{L^{p}\left(\log _{+}^{\alpha} L\right)(\Omega)} \tag{3.6}
\end{equation*}
$$

provided the conditions in Corollary 3.5 are satisfied.
Similar to the local case, we may choose $c=0$ in Theorem 3.2 and obtain he following version of L^{ϕ}-norm inequality.

Corollary 3.5. Let $u \in W_{\text {loc }}^{1,1}\left(\Omega, \Lambda^{0}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be any bounded L^{ϕ}-averaging domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{\Omega} \varphi\left(\left|G(u)-(G(u))_{B_{0}}\right|\right) d x \leq C \int_{\Omega} \varphi(|u|) d x \tag{3.2a}
\end{equation*}
$$

where $B_{0} \subset \Omega$ is some fixed ball.

4. Applications

It should be noticed that both of the local and global norm inequalities for Green's operator proved in this paper can be used to estimate other operators applied to a k-quasi-minimizer. Here, we give an example using Theorem 2.3 to estimate the projection operator H. Using the basic Poincaré inequality to $\Delta G(u)$ and noticing that d commute with Δ and G, we can prove the following Lemma 4.1
Lemma 4.1. Let $u \in D^{\prime}\left(\Omega, \Lambda^{l}\right), l=0,1, \ldots, n-1$, be an A-harmonic tensor on Ω. Assume that $\rho>1$ and $1<s<\infty$. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\left\|\Delta G(u)-(\Delta G(u))_{B}\right\|_{s, B} \leq \operatorname{Cdiam}(B)\|d u\|_{s, \rho B} \tag{4.1}
\end{equation*}
$$

for any ball B with $\rho B \subset \Omega$.
Using Lemma 4.1 and the method developed in the proof of Theorem 2.3, we can prove the following inequality for the composition of Δ and G.
Theorem 4.2. Let $u \in W_{\text {loc }}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be a bounded domain and G be Green's operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{B} \varphi\left(\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x \leq C \int_{2 B} \varphi(|u-c|) d x \tag{4.2}
\end{equation*}
$$

for all balls $B=B_{r}$ with radius r and $2 B \subset \Omega$, where c is any closed form.
Now, we are ready to develop the estimate for the projection operator applied to a k -quasi-minimizer for the functional defined by (2.1).

Theorem 4.3. Let $u \in W_{l o c}^{1,1}\left(\Omega, \Lambda^{\ell}\right)$ be a k-quasi-minimizer for the functional (2.1), ϕ be a Young function in the class $G(p, q, C), 1 \leq p<q<\infty, C \geq 1$ and $q(n-p)<n p, \Omega$ be a bounded domain and H be projection operator. Then, there exists a constant C, independent of u, such that

$$
\begin{equation*}
\int_{B} \varphi\left(\left|H(u)-(H(u))_{B}\right|\right) d x \leq C \int_{2 B} \varphi(|u-c|) d x \tag{4.3}
\end{equation*}
$$

for all balls $B=B_{r}$ with radius r and $2 B \subset \Omega$, where c is any closed form.
Proof. Using the Poisson's equation $\Delta G(u)=u-H(u)$ and the fact that ϕ is convex and doubling as well as Theorem 4.2, we have

$$
\begin{align*}
\int_{B} \varphi\left(\left|H(u)-(H(u))_{B}\right|\right) d x & \leq \int_{B} \varphi\left(\left|u-u_{B}\right|+\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x \\
& =\int_{B} \varphi\left((1 / 2) 2\left|u-u_{B}\right| d x+(1 / 2) 2\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x \\
& \leq \frac{1}{2} \int_{B} \varphi\left(2\left|u-u_{B}\right|\right) d x+\frac{1}{2} \int_{B} \varphi\left(2\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x \\
& \leq \frac{C_{1}}{2} \int_{B} \varphi\left(\left|u-u_{B}\right|\right) d x+\frac{C_{2}}{2} \int_{B} \phi\left(\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x \tag{4.4}\\
& \leq \frac{C_{3}}{2}\left(\int_{B} \varphi\left(\left|u-u_{B}\right|\right) d x+\int_{B} \varphi\left(\left|\Delta G(u)-(\Delta G(u))_{B}\right|\right) d x\right) \\
& \leq \frac{C_{3}}{2}\left(C_{4} \int_{\sigma B} \varphi(|u-c|) d x+C_{5} \int_{\sigma B} \varphi(|u-c|) d x\right) \\
& \leq C_{6} \int_{\sigma B} \varphi(|u-c|) d x,
\end{align*}
$$

that is

$$
\int_{B} \varphi\left(\left|H(u)-(H(u))_{B}\right|\right) d m \leq C \int_{\sigma B} \varphi(|u-c|) d m .
$$

We have completed the proof of Theorem 4.3. \square
Remark. (i) We know that the L^{s}-averaging domains uniform domains are the special L^{ϕ}-averaging domains. Thus, Theorems 3.2 also holds if Ω is $\tan L^{s}$-averaging domain or uniform domain. (ii) Theorem 4.3 can also be extended into the global case in L^{ϕ} (m)-averaging domain.

Author details

'Department of Mathematics, Texas A\&M University-Kingsville, Kingsville, TX 78363, USA ${ }^{2}$ Department of Mathematics, Seattle University, Seattle, WA 98122, USA

Received: 17 May 2011 Accepted: 21 September 2011 Published: 21 September 2011

References

1. Agarwal, RP, Ding, S, Nolder, CA: Inequalities for differential forms. Springer-Verlag, New York (2009)
. Warner, FW: Foundations of differentiable manifolds and Lie groups. Springer-Verlag, New York (1983)
2. Ding, S: Two-weight Caccioppoli inequalities for solutions of nonhomogeneous A-harmonic equations on Riemannian manifolds. Proc Amer Math Soc. 132, 2367-2375 (2004). doi:10.1090/S0002-9939-04-07347-2
3. Xing, Y: Weighted integral inequalities for solutions of the A-harmonic equation. J Math Anal Appl. 279, 350-363 (2003). doi:10.1016/S0022-247X(03)00036-2
4. Nolder, CA: Hardy-Littlewood theorems for A-harmonic tensors. Illinois J Math. 43, 613-631 (1999)
5. Stein, EM: Singular integrals and differentiability properties of functions. Princton University Press, Princton (1970)
6. Ding, S: Integral estimates for the Laplace-Beltrami and Green's operators applied to differential forms on manifolds. Zeitschrift fur Analysis und ihre Anwendungen (Journal of Analysis and its Applications). 22, 939-957 (2003)
7. Ding, S: Norm estimates for the maximal operator and Green's operator. Dyn Contin Discrete Impuls Syst Ser A Math Anal. 16, 72-78 (2009)
8. Wang, Y, Wu, C: Sobolev imbedding theorems and Poincaré inequalities for Green's operator on solutions of the nonhomogeneous A-harmonic equation. Computers and Mathematics with Applications. 47, 1545-1554 (2004), doi:10.1016/j.camwa.2004.06.006
9. Scott, C: L^{p}-theory of differntial forms on manifolds. Trans Amer Soc. 347, 2075-2096 (1995). doi:10.2307/2154923
10. Xing, Y, Wu, C: Global weighted inequalities for operators and harmonic forms on manifolds. J Math Anal Appl. 294, 294-309 (2004). doi:10.1016/j.jmaa.2004.02.018
11. Giaquinta, M, Giusti, E: On the regularity of the minima of variational integrals. Acta Math. 148, 31-46 (1982). doi:10.1007/BF02392725
12. Sbordone, C: On some integral inequalities and their applications to the calculus of variations. Boll Un Mat Ital., Analisi Funzionali e Applicazioni. 5, 7394 (1986)
13. Buckley, SM, Koskela, P: Orlicz-Hardy inequalities. Illinois J Math. 48, 787-802 (2004)
14. Staples, SG: L^{p}-averaging domains and the Poincaré inequality. Ann Acad Sci Fenn, Ser Al Math. 14, 103-127 (1989)
15. Ding, $S: L^{\varphi}(\mu)$-averaging domains and the quasihyperbolic metric. Computers and Mathematics with Applications. 47, 1611-1618 (2004). doi:10.1016/j.camwa.2004.06.016
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: * Correspondence: sding@seattleu. edu
 ${ }^{2}$ Department of Mathematics, Seattle University, Seattle, WA 98122, USA
 Full list of author information is available at the end of the article

[^1]: doi:10.1186/1029-242X-2011-66
 Cite this article as: Agarwal and Ding: Inequalities for Green's operator applied to the minimizers. Journal of Inequalities and Applications 2011 2011:66.

