On nonlinear stability in various random normed spaces

John Michael Rassias ${ }^{1}$, Reza Saadati $i^{2^{*}}$, Ghadir Sadeghi ${ }^{3}$ and J Vahidi ${ }^{4}$

* Correspondence: RSAADATI@EML. CC
${ }^{2}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Full list of author information is available at the end of the article

Abstract

In this article, we prove the nonlinear stability of the quartic functional equation

$$
\begin{aligned}
16 f(x+4 y)+f(4 x-y)= & 306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right] \\
& +136 f(x-y)-1394 f(x+y)+425 f(y)-1530 f(x)
\end{aligned}
$$

in the setting of random normed spaces Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean space, the theory of fixed point theory, the theory of intuitionistic spaces and the theory of functional equations are also presented in the article.
Keywords: generalized Hyers-Ulam stability, quartic functional equation, random normed space, intuitionistic random normed space

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [1] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [2]. Subsequently, this result of Hyers was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The article of Rassias [4] has provided a lot of influence in the development of what we now call generalized Llam-Hyers stability of functional equations. We refer the interested readers for more information on such problems to the article [5-17].
Recently, Alsina [18], Chang, et al. [19], Mirmostafaee et al. [20], [21], Miheț and Radu [22], Miheț et al. [23], [24], [25], [26], Baktash et al. [27], Eshaghi et al. [28], Saadati et al. [29], [30] investigated the stability in the settings of fuzzy, probabilistic, and random normed spaces.
In this article, we study the stability of the following functional equation

$$
\begin{align*}
16 f(x+4 y)+f(4 x-y)= & 306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right] \tag{1.1}\\
& +136 f(x-y)-1394 f(x+y)+425 f(y)-1530 f(x)
\end{align*}
$$

in the various random normed spaces via different methods. Since $a x^{4}$ is a solution of above functional equation, we say it quartic functional equation.

[^0]
2. Preliminaries

In this section, we recall some definitions and results which will be used later on in the article.
A triangular norm (shorter t-norm) is a binary operation on the unit interval $[0,1]$, i.e., a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ such that for all $a, b, c \in[0,1]$ the following four axioms satisfied:
(i) $T(a, b)=T(b, a)$ (commutativity);
(ii) $T(a,(T(b, c)))=T(T(a, b), c)$ (associativity);
(iii) $T(a, 1)=a$ (boundary condition);
(iv) $T(a, b) \leq T(a, c)$ whenever $b \leq c$ (monotonicity).

Basic examples are the Lukasiewicz t-norm $T_{L}, T_{L}(a, b)=\max (a+b-1,0) \forall a, b \in$ $[0,1]$ and the t-norms T_{P}, T_{M}, T_{D}, where $T_{P}(a, b):=a b, T_{M}(a, b):=\min \{a, b\}$,

$$
T_{D}(a, b):= \begin{cases}\min (a, b), & \text { if } \max (a, b)=1 \\ 0, & \text { otherwise }\end{cases}
$$

If T is a t-norm then $x_{T}^{(n)}$ is defined for every $x \in[0,1]$ and $n \in N \cup\{0\}$ by 1 , if $n=$ 0 and $T\left(x_{T}^{(n-1)}, x\right)$, if $n \geq 1$. A t-norm T is said to be of Hadžić-type (we denote by $T \in \mathcal{H})$ if the family $\left(x_{T}^{(n)}\right)_{n \in N}$ is equicontinuous at $x=1$ (cf. [31]).

Other important triangular norms are (see [32]):
-the Sugeno-Weber family $\left\{T_{\lambda}^{S W}\right\}_{\lambda \in[-1, \infty]}$ is defined by $T_{-1}^{S W}=T_{D}, T_{\infty}^{S W}=T_{P}$ and

$$
T_{\lambda}^{S W}(x, y)=\max \left(0, \frac{x+y-1+\lambda x y}{1+\lambda}\right)
$$

if $\lambda \in(-1, \infty)$.
-the Domby family $\left\{T_{\lambda}^{D}\right\}_{\lambda \in[0, \infty]}$, defined by T_{D}, if $\lambda=0, T_{M}$, if $\lambda=\infty$ and

$$
T_{\lambda}^{D}(x, y)=\frac{1}{1+\left(\left(\frac{1-x}{x}\right)^{\lambda}+\left(\frac{1-y}{y}\right)^{\lambda}\right)^{1 / \lambda}}
$$

if $\lambda \in(0, \infty)$.
-the Aczel-Alsina family $\left\{T_{\lambda}^{A A}\right\}_{\lambda \in[0, \infty]}$, defined by T_{D}, if $\lambda=0, T_{M}$, if $\lambda=\infty$ and

$$
T_{\lambda}^{A A}(x, y)=e^{-\left(|\log x|^{\lambda}+|\log y|^{\lambda}\right)^{1 / \lambda}}
$$

if $\lambda \in(0, \infty)$.
A t-norm T can be extended (by associativity) in a unique way to an n-array operation taking for $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$ the value $T\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
\mathrm{T}_{i=1}^{0} x_{i}=1, \mathrm{~T}_{i=1}^{n} x_{i}=T\left(\mathrm{~T}_{i=1}^{n-1} x_{i}, x_{n}\right)=T\left(x_{1}, \ldots, x_{n}\right)
$$

T can also be extended to a countable operation taking for any sequence $\left(x_{n}\right)_{n \in N}$ in $[0,1]$ the value

$$
\begin{equation*}
\mathrm{T}_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{n} x_{i} \tag{2.1}
\end{equation*}
$$

The limit on the right side of (2.1) exists since the sequence $\left\{\mathrm{T}_{i=1}^{n} x_{i}\right\}_{n \in \mathbb{N}}$ is nonincreasing and bounded from below.

Proposition 2.1. [32] (i) For $T \geq T_{L}$ the following implication holds:

$$
\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty
$$

(ii) If T is of Hadžić-type then

$$
\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{\infty} x_{n+i}=1
$$

for every sequence $\left\{x_{n}\right\}_{n \in N}$ in $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$.
(iii) If $T \in\left\{T_{\lambda}^{A A}\right\}_{\lambda \in(0, \infty)} \cup\left\{T_{\lambda}^{D}\right\}_{\lambda \in(0, \infty)}$, then

$$
\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)^{\alpha}<\infty
$$

(iv) If $T \in\left\{T_{\lambda}^{S W}\right\}_{\lambda \in[-1, \infty)}$, then

$$
\lim _{n \rightarrow \infty} \mathrm{~T}_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty
$$

Definition 2.2. [33] A random normed space (briefly, RN-space) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm, and μ is a mapping from X into D^{+}such that, the following conditions hold:
(RN1) $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
(RN2) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X, \alpha \neq 0$;
(RN3) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y, z \in X$ and $t, s \geq 0$.

Definition 2.3. Let (X, μ, T) be an RN -space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if, for every $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x}(\varepsilon)>1-\lambda$ whenever $n \geq N$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called Cauchy if, for every $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x_{m}}(\varepsilon)>1-\lambda$ whenever $n \geq m \geq N$.
(3) An RN -space (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent to a point in X.
Theorem 2.4. [34]If (X, μ, T) is an $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$ almost everywhere.

3. Non-Archimedean random normed space

By a non-Archimedean field we mean a field \mathcal{K} equipped with a function (valuation) $|\cdot|$ from K into $[0, \infty]$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$, and $|r+s| \leq \max \{\mid$ $r|,|s|\}$ for all $r, s \in \mathcal{K}$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the mapping $|\cdot|$ taking everything but 0 into 1 and $|0|=0$. Let \mathcal{X} be a vector space over a field \mathcal{K} with a non-Archimedean non-trivial valuation $|\cdot|$.

A function $\|\cdot\|: \mathcal{X} \rightarrow[0, \infty]$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) for any $r \in \mathcal{K}, x \in \mathcal{X},\|r x\|=\|r\|\|x\|$;
(iii) the strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in \mathcal{X})
$$

Then $(\mathcal{X},\|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\} \quad(n>m)
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a nonArchimedean normed space. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

In 1897, Hensel [35] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. Fix a prime number p. For any non-zero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on Q. The completion of Q with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by Q_{p}, which is called the p-adic number field.

Throughout the article, we assume that \mathcal{X} is a vector space and \mathcal{Y} is a complete nonArchimedean normed space.

Definition 3.1. A non-Archimedean random normed space (briefly, non-Archimedean RN -space) is a triple (\mathcal{X}, μ, T), where X is a linear space over a non-Archimedean field \mathcal{K}, T is a continuous t-norm, and μ is a mapping from X into D^{+}such that the following conditions hold:
(NA-RN1) $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
(NA-RN2) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in \mathcal{X}, t>0, \alpha \neq 0$;
(NA-RN3) $\mu_{x+y}(\max \{t, s\}) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y, z \in \mathcal{X}$ and $t, s \geq 0$.
It is easy to see that if (NA-RN3) holds then so is
(RN3) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$.

As a classical example, if $(\mathcal{X},\|\|$.$) is a non-Archimedean normed linear space, then$ the triple $\left(\mathcal{X}, \mu, T_{M}\right)$, where

$$
\mu_{x}(t)=\left\{\begin{array}{l}
0 t \leq\|x\| \\
1 t>\|x\|
\end{array}\right.
$$

is a non-Archimedean RN -space.
Example 3.2. Let $(\mathcal{X},\|\|$.$) be is a non-Archimedean normed linear space. Define$

$$
\mu_{x}(t)=\frac{t}{t+\|x\|}, \quad \forall x \in \mathcal{X} \quad t>0
$$

Then $\left(\mathcal{X}, \mu, T_{M}\right)$ is a non-Archimedean RN-space.
Definition 3.3. Let (\mathcal{X}, μ, T) be a non-Archimedean RN -space. Let $\left\{x_{n}\right\}$ be a sequence in \mathcal{X}. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in \mathcal{X}$ such that

$$
\lim _{n \rightarrow \infty} \mu_{x_{n}-x}(t)=1
$$

for all $t>0$. In that case, x is called the limit of the sequence $\left\{x_{n}\right\}$.
A sequence $\left\{x_{n}\right\}$ in \mathcal{X} is called Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and all $p>0$ we have $\mu_{x_{n+p}-x_{n}}(t)>1-\varepsilon$.
If each Cauchy sequence is convergent, then the random norm is said to be complete and the non-Archimedean RN-space is called a non-Archimedean random Banach space.
Remark 3.4. [36] Let $\left(\mathcal{X}, \mu, T_{M}\right)$ be a non-Archimedean RN -space, then

$$
\mu_{x_{n+p}-x_{n}}(t) \geq \min \left\{\mu_{x_{n+j+1}-x_{n+j}}(t): j=0,1,2, \ldots, p-1\right\}
$$

So, the sequence $\left\{x_{n}\right\}$ is Cauchy if for each $\varepsilon>0$ and $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ we have

$$
\mu_{x_{n+1}-x_{n}}(t)>1-\varepsilon .
$$

4. Generalized Ulam-Hyers stability for a quartic functional equation in nonArchimedean RN-spaces

Let \mathcal{K} be a non-Archimedean field, \mathcal{X} a vector space over \mathcal{K} and let (\mathcal{Y}, μ, T) be a nonArchimedean random Banach space over \mathcal{K}.
We investigate the stability of the quartic functional equation

$$
\begin{aligned}
16 f(x+4 y)+f(4 x-y) & =306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right] \\
& +136 f(x-y)-1394 f(x+y)+425 f(y)-1530 f(x)
\end{aligned}
$$

where f is a mapping from \mathcal{X} to \mathcal{Y} and $f(0)=0$.
Next, we define a random approximately quartic mapping. Let Ψ be a distribution function on $\mathcal{X} \times \mathcal{X} \times[0, \infty]$ such that $\Psi(x, y, \cdot)$ is symmetric, nondecreasing and

$$
\Psi(c x, c x, t) \geq \Psi\left(x, x, \frac{t}{|c|}\right) \quad(x \in \mathcal{X}, \quad c \neq 0)
$$

Definition 4.1. A mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ is said to be Ψ-approximately quartic if

$$
\begin{align*}
& \mu_{16 f(x+4 y)+f(4 x-y)-306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right]-136 f(x-y)+1394 f(x+y)-425 f(y)+1530 f(x)}(t \tag{4.1}\\
& \quad \geq \Psi(x, y, t) \quad(x, y \in \mathcal{X}, \quad t>0) .
\end{align*}
$$

In this section, we assume that $4 \neq 0$ in \mathcal{K} (i.e., characteristic of \mathcal{K} is not 4). Our main result, in this section, is the following:
Theorem 4.2. Let $\mathcal{K} b e$ a non-Archimedean field, \mathcal{X} a vector space over \mathcal{K} and let (\mathcal{Y}, μ, T) be a non-Archimedean random Banach space over \mathcal{K}. Let $f: \mathcal{X} \rightarrow \mathcal{Y} b e$ a Ψ approximately quartic mapping. If for some $\alpha \in \mathbb{R}, \alpha>0$, and some integer $k, k>3$ with $\left|4^{k}\right|<\alpha$,

$$
\begin{equation*}
\Psi\left(4^{-k} x, 4^{-k} y, t\right) \geq \Psi(x, y, \alpha t) \quad(x \in \mathcal{X}, \quad t>0) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{~T}_{j=n}^{\infty} M\left(x, \frac{\alpha^{j} t}{|4|^{k j}}\right)=1 \quad(x \in \mathcal{X}, \quad t>0) \tag{4.3}
\end{equation*}
$$

then there exists a unique quartic mapping $\mathrm{Q}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\mu_{f(x)-Q(x)}(t) \geq \mathrm{T}_{i=1}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{|4|^{k i}}\right) \tag{4.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where

$$
M(x, t):=T\left(\Psi(x, 0, t), \Psi(4 x, 0, t), \cdots, \Psi\left(4^{k-1} x, 0, t\right)\right) \quad(x \in \mathcal{X}, \quad t>0)
$$

Proof. First, we show by induction on j that for each $x \in \mathcal{X}, t>0$ and $j \geq 1$,

$$
\begin{equation*}
\mu_{f\left(4^{j} x\right)-25 \sigma^{j} f(x)}(t) \geq M_{j}(x, t):=T\left(\Psi(x, 0, t), \cdots, \Psi\left(4^{j-1} x, 0, t\right)\right) \tag{4.5}
\end{equation*}
$$

Putting $y=0$ in (4.1), we obtain

$$
\mu_{f(4 x)-256 f(x)}(t) \geq \Psi(x, 0, t) \quad(x \in \mathcal{X}, \quad t>0)
$$

This proves (4.5) for $j=1$. Assume that (4.5) holds for some $j \geq 1$. Replacing y by 0 and x by $4^{j} x$ in (4.1), we get

$$
\mu_{f\left(4^{j+1} x\right)-256 f\left(4^{j} x\right)}(t) \geq \Psi\left(4^{j} x, 0, t\right) \quad(x \in \mathcal{X}, \quad t>0)
$$

Since $|256| \leq 1$,

$$
\begin{aligned}
\mu_{f\left(4^{j+1} x\right)-25 \sigma^{j+1} f(x)}(t) & \geq T\left(\mu_{f\left(4^{j+1} x\right)-256 f\left(4^{j} x\right)}(t), \mu_{256 f\left(4^{j} x\right)-25 \sigma^{j+1} f(x)}(t)\right) \\
& =T\left(\mu_{f\left(4^{j+1} x\right)-256 f\left(4^{j} x\right)}(t), \mu_{f\left(4^{j} x\right)-25 \sigma^{j} f(x)}\left(\frac{t}{|256|}\right)\right) \\
& \geq T\left(\mu_{f\left(4^{j+1} x\right)-256 f\left(4^{j} x\right)}(t), \mu_{f\left(4^{j} x\right)-25 \sigma^{j} f(x)}(t)\right) \\
& \geq T\left(\Psi\left(4^{j} x, 0, t\right), M_{j}(x, t)\right) \\
& =M_{j+1}(x, t)
\end{aligned}
$$

for all $x \in \mathcal{X}$. Thus (4.5) holds for all $j \geq 1$. In particular

$$
\begin{equation*}
\mu_{f\left(4^{k} x\right)-256^{k} f(x)}(t) \geq M(x, t) \quad(x \in \mathcal{X}, \quad t>0) . \tag{4.6}
\end{equation*}
$$

Replacing x by $4^{-(k n+k)} x$ in (4.6) and using inequality (4.2), we obtain

$$
\begin{align*}
\mu_{f\left(\frac{x}{4^{k n}}\right)-256^{k} f\left(\frac{x}{4^{k n+k}}\right)}(t) & \geq M\left(\frac{x}{4^{k n+k}}, t\right) \tag{4.7}\\
& \geq M\left(x, \alpha^{n+1} t\right) \quad(x \in \mathcal{X}, \quad t>0, \quad n=0,1,2, \ldots) .
\end{align*}
$$

Then

$$
\mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-\left(4^{4 k}\right)^{n+1} f\left(\frac{x}{\left(4^{k}\right)^{n+1}}\right)}(t) \geq M\left(x, \frac{\alpha^{n+1}}{\mid\left(4^{4 k}\right)^{n \mid}} t\right) \quad(x \in \mathcal{X}, \quad t>0, \quad n=0,1,2, \ldots) .
$$

Hence,

$$
\begin{aligned}
& \mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-\left(4^{4 k}\right)^{n+p} f\left(\frac{x}{\left(4^{k}\right)^{n+p}}\right)}(t) \\
& \quad \geq T_{j=n}^{n+p}\left(\mu_{\left(4^{4 k}\right)^{j} f\left(\frac{x}{\left(4^{k}\right)^{j}}\right)-\left(4^{4 k}\right)^{j+p} f\left(\frac{x}{\left(4^{k}\right)^{j+p}}\right)}(t)\right) \\
& \quad \geq T_{j=n}^{n+p} M\left(x, \frac{\alpha^{j+1}}{\left|\left(4^{4 k}\right)^{j}\right|} t\right) \\
& \quad \geq T_{j=n}^{n+p} M\left(x, \frac{\alpha^{j+1}}{\left|\left(4^{k}\right)^{j}\right|} t\right) \quad(x \in \mathcal{X}, \quad t>0, \quad n=0,1,2, \ldots) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j+1}}{\left|\left(4^{k}\right)^{j}\right|} t\right)=1 \quad(x \in \mathcal{X}, \quad t>0),\left\{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)\right\}_{n \in N^{\prime}} \quad$ is a
Cauchy sequence in the non-Archimedean random Banach space (\mathcal{Y}, μ, T). Hence, we can define a mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-Q(x)}(t)=1 \quad(x \in X, \quad t>0) \tag{4.8}
\end{equation*}
$$

Next, for each $n \geq 1, x \in \mathcal{X}$ and $t>0$,

$$
\begin{aligned}
\mu_{f(x)-\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)}(t) & =\mu_{\sum_{i=0}^{n-1}\left(4^{4 k}\right)^{i} f\left(\frac{x}{\left(4^{k}\right)^{i}}\right)-\left(4^{4 k}\right)^{i+1} f\left(\frac{x}{\left(4^{k}\right)^{i+1}}\right)}(t) \\
& \geq T_{i=0}^{n-1}\left(\mu_{\left(4^{4 k}\right)^{i} f\left(\frac{x}{\left(4^{k}\right)^{i}}\right)-\left(4^{4 k}\right)^{i+1} f\left(\frac{x}{\left(4^{k}\right)^{i+1}}\right)}(t)\right) \\
& \geq T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1} t}{\left|4^{4 k}\right|^{i}}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mu_{f(x)-Q(x)}(t) & \geq T\left(\mu_{f(x)-\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)}(t), \mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-Q(x)}(t)\right) \\
& \geq T\left(T_{i=0}^{n-1} M\left(x, \frac{\alpha^{i+1} t}{\left|4^{4 k}\right|^{i}}\right), \mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-Q(x)}(t)\right) .
\end{aligned}
$$

By letting $n \rightarrow \infty$, we obtain

$$
\mu_{f(x)-Q(x)}(t) \geq T_{i=1}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{\left|4^{k}\right|^{i}}\right)
$$

This proves (4.4).
As T is continuous, from a well-known result in probabilistic metric space (see e.g., [[34], Chapter 12]), it follows that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mu_{\left(4^{k}\right)^{n} \cdot 16 f\left(4^{-k n}(x+4 y)\right)+\left(4^{k}\right)^{n} f\left(4^{-k n}(4 x-y)\right)-306\left[\left(4^{k}\right)^{n} \cdot 9 f\left(4^{-k n}\left(x+\frac{y}{3}\right)\right)+\left(4^{k}\right)^{n} f\left(4^{-k n}(x+2 y)\right)\right]}^{\quad-136\left(4^{k}\right)^{n} f\left(4^{-k n}(x-y)\right)+1394\left(4^{k}\right)^{n} f\left(4^{-k n}(x+y)\right)-425\left(4^{k}\right)^{n} f\left(4^{-k n} y\right)+1530\left(4^{k}\right)^{n} f\left(4^{-k n} x\right)}(t) \\
& =\mu_{16 Q(x+4 y)+Q(4 x-y)-306\left[9 Q\left(x+\frac{y}{3}\right)+Q(x+2 y)\right]-136 Q(x-y)+1394 Q(x+y)-425 Q(y)+1530 Q(x)}\left(\begin{array}{l}
\end{array}\right)
\end{align*}
$$

for almost all $t>0$.
On the other hand, replacing x, y by $4^{-k n} x, 4^{-k n} y$, respectively, in (4.1) and using (NARN2) and (4.2), we get

$$
\begin{aligned}
& \mu_{\left(4^{k}\right)^{n} \cdot 16 f\left(4^{-k n}(x+4 y)\right)+\left(4^{k}\right)^{n} f\left(4^{-k n}(4 x-y)\right)-306\left[\left(4^{k}\right)^{n} \cdot 9 f\left(4^{-k n}\left(x+\frac{y}{3}\right)\right)+\left(4^{k}\right)^{n} f\left(4^{-k n}(x+2 y)\right)\right]} \begin{array}{l}
-136\left(4^{k}\right)^{n} f\left(4^{-k n}(x-y)\right)+1394\left(4^{k}\right)^{n} f\left(4^{-k n}(x+y)\right)-425\left(4^{k}\right)^{n} f\left(4^{-k n} y\right)+1530\left(4^{k}\right)^{n} f\left(4^{-k n} x\right)(t) \\
\quad \geq \Psi\left(4^{-k n} x, 4^{-k n} y, \frac{t}{\left|4^{k}\right|^{n}}\right) \geq \Psi\left(x, y, \frac{\alpha^{n} t}{\left|4^{k}\right|^{n}}\right)
\end{array}
\end{aligned}
$$

for all $x, y \in \mathcal{X}$ and all $t>0$. Since $\lim _{n \rightarrow \infty} \Psi\left(x, y, \frac{\alpha^{n} t}{\left|4^{k}\right|^{n}}\right)=1$, we infer that Q is a quartic mapping.

If $Q^{\prime}: \mathcal{X} \rightarrow \mathcal{Y}$ is another quartic mapping such that $\mu_{Q^{\prime}(x)-f(x)}(t) \geq M(x, t)$ for all $x \in \mathcal{X}$ and $t>0$, then for each $n \in N, x \in \mathcal{X}$ and $t>0$,

$$
\left.\mu_{Q(x)-Q^{\prime}(x)}(t) \geq T\left(\mu_{Q(x)-\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)}(t), \mu_{\left(4^{4 k}\right)^{n} f\left(\frac{x}{\left(4^{k}\right)^{n}}\right)-Q^{\prime}(x)}(t), t\right)\right) .
$$

Thanks to (4.8), we conclude that $Q=Q^{\prime}$.
Corollary 4.3. Let $\mathcal{K} b e$ a non-Archimedean field, $\mathcal{X} a$ vector space over \mathcal{K} and let (\mathcal{Y}, μ, T) be a non-Archimedean random Banach space over Kunder a t-norm $T \in \mathcal{H}$. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a Ψ-approximately quartic mapping. If, for some $\alpha \in \mathbb{R}, \alpha>0$, and some integer $k, k>3$, with $\left|4^{k}\right|<\alpha$,

$$
\Psi\left(4^{-k} x, 4^{-k} y, t\right) \geq \Psi(x, y, \alpha t) \quad(x \in \mathcal{X}, \quad t>0)
$$

then there exists a unique quartic mapping $\mathrm{Q}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\mu_{f(x)-Q(x)}(t) \geq T_{i=1}^{\infty} M\left(x, \frac{\alpha^{i+1} t}{|4|^{k i}}\right)
$$

for all $x \in \mathcal{X}$ and all $t>0$, where

$$
M(x, t):=T\left(\Psi(x, 0, t), \Psi(4 x, 0, t), \cdots, \Psi\left(4^{k-1} x, 0, t\right)\right) \quad(x \in \mathcal{X}, \quad t>0)
$$

Proof. Since

$$
\lim _{n \rightarrow \infty} M\left(x, \frac{\alpha^{j} t}{|4|^{k j}}\right)=1 \quad(x \in \mathcal{X}, \quad t>0)
$$

and T is of Hadžić type, from Proposition 2.1, it follows that

$$
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\alpha^{j} t}{|4|^{k j}}\right)=1 \quad(x \in \mathcal{X}, \quad t>0)
$$

Now we can apply Theorem 4.2 to obtain the result. \square
Example 4.4. Let $\left(\mathcal{X}, \mu, T_{M}\right)$ non-Archimedean random normed space in which

$$
\mu_{x}(t)=\frac{t}{t+\|x\|}, \quad \forall x \in \mathcal{X}, \quad t>0
$$

and $\left(\mathcal{Y}, \mu, T_{M}\right)$ a complete non-Archimedean random normed space (see Example 3.2). Define

$$
\Psi(x, y, t)=\frac{t}{1+t} .
$$

It is easy to see that (4.2) holds for $\alpha=1$. Also, since

$$
M(x, t)=\frac{t}{1+t^{\prime}}
$$

we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T_{M, j=n}^{\infty} M\left(x, \frac{\alpha^{j} t}{|4|^{k j}}\right) & =\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} T_{M, j=n}^{m} M\left(x, \frac{t}{|4|^{k j}}\right)\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left(\frac{t}{t+\left|4^{k}\right|^{n}}\right) \\
& =1, \quad \forall x \in \mathcal{X}, \quad t>0 .
\end{aligned}
$$

Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a Ψ-approximately quartic mapping. Thus all the conditions of Theorem 4.2 hold and so there exists a unique quartic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\mu_{f(x)-Q(x)}(t) \geq \frac{t}{t+\left|4^{k}\right|}
$$

5. Fixed point method for random stability of the quartic functional equation

In this section, we apply a fixed point method for achieving random stability of the quartic functional equation. The notion of generalized metric space has been introduced by Luxemburg [37], by allowing the value $+\infty$ for the distance mapping. The following lemma (Luxemburg-Jung theorem) will be used in the proof of Theorem 5.3.
Lemma 5.1. [38]. Let (X, d) be a complete generalized metric space and let $A: X \rightarrow$ X be a strict contraction with the Lipschitz constant k such that $d\left(x_{0}, A\left(x_{0}\right)\right)<+\infty$ for some $x_{0} \in X$. Then A has a unique fixed point in the set $Y:=\left\{y \in X, d\left(x_{0}, y\right)<\infty\right\}$ and the sequence $\left(A^{n}(x)\right)_{n \in N}$ converges to the fixed point x^{*} for every $x \in Y$. Moreover, $d\left(x_{0}\right.$, $\left.A\left(x_{0}\right)\right) \leq \delta$ implies $d\left(x^{*}, x_{0}\right) \leq \frac{\delta}{1-k}$.
Let X be a linear space, $\left(Y, v, T_{M}\right)$ a complete RN -space and let G be a mapping from $X \times R$ into $[0,1]$, such that $G(x,.) \in D^{+}$for all x. Consider the set $E:=\{g: X \rightarrow$ $Y, g(0)=0\}$ and the mapping d_{G} defined on $E \times E$ by

$$
d_{G}(g, h)=\inf \left\{u \in R^{+}, v_{g(x)-h(x)}(u t) \geq G(x, t) \text { for all } x \in X \text { and } t>0\right\}
$$

where, as usual, $\inf \varnothing=+\infty$. The following lemma can be proved as in [22]:
Lemma 5.2. cf. $[22,39] d_{G}$ is a complete generalized metric on E.
Theorem 5.3. Let X be a real linear space, $t f$ a mapping from X into a complete $R N$ space $\left(Y, \mu, T_{M}\right)$ with $f(0)=0$ and let $\Phi: X^{2} \rightarrow D^{+}$be a mapping with the property

$$
\begin{equation*}
\exists \alpha \in(0,256): \Phi_{4 x, 4 y}(\alpha t) \geq \Phi_{x, y}(t), \forall x, y \in X, \quad \forall t>0 . \tag{5.1}
\end{equation*}
$$

If

$$
\begin{align*}
& \mu_{16 f(x+4 y)+f(4 x-y)-306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right]-136 f(x-y)+1394 f(x+y)-425 f(y)+1530 f(x)} \tag{5.2}\\
& \quad \geq \Phi_{x, y}(t), \quad \forall x, y \in X
\end{align*}
$$

then there exists a unique quartic mapping $g: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{g(x)-f(x)}(t) \geq \Phi_{x, 0}(M t), \quad \forall x \in X, \quad \forall t>0 \tag{5.3}
\end{equation*}
$$

where

$$
M=(256-\alpha)
$$

Moreover,

$$
g(x)=\lim _{n \rightarrow \infty} \frac{f\left(4^{n} x\right)}{4^{4 n}}
$$

Proof. By setting $y=0$ in (5.2), we obtain

$$
\mu_{f(4 x)-256 f(x)}(t) \geq \Phi_{x, 0}(t)
$$

for all $x \in X$, whence

$$
\begin{aligned}
\mu_{\frac{1}{256} f(4 x)-f(x)}(t) & =\mu_{\frac{1}{256}(f(4 x)-256 f(x))}(t) \\
& =\mu_{f(4 x)-256 f(x)}(256 t) \\
& \geq \Phi_{x, 0}(256 t), \quad \forall x \in X, \quad \forall t>0 .
\end{aligned}
$$

Let

$$
G(x, t):=\Phi_{x, 0}(256 t)
$$

Consider the set

$$
E:=\{g: X \rightarrow Y, g(0)=0\}
$$

and the mapping d_{G} defined on $E \times E$ by

$$
d_{G}(g, h)=\inf \left\{u \in R^{+}, \mu_{g(x)-h(x)}(u t) \geq G(x, t) \text { for all } x \in X \text { and } t>0\right\} .
$$

By Lemma 5.2, $\left(E, d_{G}\right)$ is a complete generalized metric space. Now, let us consider the linear mapping $J: E \rightarrow E$,

$$
J g(x):=\frac{1}{256} g(4 x)
$$

We show that J is a strictly contractive self-mapping of E with the Lipschitz constant $k=\alpha / 256$.

Indeed, let $g, h \in E$ be mappings such that $d_{G}(g, h)<\varepsilon$. Then

$$
\mu_{g(x)-h(x)}(\varepsilon t) \geq \mathrm{G}(x, t), \quad \forall x \in X, \quad \forall t>0
$$

whence

$$
\begin{aligned}
\mu_{J g(x)-J h(x)}\left(\frac{\alpha}{256} \varepsilon t\right) & =\mu_{\frac{1}{256}(g(4 x)-h(4 x))}\left(\frac{\alpha}{256} \varepsilon t\right) \\
& =\mu_{g(4 x)-h(4 x)}(\alpha \varepsilon t) \\
& \geq G(4 x, \alpha t) \quad(x \in X, \quad t>0) .
\end{aligned}
$$

Since $G(4 x, \alpha t) \geq G(x, t), \mu_{J g(x)-J h(x)}\left(\frac{\alpha}{256} \varepsilon t\right) \geq G(x, t)$, that is,

$$
d_{G}(g, h)<\varepsilon \Rightarrow d_{G}\left(J g^{\prime} J h\right) \leq \frac{\alpha}{256} \varepsilon .
$$

This means that

$$
d_{G}\left(J g_{,}, J h\right) \leq \frac{\alpha}{256} d_{G}(g, h)
$$

for all g, h in E.
Next, from

$$
\mu_{f(x)-\frac{1}{256} f(4 x)}(t) \geq G(x, t)
$$

it follows that $d_{G}(f, J f) \leq 1$. Using the Luxemburg-Jung theorem, we deduce the existence of a fixed point of J, that is, the existence of a mapping $g: X \rightarrow Y$ such that $g(4 x)$ $=256 g(x)$ for all $x \in X$.

Since, for any $x \in X$ and $t>0$,

$$
d_{G}(u, v)<\varepsilon \Rightarrow \mu_{u(x)-v(x)}(t) \geq G\left(x, \frac{t}{\varepsilon}\right)
$$

from $d_{G}\left(J^{n} f, g\right) \rightarrow 0$, it follows that $\lim _{n \rightarrow \infty} \frac{f\left(4^{n} x\right)}{4^{4 n}}=g(x)$ for any $x \in X$.
Also, $d_{G}(f, g) \leq \frac{1}{1-L} d(f, J f)$ implies the inequality $d_{G}(f, g) \leq \frac{1}{1-\frac{\alpha}{256}}$ from which it immediately follows $v_{g(x)-f(x)}\left(\frac{256}{256-\alpha} t\right) \geq G(x, t)$ for all $t>0$ and all $x \in X$. This means that

$$
\mu_{g(x)-f(x)}(t) \geq G\left(x, \frac{256-\alpha}{256} t\right), \quad \forall x \in X, \quad \forall t>0
$$

It follows that

$$
\mu_{g(x)-f(x)}(t) \geq \Phi_{x, 0}((256-\alpha) t) \quad \forall x \in X, \quad \forall t>0
$$

The uniqueness of g follows from the fact that g is the unique fixed point of J with the property: there is $C \in(0, \infty)$ such that $\mu_{g(x)-f(x)}(C t) \geq G(x, t)$ for all $x \in X$ and all t >0, as desired. \square

6. Intuitionistic random normed spaces

Recently, the notation of intuitionistic random normed space introduced by Chang et al. [19]. In this section, we shall adopt the usual terminology, notations, and conventions of the theory of intuitionistic random normed spaces as in [22], [31], [33], [34], [40], [41], [42].

Definition 6.1. A measure distribution function is a function $\mu: R \rightarrow[0,1]$ which is left continuous, non-decreasing on $R, \inf _{t \in R} \mu(t)=0$ and $\sup _{t \in R} \mu(t)=1$.
We will denote by D the family of all measure distribution functions and by H a special element of D defined by

$$
H(t)=\left\{\begin{array}{l}
0, \text { if } t \leq 0 \\
1, \text { if } t>0
\end{array}\right.
$$

If X is a nonempty set, then $\mu: X \rightarrow D$ is called a probabilistic measure on X and μ (x) is
denoted by μ_{x}.
Definition 6.2. A non-measure distribution function is a function $v: R \rightarrow[0,1]$ which is right continuous, non-increasing on $R, \inf _{t \in R} v(t)=0$ and $\sup _{t \in R} v(t)=1$.
We will denote by B the family of all non-measure distribution functions and by G a special element of B defined by

$$
G(t)=\left(\begin{array}{l}
1, \text { if } t \leq 0 \\
0, \text { if } t>0
\end{array}\right.
$$

If X is a nonempty set, then $v: X \rightarrow B$ is called a probabilistic non-measure on X and $v(x)$ is denoted by v_{x}.
Lemma 6.3. [43], [44]Consider the set L^{*} and operation $\leq_{L^{*}}$ defined by:

$$
\begin{gathered}
L^{*}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}\right) \in[0,1]^{2} \text { and } x_{1}+x_{2} \leq 1\right\} \\
\left(x_{1}, x_{2}\right) \leq_{L *}\left(y_{1}, y_{2}\right) \Leftrightarrow x_{1} \leq y_{1}, x_{2} \geq y_{2}, \quad \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in L^{*} .
\end{gathered}
$$

Then $\left(L^{*}, \leq_{L^{*}}\right)$ is a complete lattice.
We denote its units by $0_{L^{*}}=(0,1)$ and $1_{L^{*}}=(1,0)$. In Section 2, we presented classical t-norm. Using the lattice ($L^{*}, \leq_{L^{*}}$), these definitions can be straightforwardly extended.

Definition 6.4. [44] A triangular norm (t-norm) on L^{*} is a mapping $\mathcal{T}:\left(L^{*}\right)^{2} \rightarrow L^{*}$ satisfying the following conditions:
(a) $\left(\forall x \in L^{*}\right)\left(\mathcal{T}\left(x, 1_{L^{*}}\right)=x\right)$ (boundary condition);
(b) $\left(\forall(x, y) \in\left(L^{*}\right)^{2}\right)(\mathcal{T}(x, y)=\mathcal{T}(y, x))$ (commutativity);
(c) $\left(\forall(x, y, z) \in\left(L^{*}\right)^{3}\right)(\mathcal{T}(x, \mathcal{T}(y, z))=\mathcal{T}(\mathcal{T}(x, y), z))$ (associativity);
(d) $\left(\forall\left(x, x^{\prime}, y, y^{\prime}\right) \in\left(L^{*}\right)^{4}\right)\left(x \leq_{L^{*}} x^{\prime}\right.$ and $\left.y \leq_{L *} y^{\prime} \Rightarrow \mathcal{T}(x, y) \leq_{L^{*}} \mathcal{T}\left(x^{\prime}, y^{\prime}\right)\right)$ (monotonicity).

If $\left(L^{*}, \leq_{L^{*}}, \mathcal{T}\right)$ is an Abelian topological monoid with unit $1_{L^{*}}$, then \mathcal{T} is said to be a continuous t-norm.

Definition 6.5. [44] A continuous t-norm \mathcal{T} on L^{*} is said to be continuous t-representable if there exist a continuous t-norm * and a continuous t-conorm \diamond on $[0,1]$ such that, for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in L^{*}$,

$$
\mathcal{T}(x, y)=\left(x_{1} * y_{1}, x_{2} \diamond y_{2}\right)
$$

For example,

$$
\mathcal{T}(a, b)=\left(a_{1} b_{1}, \min \left\{a_{2}+b_{2}, 1\right\}\right)
$$

and

$$
\mathbf{M}(a, b)=\left(\min \left\{a_{1}, b_{1}\right\}, \max \left\{a_{2}, b_{2}\right\}\right)
$$

are continuous t-representable for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$.
Now, we define a sequence \mathcal{T}^{n} recursively by $\mathcal{T}^{1}=\mathcal{T}$ and

$$
\mathcal{T}^{n}\left(x^{(1)}, \ldots, x^{(n+1)}\right)=\mathcal{T}\left(\mathcal{T}^{n-1}\left(x^{(1)}, \ldots, x^{(n)}\right), x^{(n+1)}\right), \quad \forall n \geq 2, \quad x^{(i)} \in L^{*}
$$

Definition 6.6. A negator on L^{*} is any decreasing mapping $\mathcal{N}: L^{*} \rightarrow L^{*}$ satisfying $\mathcal{N}\left(1_{L^{*}}\right)=0_{L^{*}}$ and $\mathcal{N}\left(1_{L^{*}}\right)=0_{L^{*}}$ If $\mathcal{N}(\mathcal{N}(x))=x$ for all $x \in L^{*}$, then \mathcal{N} is called an involutive negator. A negator on $[0,1]$ is a decreasing function $N:[0,1] \rightarrow[0,1]$ satisfying $N(0)=1$ and $N(1)=0 . N_{s}$ denotes the standard negator on $[0,1]$ defined by

$$
N_{s}(x)=1-x, \quad \forall x \in[0,1] .
$$

Definition 6.7. Let μ and v be measure and non-measure distribution functions from $X \times(0,+\infty)$ to $[0,1]$ such that $\mu_{x}(t)+v_{x}(t) \leq 1$ for all $x \in X$ and $t>0$. The triple $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ is said to be an intuitionistic random normed space (briefly IRN-space) if X is a vector space, \mathcal{T} is continuous t-representable and $\mathcal{P}_{\mu, v}$ is a mapping $X \times(0,+\infty) \rightarrow$ L^{*} satisfying the following conditions: for all $x, y \in X$ and $t, s>0$,
(a) $\mathcal{P}_{\mu, v}(x, 0)=0_{L^{*}}$;
(b) $\mathcal{P}_{\mu, \nu}(x, t)=1_{L^{*}}$ if and only if $x=0$;
(c) $\mathcal{P}_{\mu, \nu}(\alpha x, t)=\mathcal{P}_{\mu, \nu}\left(x, \frac{t}{|\alpha|}\right)$ for all $\alpha \neq 0$;
(d) $\mathcal{P}_{\mu, v}(x+y, t+s) \geq_{L^{*}} \mathcal{T}\left(\mathcal{P}_{\mu, v}(x, t), \mathcal{P}_{\mu, v}(y, s)\right)$.

In this case, $\mathcal{P}_{\mu, \nu}$ is called an intuitionistic random norm. Here,

$$
\mathcal{P}_{\mu, v}(x, t)=\left(\mu_{x}(t), v_{x}(t)\right) .
$$

Example 6.8. Let $(X,\|\cdot\|)$ be a normed space. Let $\mathcal{T}(a, b)=\left(a_{1} b_{1}, \min \left(a_{2}+b_{2}, 1\right)\right)$ for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$ and let μ, v be measure and non-measure distribution functions defined by

$$
\mathcal{P}_{\mu, v}(x, t)=\left(\mu_{x}(t), v_{x}(t)\right)=\left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right), \quad \forall t \in R^{+} .
$$

Then $\left(X, \mathcal{P}_{\mu, \nu}, \mathcal{T}\right)$ is an IRN-space.
Definition 6.9. (1) A sequence $\left\{x_{n}\right\}$ in an IRN-space $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ is called a Cauchy sequence if, for any $\varepsilon>0$ and $t>0$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
\mathcal{P}_{\mu, v}\left(x_{n}-x_{m}, t\right)>_{L^{*}}\left(N_{s}(\varepsilon), \varepsilon\right), \quad \forall n, m \geq n_{0}
$$

where N_{s} is the standard negator.
(2) The sequence $\left\{x_{n}\right\}$ is said to be convergent to a point $x \in X$ (denoted by $x_{n} \xrightarrow{\mathcal{P}_{\mu, v}} x$) if $\mathcal{P}_{\mu, v}\left(x_{n}-x, t\right) \rightarrow 1_{L^{*}}$ as $n \rightarrow \infty$ for every $t>0$.
(3) An IRN-space $\left(X, \mathcal{P}_{\mu, \nu}, \mathcal{T}\right)$ is said to be complete if every Cauchy sequence in X is convergent to a point $x \in X$.

7. Stability results in intuitionistic random normed spaces

In this section, we prove the generalized Ulam-Hyers stability of the quartic functional equation in intuitionistic random normed spaces.

Theorem 7.1. Let X be a linear space and let $\left(X, \mathcal{P}_{\mu, v}, \mathcal{T}\right)$ be a complete IRN-space. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there are $\xi, \zeta: X^{2} \rightarrow D^{+}$, where ξ (x, y) is denoted by $\xi_{x, y}$ and $\zeta_{(x, y)}$ is denoted by $\zeta_{x, y}$, further, $\left(\xi_{x, y}(t), \zeta_{x, y}(t)\right)$ is denoted by $Q_{\zeta, \zeta}(x, y, t)$, with the property:

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(16 f(x+4 y)+f(4 x-y)-306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right]\right. \\
& -136 f(x-y)+1394 f(x+y)-425 f(y)+1530 f(x), t) \\
& \quad \geq_{L^{*}} Q_{\xi, \zeta}(x, y, t) . \\
& \mathcal{T}_{i=1}^{\infty}\left(Q_{\xi, \zeta}\left(4^{n+i-1} x, 0,4^{4 n+3 i+3} t\right)\right)=1_{L^{*}} \tag{7.2}
\end{align*}
$$

If
and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{\xi, \zeta}\left(4^{n} x, 4^{n} y, 4^{4 n} t\right)=1_{L^{*}} \tag{7.3}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$, then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(f(x)-Q(x), t) \geq_{L^{*}} \mathcal{T}_{i=1}^{\infty}\left(Q_{\xi, \zeta}\left(4^{i-1} x, 0,4^{3 i+3} t\right)\right) \tag{7.4}
\end{equation*}
$$

Proof. Putting $y=0$ in (7.1), we have

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f(4 x)}{256}-f(x), t\right) \geq_{L^{*}} Q_{\xi, \zeta}\left(x, 0,4^{4} t\right) \tag{7.5}
\end{equation*}
$$

Therefore, it follows that

$$
\begin{equation*}
\mathcal{P}_{\mu, \nu}\left(\frac{f\left(4^{k+1} x\right)}{4^{4(k+1)}}-\frac{f\left(4^{k} x\right)}{4^{4 k}}, \frac{t}{4^{4 k}}\right) \geq_{L^{*}} Q_{\xi, \zeta}\left(4^{k} x, 0,4^{4} t\right) \tag{7.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(4^{k+1} x\right)}{4^{4(k+1)}}-\frac{f\left(4^{k} x\right)}{4^{4 k}}, t\right) \geq_{L^{*}} Q_{\xi, \zeta}\left(4^{k} x, 0,4^{4(k+1)} t\right) \tag{7.7}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\mathcal{P}_{\mu, \nu}\left(\frac{f\left(4^{k+1} x\right)}{4^{4(k+1)}}-\frac{f\left(4^{k} x\right)}{4^{4 k}}, \frac{t}{4^{k+1}}\right) \geq_{L *} Q_{\xi, \zeta}\left(4^{k} x, 0,4^{4(k+1)} t\right) \tag{7.8}
\end{equation*}
$$

for all $k \in N$ and all $t>0$. As $1>1 / 4+\ldots+1 / 4^{n}$, from the triangle inequality, it follows

$$
\begin{align*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(4^{n} x\right)}{256^{n}}-f(x), t\right) & \geq_{L^{*}} \mathcal{T}_{k=0}^{n-1}\left(\mathcal{P}_{\mu, \nu}\left(\frac{f\left(4^{k+1} x\right)}{4^{4(k+1)}}-\frac{f\left(4^{k} x\right)}{4^{4 k}}, \sum_{k=0}^{n-1} \frac{1}{4^{k+1}} t\right)\right) \tag{7.9}\\
& {\geq L^{*}}^{\mathcal{T}_{i=1}^{n}\left(Q_{\xi, \zeta}\left(4^{i-1} x, 0,4^{3 i+3} t\right)\right) .}
\end{align*}
$$

In order to prove convergence of the sequence $\left\{\frac{f\left(4^{n} x\right)}{256^{n}}\right\}$, replacing x with $4^{m} x$ in (7.9), we get that for $m, n>0$

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(\frac{f\left(4^{n+m} x\right)}{256^{(n+m)}}-\frac{f\left(4^{m} x\right)}{256^{m}}, t\right) \geq_{L^{*}} \mathcal{T}_{i=1}^{n}\left(Q_{\xi, \zeta}\left(4^{i+m-1} x, 0,4^{3 i+4 m+3} t\right)\right) \tag{7.10}
\end{equation*}
$$

Since the right-hand side of the inequality tends $1_{L^{* *}}$ as m tends to infinity, the sequence $\left\{\frac{f\left(4^{n} x\right)}{4^{4 n}}\right\}$ is a Cauchy sequence. So we may define $Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(4^{n} x\right)}{4^{4 n}}$ for all $x \in X$.

Now, we show that Q is a quartic mapping. Replacing x, y with $4^{n} x$ and $4^{n} y$, respectively, in (7.1), we obtain

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(\frac{f\left(4^{n}(x+4 y)\right)}{256^{n}}+\frac{f\left(4^{n}(4 x-y)\right)}{256^{n}}-\frac{306\left[9 f\left(4^{n}\left(x+\frac{y}{3}\right)\right)+f\left(4^{n}(x+2 y)\right)\right.}{256^{n}}\right. \\
&\left.-\frac{136 f\left(4^{n}(x-y)\right)}{256^{n}}+\frac{1394 f\left(4^{n}(x+y)\right)}{256^{n}}-\frac{425 f\left(4^{n}(y)\right)}{256^{n}}+\frac{1530 f\left(4^{n}(x)\right)}{256^{n}}, t\right) \tag{7.11}\\
& \quad \geq_{L *} Q_{\xi, \zeta}\left(4^{n} x, 4^{n} y, 4^{4 n} t\right) .
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$, we find that Q satisfies (1.1) for all $x, y \in X$.
Taking the limit as $n \rightarrow \infty$ in (7.9), we obtain (7.4).
To prove the uniqueness of the quartic mapping Q subject to (7.4), let us assume that there exists another quartic mapping Q^{\prime} which satisfies (7.4). Obviously, we have x $\in X$ and all $n \in \mathbb{N}$. Hence it follows from (7.4) that

$$
\begin{aligned}
& \mathcal{P}_{\mu, v}\left(Q(x)-Q^{\prime}(x), t\right) \\
& \quad \geq_{L^{*}} \mathcal{P}_{\mu, v}\left(Q\left(4^{n} x\right)-Q^{\prime}\left(4^{n} x\right), 4^{4 n} t\right) \\
& \quad \geq_{L^{*}} \mathcal{T}\left(\mathcal{P}_{\mu, \nu}\left(Q\left(4^{n} x\right)-f\left(4^{n} x\right), 4^{4 n-1} t\right), \mathcal{P}_{\mu, \nu}\left(f\left(4^{n} x\right)-Q^{\prime}\left(4^{n} x\right), 4^{4 n-1} t\right)\right) \\
& \quad \geq_{L^{*}} \mathcal{T}\left(\mathcal{T}_{i=1}^{\infty}\left(Q_{\xi, \zeta}\left(4^{n+i-1} x, 0,4^{4 n+3 i+3} t\right)\right), \mathcal{T}_{i=1}^{\infty}\left(Q_{\xi, \zeta}\left(4^{n+i-1} x, 0,4^{4 n+3 i+3} t\right)\right)\right.
\end{aligned}
$$

for all $x \in X$. By letting $n \rightarrow \infty$ in (7.4), we prove the uniqueness of Q. This completes the proof of the uniqueness, as desired. \quad.
Corollary 7.2. Let $\left(X, \mathcal{P}^{\prime}{ }_{\mu^{\prime}, \nu^{\prime},} \mathcal{T}\right)$ be an IRN-space and let $\left(Y, \mathcal{P}_{\mu, \nu}, \mathcal{T}\right)$ be a complete IRN-space. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{gathered}
\mathcal{P}_{\mu, v}\left(16 f(x+4 y)+f(4 x-y)-306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right]\right. \\
-136 f(x-y)+1394 f(x+y)-425 f(y)+1530 f(x), t) \\
\geq_{L *} \mathcal{P}^{\prime}{ }_{\mu^{\prime}, \nu^{\prime}}(x+y, t)
\end{gathered}
$$

for all $t>0$ in which

$$
\lim _{n \rightarrow \infty} \mathcal{T}_{i=1}^{\infty}\left(\mathcal{P}_{\mu^{\prime}, \nu^{\prime}}^{\prime}\left(x, 4^{4 n+3 i+3} t\right)\right)=1_{L^{*}}
$$

for all $x, y \in X$. Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\mathcal{P}_{\mu, \nu}(f(x)-Q(x), t) \geq_{L *} \mathcal{T}_{i=1}^{\infty}\left(\mathcal{P}_{\mu^{\prime}, \nu^{\prime}}^{\prime}\left(x, 4^{3 i+3} t\right)\right)
$$

Now, we give an example to illustrate the main result of Theorem 7.1 as follows.
Example 7.3. Let $(X,\|\|$.$) be a Banach algebra, \left(X, \mathcal{P}_{\mu, \nu}, \mathrm{M}\right)$ an IRN-space in which

$$
\mathcal{P}_{\mu, v}(x, t)=\left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right)
$$

and let $\left(Y, \mathcal{P}_{\mu, \nu}, \mathbf{M}\right)$ be a complete IRN-space for all $x \in X$. Define $f: X \rightarrow X$ by $f(x)$ $=x^{4}+x_{0}$, where x_{0} is a unit vector in X. A straightforward computation shows that

$$
\begin{aligned}
& \mathcal{P}_{\mu, v}\left(16 f(x+4 y)+f(4 x-y)-306\left[9 f\left(x+\frac{y}{3}\right)+f(x+2 y)\right]\right. \\
& -136 f(x-y)+1394 f(x+y)-425 f(y)+1530 f(x), t) \\
& \geq_{L *} \mathcal{P}_{\mu, v}(x+y, t), \quad \forall t>0 .
\end{aligned}
$$

Also

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M_{i=1}^{\infty}\left(\mathcal{P}_{\mu, v}\left(4^{n+i-1} x, 4^{4 n+3 i+3} t\right)\right) & =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} M_{i=1}^{m}\left(\mathcal{P}_{\mu, v}\left(x, 4^{3 n+2 i+4} t\right)\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \mathcal{P}_{\mu, v}\left(x, 4^{3 n+6} t\right) \\
& =\lim _{n \rightarrow \infty} \mathcal{P}_{\mu, v}\left(x, 4^{3 n+6} t\right) \\
& =1_{L^{*}} .
\end{aligned}
$$

Therefore, all the conditions of 7.1 hold and so there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\mathcal{P}_{\mu, \nu}(f(x)-Q(x), t) \geq_{L^{*}} \mathcal{P}_{\mu, \nu}\left(x, 4^{6} t\right) .
$$

Author details

${ }^{1}$ Section of Mathematics and Informatics, Pedagogical Department, National and Capodistrian University of Athens, 4, Agamemnonos St., Aghia Paraskevi, Athens 15342, Greece ²Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran ${ }^{3}$ Faculty of Mathematics and Computer Sciences, Sabzevar Tarbiat Moallem University, Sabzevar, Iran ${ }^{4}$ Department of Mathematics, lust, Behshar, Iran

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 15 February 2011 Accepted: 18 September 2011 Published: 18 September 2011

References

1. Ulam, SM: Problems in Modern Mathematics. In Science Editions, vol. Chapter VI,Wiley, New York (1964)
2. Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222-224 (1941). doi:10.1073/ pnas.27.4.222
3. Aoki, T: On the stability of the linear transformation in Banach spaces. J Math Soc Jpn. 2, $64-66$ (1950). doi:10.2969 jmsj/00210064
4. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297-300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
5. Baak, C, Moslehian, MS: On the stability of J*-homomorphisms. Nonlinear Anal TMA. 63, 42-48 (2005). doi:10.1016/j. na.2005.04.004
6. Chudziak, J, Tabor, J: Generalized Pexider equation on a restricted domain. J Math Psychol. 52, 389-392 (2008) doi:10.1016/j.jmp.2008.04.002
7. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ. (2002)
8. Eshaghi Gordji, M, Rassias, JM, Savakohi, MB: Approximation of the quadratic and cubic functional equations in RNspaces. Eur J Pure Appl Math. 2(4), 494-507 (2009)
9. Hyers, DH, Isac, G, Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel. (1998)
10. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
11. Rassias, JM: On approximation of approximately linear mappings by linear mappings. J Funct Anal. 46, 126-130 (1982). doi:10.1016/0022-1236(82)90048-9
12. Rassias, JM: On approximation of approximately linear mappings by linear mappings. Bull Sci Math. 108, 445-446 (1984)
13. Rassias, JM: Solution of a problem of Ulam. J Approx Theory. 57, 268-273 (1989). doi:10.1016/0021-9045(89)90041-5
14. Rassias, JM: Solution of the Ulam stability problem for the quartic mapping. Glasnik Matematicki. 34(54), 243-252 (1999)
15. Rassias, ThM: On the stability of functional equations and a problem of Ulam. Acta Appl Math. 62, 23-130 (2000). doi:10.1023/A:1006499223572
16. Rassias, ThM: Functional Equations, Inequalities and Applications. Kluwer Academic Publishers, Dordrecht (2003)
17. Ravi, K, Rassias, JM, Arunkumar, M, Kodandan, R: Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation. JIPAM 10(4), 29 (2009). Article ID 114
18. Alsina, C: On the stability of a functional equation arising in probabilistic normed spaces. General Inequalities, Oberwolfach 5, 263-271 (1986). Birkh?ä?user, Basel (1987)
19. Chang, SS, Rassias, JM, Saadati, R: The stability of the cubic functional equation in intuitionistic random normed spaces. Appl Math Mech. 31, 21-26 (2010). doi:10.1007/s10483-010-0103-6
20. Mirmostafaee, M, Mirzavaziri, M, Moslehian, MS: Fuzzy stability of the Jensen functional equation. Fuzzy Set Syst. 159, 730-738 (2008). doi:10.1016/j.fss.2007.07.011
21. Mirzavaziri, M, Moslehian, MS: A fixed point approach to stability of a quadratic equation. Bull Braz Math Soc. 37, 361-376 (2006). doi:10.1007/s00574-006-0016-z
22. Mihet, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl. 343, 567-572 (2008)
23. Mihet, D: The probabilistic stability for a functional equation in a single variable. Acta Math Hungar. 123, 249-256 (2009). doi:10.1007/s10474-008-8101-y
24. Mihet, D: The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Set Syst. 160, 1663-1667 (2009). doi:10.1016/j.fss.2008.06.014
25. Miheț, D, Saadati, R, Vaezpour, SM: The stability of the quartic functional equation in random normed spaces. Acta Appl Math. 110, 797-803 (2010). doi:10.1007/s10440-009-9476-7
26. Miheț, D, Saadati, R, Vaezpour, SM: The stability of an additive functional equation in Menger probabilistic φ-normed spaces. Math Slovaca. 61, 817-826 (2011). doi:10.2478/s12175-011-0049-7
27. Baktash, E, Cho, Y, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J Inequal Appl. 2008, Article ID 902187 (2008)
28. Eshaghi Gordji, M, Zolfaghari, S, Rassias, JM, Savadkouhi, MB: Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces. Abst Appl Anal 2009, 14 (2009). Article ID 417473
29. Saadati, R, Vaezpour, SM, Cho, Y: A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces". J Inequal Appl. 2009, Article ID 214530 (2009)
30. Mohamadi, M, Cho, Y, Park, C, Vetro, P, Saadati, R: Random stability of an additive-quadratic-quartic functional equation. J Inequal Appl 2010, 18 (2010). Article ID 754210
31. Hadžić, O, Pap, E: Fixed Point Theory in PM-Spaces. Kluwer Academic, Dordrecht (2001)
32. Hadžić, O, Pap, E, Budincević, M: Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetica. 38, 363-381 (2002)
33. Šerstnev, AN: On the notion of a random normed space. Dokl Akad Nauk SSSR 149, 280-283 (1963). (in Russian)
34. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. Elsevier, North Holand (1983)
35. Hensel, K: Uber eine neue Begrundung der Theorie der algebraischen Zahlen. Jahres Deutsch Math Verein. 6, 83-88 (1897)
36. Mirmostafaee, M, Moslehian, MS: Fuzzy stability of additive mappings in non-Archimedean Fuzzy normed spaces. Fuzzy Set Syst. 160, 1643-1652 (2009). doi:10.1016/j.fss.2008.10.011
37. Luxemburg, WAJ: On the convergence of successive approximations in the theory of ordinary differential equations, II. Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20, 540-546 (1958)
38. Jung, C: On generalized complete metric spaces. Bull Am Math Soc. 75, 113-116 (1969). doi:10.1090/S0002-9904-1969-12165-8
39. Miheț, D: The stability of the additive Cauchy functional equation in non-Archimedean fuzzy normed spaces. Fuzzy Set Syst. 161, 2206-2212 (2010). doi:10.1016/j.fss.2010.02.010
40. Chang, SS, Cho, Y, Kang, Y: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers Inc., New York (2001)
41. Kutukcu, S, Tuna, A, Yakut, AT: Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations. Appl Math Mech. 28, 799-809 (2007). doi:10.1007/s10483-007-0610-z
42. Saadati, R, Park, J: On the intuitionistic fuzzy topological spaces. Chaos Soliton Fract. 27, 331-344 (2006). doi:10.1016/j. chaos.2005.03.019
43. Atanassov, KT: Intuitionistic fuzzy sets. Fuzzy Set Syst. 20, 87-96 (1986). doi:10.1016/S0165-0114(86)80034-3
44. Deschrijver, G, Kerre, EE: On the relationship between some extensions of fuzzy set theory. Fuzzy Set Syst. 23, 227-235 (2003)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2011 Rassias et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2011-62
 Cite this article as: Rassias et al.: On nonlinear stability in various random normed spaces. Journal of Inequalities and Applications 2011 2011:62.

