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Abstract

We investigate the multiplicity of the solutions of the fourth order elliptic system
with Dirichlet boundary condition. We get two theorems. One theorem is that the
fourth order elliptic system has at least two nontrivial solutions when lk <c < lk+1
and lk+n(lk+n - c) < a + b < lk+n+1(lk+n+1 - c). We prove this result by the critical
point theory and the variation of linking method. The other theorem is that the
system has a unique nontrivial solution when lk <c <lk+1 and lk(lk - c) < 0, a+b <
lk+1(lk+1 - c). We prove this result by the contraction mapping principle on the
Banach space.
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1. Introduction
Let Ω be a smooth bounded region in Rn with smooth boundary ∂Ω. Let l1 < l2 ≤ ...

≤ lk ≤ ... be the eigenvalues of -Δ with Dirichlet boundary condition in Ω. In this

paper we investigate the multiplicity of the solutions of the following fourth order

elliptic system with Dirichlet boundary condition

�2u + c�u = a((u + v + 1)+ − 1) in �,
�2v + c�v = b((u + v + 1)+ − 1) in �,
u = 0, v = 0, �u = 0, �v = 0 on ∂�,

(1:1)

where c Î R, u+ = max{u, 0} and a, b Î R are constant. The single fourth order elliptic

equations with nonlinearities of this type arises in the study of travelling waves in a sus-

pension bridge ([6]) or the study of the static deflection of an elastic plate in a fluid and

have been studied in the context of the second order elliptic operators. In particular,

Lazer and McKenna [6] studied the single fourth order elliptic equation with Dirichlet

boundary condition

�2u + c�u = b((u + 1)+ − 1), in �,

u = 0, �u = 0 on ∂�.
(1:2)

Tarantello [10] also studied problem (1.2) when c < l1 and b ≥ l1(l1 - c). She show

that (1.2) has at least two solutions, one of which is a negative solution. She obtained

this result by degree theory. Micheletti and Pistoia [8] proved that if c < l1 and b ≥ l2
(l2 - c), then (1.2) has at least four solutions by the Leray-Schauder degree theory.
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Micheletti, Pistoia and Sacon [9] also proved that if c < l1 and b ≥ l2(l2 - c), then

(1.2) has at least three solutions by variational methods. Choi and Jung [2] also consid-

ered the single fourth order elliptic problem

�2u + c�u = bu+ + s in �,

u = 0, �u = 0 on ∂�.
(1:3)

They show that (1.3) has at least two nontrivial solutions when c < l1, l1(l1 - c) < b

< l2(l2 - c) and s <0 or when l1 < c < l2, b < l1(l1 - c) and s >0. They also obtained

these results by using the variational reduction method. They [3] also proved that

when c < l1, l1(l1 - c) < b < l2(l2 - c) and s <0, (1.3) has at least three solutions by

using degree theory. In [7-9] the authors investigate the existence of solutions of jump-

ing problems with Dirichlet boundary condition.

In this paper we improve the multiplicity results of the single fourth order elliptic

problem to that of the fourth order elliptic system. Our main results are as follows:

THEOREM 1.1. Suppose that ab ≠ 0 and det
(
1 1
b −a

)
�= 0 . Let lk <c < lk+1 and lk+n

(lk+n - c) <a + b < lk+n+1(lk+n+1 - c). Then system (1.1) has at least two nontrivial

solutions.

THEOREM 1.2. Suppose that ab ≠ 0 and det
(
1 1
b −a

)
�= 0 . Let lk <c < lk+1 and lk

(lk - c) <0, a + b < lk+1(lk+1 - c). Then system (1.1) has a unique nontrivial solution.

In section 2 we define a Banach space H spanned by eigenfunctions of Δ2 + cΔ with

Dirichlet boundary condition and investigate some properties of system (1.1). In sec-

tion 3, we prove Theorem 1.1 by using the critical point theory and variation of linking

method. In section 4, we prove Theorem 1.2 by using the contraction mapping

principle.

2. Fourth order elliptic system
The eigenvalue problem Δ2u + cΔu = μu in Ω with u = 0, Δu = 0 on ∂Ω has also infinitely

many eigenvalues μk = lk(lk - c), k ≥ 1 and corresponding eigenfunctions jk, k ≥ 1. We

note that l1(l1 - c) < l2(l2 - c) ≤ l3(l3 - c) <....
The system

�2u + c�u = a((u + v + 1)+ − 1)
�2v + c�v = b((u + v + 1)+ − 1)
u = 0, v = 0, �u = 0, �v = 0

in �,
in �,

on ∂�

can be transformed to the equation

�2(u + v) + c�(u + v) = (a + b)((u + v + 1)+ − 1) in �,

u = 0, v = 0, �u = 0, �v = 0 on ∂�.
(2:1)

We also have

�2(bu − av) + c�(bu − av) = 0 in �,

u = 0, v = 0, �u = 0, �v = 0 on ∂�.

It follows from the above equation that bu - av = 0. If u + v = w is a solution of

(2.1), then the system
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u + v = w,

bu − av = 0

has a unique solution of (1.1) since det
(
1 1
b −a

)
�= 0 . Hence the number of the solu-

tions w = u + v of (1.1) is equal to that of (2.1). To investigate the multiplicity of (1.1)

it is enough to find the multiplicity of (2.1). Let us set w = u + v. Then (2.1) is equiva-

lent to the equation

�2w + c�w = (a + b)((w + 1)+ − 1) in �,

w = 0, �w = 0, on∂�.
(2:2)

Any element u Î L2(Ω) can be expressed by

u =
∑

hkφk with
∑

h2k < ∞.

Let H be a subspace of L2(Ω) defined by

H = {u ∈ L2(�)|
∑

|λk(λk − c)|h2k < ∞}.

Then this is a complete normed space with a norm

‖ u ‖ = [
∑

|λk(λk − c)|h2k ]
1
2 .

Since lk(lk - c) ® + ∞ and c is fixed, we have

(i) Δ2u + cΔu Î H implies u Î H.

(ii) ‖ u ‖≥ C ‖ u‖L2(�) , for some C >0.

(iii) ‖ u‖L2(�) = 0 if and only if || u || = 0.

For the proof of the above results we refer [1].

LEMMA 2.1. Assume that c is not an eigenvalue of -Δ, a + b ≠ lk(lk - c) and

bounded. Then all solutions in L2(Ω) of

�2w + c�w = (a + b)((w + 1)+ − 1) in L2(�)

belong to H.

Proof. Let us write (a + b)((w + 1)+ - 1) = ∑hkjk Î L2(Ω).

(�2 + c�)−1(a + b)((w + 1)+ − 1) =
∑ 1

λk(λk − c)
hkφk ∈ L2(�).

‖ (�2 + c�)−1(a + b)((w + 1)+ − 1) ‖ =
∑

|λk(λk − c)| 1

(λk(λk − c))2
h2k

≤ C
∑

h2k = C ‖ w ‖2L2(ω)< ∞

for some C >0. Thus (Δ2 + cΔ)-1((a + b)((w + 1)+ -1)) Î H. ■
With the aid of Lemma 2.1 it is enough that we investigate the existence of the solu-

tions of (1.1) in the subspace H of L2(Ω).

Let us define the functional

F(w) =
∫

�

1
2

|�w|2 − c
2

|∇w|2 − a + b
2

|w + 1|+ − (a + b)w. (2:3)
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If we assume that lk <c < lk+1 and a + b is bounded, F (u) is well defined. By the

following lemma, F(w) Î C1. Thus the critical points of the functional F(w) coincide

with the weak solutions of (2.2).

LEMMA 2.2. Assume that lk <c < lk+1 and a + b is bounded. Then the functional F

(w) is continuous and Frechét differentiable in H and

DF(w)(h) =
∫

�

[�w · �h − c∇w · ∇h − (a + b)(w + 1)+h − (a + b)h]dx (2:4)

for h Î H.

Proof. First we shall prove that F(w) is continuous at w. Let w, z Î H.

F(w + z) − F(w)

=
∫

�

[
1
2

|�(w + z) |2 − c

2
|∇(w + z) |2 − a + b

2
|(w + z + 1)+|2 − (a + b)

(w + z)]dx −
∫

�

[
1
2

|�w|2 − c
2

|∇w|2 − a + b
2

|(w + 1)+|2 − (a + b)w]dx

=
∫

�

[w · (�2z + c�z) +
1
2
z · (�2z + c�z) − (

a + b
2

| (w + z + 1)+|2

− a + b
2

|(w + 1)+|2 − (a + b)z)]dx.

Let w = ∑hkjk, z =
∑

h̃kφk . Then we have

|
∫

�

w · (�2z + c�z)dx| = |
∑ ∫

�

λk(λk − c)hkh̃k| ≤ ‖ w ‖‖ z ‖,

|
∫

�

z · (�2z + c�z)dx| = |
∑

λk(λk − c)h̃2k | ≤ ‖ z ‖2.

On the other hand, by Mean Value Theorem, we have

‖ a + b
2

| (w + z + 1)+|2 − a + b
2

|(w + 1)+|2 ‖ ≤ (a + b) ‖ z ‖ .

Thus we have

‖ a + b
2

|(w + z + 1)+|2 − a + b
2

|(w + 1)+|2 − (a + b)z ‖ ≤ 2(a + b) ‖ z ‖ = O(‖ z ‖).

Thus F(w) is continuous at w. Next we shall prove that F(w) is Fréchet differentiable

at w Î H. We consider

|F(w + z) − F(w) − DF(w)z| = |
∫

�

1
2
z(�2z + c�z)

− (
a + b
2

|(w + z + 1)+|2 − a + b
2

|(w + 1)+|2 + (a + b)(w + 1)+z)|

≤ 1
2

‖ z‖2 + (a + b) ‖ z ‖ + (a + b)(‖ w ‖ +1) ‖ z ‖

= ‖ z ‖ (
1
2

‖ z ‖ + (a + b) + (a + b)(‖ w ‖ +1)) = O(‖ z ‖).

Thus F(w) is Fréchet differentiable at w Î H. ■
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3. Proof of Theorem 1.1
Throughout this section we assume that lk <c < lk+1 and lk+n(lk+n - c) < a + b < lk+n
+1(lk+n+1 - c). We shall prove Theorem 1.1 by applying the variation of linking method

(cf. Theorem 4.2 of [8]). Now, we recall a variation of linking theorem of the existence

of critical levels for a functional.

Let X be an Hilbert space, Y ⊂ X, r >0 and e Î X\Y , e ≠ 0. Set:

Bρ(Y) = {x ∈ Y : ‖ x‖X ≤ ρ},
Sρ(Y) = {x ∈ Y : ‖ x‖X = ρ},

�ρ(e, Y) = {σ e + v : σ ≥ 0, v ∈ Y, ‖ σ e + v‖X ≤ ρ},

ρ(e, Y) = {σ e + v : σ ≥ 0, v ∈ Y, ‖ σ e + v‖X = ρ} ∪ {v : v ∈ Y, ‖ v‖X ≤ ρ}.

THEOREM 3.1. ("A Variation of Linking”) Let × be an Hilbert space, which is topolo-

gical direct sum of the subspaces X1 and X2. Let F Î C1(X, R). Moreover assume:

(a) dim X1 <+∞;

(b) there exist r >0, R >0 and e Î X1, e ≠ 0 such that r < R and

sup
Sρ(X1)

F < inf

R(e,X2)

F;

(c) −∞ < a = inf�R(e,X2)F ;

(d) (P.S.)c holds for any c Î [a, b], where b = supBρ (X1) F .

Then there exist at least two critical levels c1 and c2 for the functional F such that :

inf
�R(e,X2)

F ≤ c1 ≤ sup
Sρ (X1)

F < inf

R(e,X2)

F ≤ c2 ≤ sup
Bρ (X1)

F.

Let H+ be the subspace of H spanned by the eigenfunctions corresponding to the eigen-

values lk(lk - c) >0 and H- the subspace of H spanned by the eigenfunctions corre-

sponding to the eigenvalues lk(lk - c) <0. Then H = H+ ⊕ H-. Let Hk be the subspace of

H spanned by j1, ..., jk whose eigenvalues are l1(l1 - c), ... , lk(lk - c). Let H⊥
k be the

orthogonal complement of Hk in H. Then

H = Hk ⊕ H⊥
k .

Let e Î H+ ∩ Hk+n, e ≠ 0 and r >0. Let us set

Bρ(Hk+n) = {w ∈ Hk+n| ‖ w ‖ ≤ ρ},
Sρ(Hk+n) = {w ∈ Hk+n| ‖ w ‖ = ρ},

�ρ(e, H⊥
k+n) = {σ e + w|σ ≥ 0, w ∈ H⊥

k+n, ‖ σ e + w ‖ ≤ ρ},

ρ(e, H⊥

k+n) = {σ e + w|σ ≥ 0, w ∈ H⊥
k+n, ‖ σ e + w ‖ = ρ}

∪{w|w ∈ H⊥
k+n, ‖ w ‖ ≤ ρ}.

Let L : H ® H be the linear continuous operator such that

(Lw)z =
∫

�

(�2w + c�w) · zdx − (a + b)
∫

�

wzdx. (3:1)

Then L is an isomorphism and Hk+n, H⊥
k+n are the negative space and the positive

space of L. Thus we have
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(Lw)w ≤ −((a + b) − λk+n(λk+n − c)) ‖ w‖2, w ∈ Hk+n, (3:2)

(Lw)w ≥ (λk+n+1(λk+n+1 − c) − (a + b)) ‖ w‖2, w ∈ H⊥
k+n. (3:3)

We can write

F(w) =
1
2
(Lw)w − ψ(w),

where

ψ(w) =
∫

�

a + b
2

|(w + 1)−|2dx.

Since H is compactly embedded in L2, the map Dψ : H ® H is compact.

LEMMA 3.1. Let lk <c < lk+1 and lk+n(lk+n - c) <a + b < lk+n+1(lk+n+1 - c). Then F(w)

satisfies the (P.S.)g condition for any g Î R.

Proof. Let (wn) be a sequence in H with DF(wn) ® 0 and F(wn) ® g. Since L is an

isomorphism and Dψ is compact, it is sufficent to show that (wn) is bounded in H. We

argue by contradiction. we suppose that ||wn|| ® +∞. Let zn = wn
‖wn‖ . Up to a subse-

quence, we have zn ® z in H. Since DF (wn) ® 0, we get

DF(wn)wn

‖ wn‖2 =
∫

�

(�2 + c�)z2n −
∫

�

[(a + b)(zn +
1

‖ wn ‖)
+zn − (a + b)

zn
‖ wn ‖ ] → 0. (3:4)

Let P+ : H → H⊥
k+n and P- : H ® Hk+n denote the orthogonal projections. Since

P+ zn -P- zn is bounded in H, we have
∫

�

(�2 + c�)(P+zn + P−zn)(P+zn − P−zn)

−
∫

�

[(a + b)(P+zn + P−zn +
1

‖ wn ‖)
+(P+zn − P−zn)] → 0.

(3:5)

Since P+ zn - P- zn ® P+ z - P- z in H, from (3.2) and (3.3) we get

0 ≤
∫

�

[((a + b)z+)(P+z − P−z)]dx.

Hence z ≠ 0. On the other hand, from (3.5), we get

0 =
∫

�

(�2 + c�)(P+z + P−z)(P+z − P−z) −
∫

�

[(a + b)z+(P+z − P−z)]

≥
∫

�

(�2 + c�)(P+z + P−z)(P+z − P−z) −
∫

�

[(a + b)z(P+z) − P−z)]

=
∫

�

(�2 + c�)(P+z + P−z)(P+z − P−z) −
∫

�

(a + b)(P+z) + P−z)(P+z) − P−z)

=
∫

�

(�2 + c� − (a + b))(P+z)2dx −
∫

�

(�2 + c� − (a + b))(P−z)2

≥ (λk+n+1(λk+n+1 − c) − (a + b)) ‖ P+z ‖2L� − (λk+n(λk+n − c) − (a + b)) ‖ P−z ‖2L2(�) .

(3:6)

The last line of (3.6) is positive or equal to 0 since lk+n+1(lk+n+1 - c) - (a + b) >0

and - (lk+n(lk+n - c) - (a + b)) >0. Thus the only possibility to hold (3.6) is that P+ z =

0 and P- z = 0. Thus z = 0, which gives a contradiction.

LEMMA 3.2. Let lk <c < lk+1 and lk+n(lk+n - c) < b < lk+n+1(lk+n+1 - c).
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Then

(i) there exists Rk+n > 0 such that the functional F(w) is bounded from below on H⊥
k+n ;

inf
w∈H⊥

k+n||w||=Rk+n

F(w) > 0 and inf
w∈H⊥

k+n||w||<Rk+n

F(w) > −∞.
(3:7)

(ii) there exists rk+n > 0 such that

sup
w∈Hk+n||w||=ρk+n

F(w) < 0 and sup
w∈Hk+n||w||≤ρk+n

F(w) < ∞.
(3:8)

Proof. (i) Let w ∈ H⊥
k+n . Then we have

lim
w∈H⊥

k+n||w||→+∞

F(w) ≥ lim
w∈H⊥

k+n||w||→∞

1
2
(1 − r

λk+n+1(λk+n+1 − c)
) ‖ w‖2

− lim
w∈H⊥

k+n||w||→+∞

∫
�

[
a + b
2

|(w + 1)+|2 − (a + b)w − r
2
w2]dx

≥ lim
w∈H⊥

k+n||w||→∞

1
2
(1 − r

λk+n+1(λk+n+1 − c)
) ‖ w‖2 − lim

w∈H⊥
k+n||w||→+∞

∫
�

[
a + b
2

(w2 + 1) − r
2
w2]dx

≥ lim
w∈H⊥

k+n||w||→+∞

1
2
(1 − r

λk+n+1(λk+n+1 − c)
) ‖ w‖2 − lim

w∈H⊥
k+n||w||→+∞

1
2
((a + b) − r)

∫
�

w2

−a + b
2

|�| → +∞,

since a + b − r < λk+n+1(λk+n+1 − c) − r = λk+n+1(λk+n+1−c)−λk+n(λk+n−c)
2

. Thus there exists

Rk+n > 0 such that inf w∈H⊥
k+n||w||=Rk+n

F(w) > 0 . Moreover if w ∈ H⊥
k+n with ||w|| <Rk+n, then

we have

F(w) ≥ 1
2
(λk+n+1(λk+n+1 − c))||w||2L2(�) −

∫
�

[
a + b
2

(w + 1)2 − −(a + b)w]dx

>
1
2

{(λk+n+1(λk+n+1 − c)) − (a + b)} ‖ w ‖2L2(�) −
∫

�

a + b
2

dx > −∞.

Thus we have inf w∈H⊥
k+n||w||<Rk+n

F(w) > − − ∞ .

(ii) Let w Î Hk+n. Then

(Lw)w ≤ (λk+n(λk+n−c)−r)
∫

�
w2dx ≤ λk+n(λk+n − c) − λk+n+1(λk+n+1 − c)

2

∫
�
w+2 ,

∫
�
[
1
2
(a+b)|(w+1)+|2− (a+b)w−rw2]dx ≥ ∫

�
[
1
2
(a+b)|w+|2− (a+b)w−rw+2]dx, ,

so that

F(w) ≤ 1
2

λk+n(λk+n − c) − λk+n+1(λk+n+1 − c)
2

∫
�

w+2

− a + b − r

2

∫
�

w+2 +
∫

�

(a + b)wdx

≤ 1
2

{λk+n(λk+n − c) − λk+n+1(λk+n+1 − c)
2

− (a + b − r)} ‖ w+ ‖2L2(�)

+ (a + b) ‖ w‖L2(�).
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Since λk+n(λk+n−c)−λk+n+1(λk+n+1−c)
2 − (a + b − r) < 0, there exists rk+n > 0 such that if w Î

Hk+n and ||w|| = rk+n, then sup F(w) < 0. Moreover, if w Î Hk+n and ||w|| ≤ rk+n, then

we have F(w) ≤ 1
2 { λk+n(λk+n−c)−λk+n+1(λk+n+1−c)

2 − (a + b − r)} ‖ w+ ‖2L2(�) + (a + b) ‖ w‖L2(�) ≤
(a + b) ‖ w‖L2(�) < ∞ . ■

LEMMA 3.3. Let lk <c <lk+1, lk+n (lk+n - c) <a + b <lk+n+1 (lk+n+1 - c) and let e1 Î

H+ ∩ Hk+n with ||e1|| = 1. Then there exists R−
k+n such that R−

k+n > ρk+n ,

inf
w∈
R−

k+n
(e1,H⊥

k+n)
F(w) ≥ 0 and inf

w∈�R−
k+n

(e1,H⊥
k+n)

F(w) ≥ − ∞.

Proof. Let us chose w ∈ H⊥
k+n and s ≥ 0 and e1 Î H+ ∩ Hk+n with ||e1|| = 1. Then we

get

F(w + σ e1) ≥ 1
2

λk+n+1(λk+n+1 − c) ‖ w ‖2L2(�) +
σ 2

2
‖ e1‖2

−
∫

�

[
a + b
2

(w + σ e1 + 1)2 − (a + b)(w + σ e1)]dx

=
1
2

{λk+n+1(λk+n+1 − c) − (a + b)} ‖ w ‖2L2(�) +
σ 2

2
(� − (a + b)) ‖ e1 ‖2L2(�)

− (a + b)σ 2 ‖ w‖L2(�) ‖ e1‖L2(�) − a + b
2

|�|,

where lk+1 (lk+1 - c) ≤ Λ ≤ lk+1 (lk+1 - c). Choose s > 0 so mall that σ
2 ‖ e1‖2 is

small. We can choose a number R−
k+n > 0 such that R−

k+n > σ , R−
k+n > ρk+n , and

infw∈H⊥
k+n,σ≥0

||w+σ e1||=Rk+n

F(w + σ e1) ≥ 0 : Moreover if w ∈ H⊥
k+n, σ ≥ 0 ‖ w + σ e1 ‖ ≤ R−

k+n , then

F(w) ≥ σ 2

2 (� − b) ‖ e1 ‖2L2(�) − (a + b)σ ‖ w‖L2(�) ‖ e1‖L2(�) − a+b
2 |�| ≥ −∞ . Thus we

prove the lemma. ■

Proof of Theorem 1.1

By Lemma 2.2, F(w) is continuous and Frechét differentiable in H. By Lemma 3.1. F(w)

satisfies the (P.S.)g condition for any g Î R. We note that the subspace Sρk+n ∩ Hk+n

and the subspace 
R−
k+n
(e1, H⊥

k+n) link at the subspace {e1}. By Lemma 3.2 and Lemma

3.3, we have

sup
w∈Sρk+n

∩Hk+n

F(w) < inf
w∈
R−

k+n
(e1,H⊥

k+n)
F(w).

By Lemma 3.3, we also have infw∈�R−
k+n

(e1,H⊥
k+n)

F(w) > −∞ Thus by the variation of

linking theorem, there exists at least two nontrivial solutions of (2.2). Thus we com-

plete the Theorem 1.1.

4. Proof of Theorem 1.2
Proof of Theorem 1.2

Assume that lk <c < lk+1 and lk(lk - c) <0, b < lk+1(lk+1 - c). Let

r = 1
2 {λk(λk − c) + λk+1(λk+1 − c)} . We can rewrite (2.2) as

(�2 + c� − r)w = (a + b)(w + 1)+ − r(w + 1)+ + r(w + 1)+ − rw − (a + b) in L2(�),

w = 0, �w = 0 on ∂�.
(4:1)
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or

w = (�2 + c� − r)−1[(a + b)(w + 1)+ − r(w + 1)+ + r(w + 1)+ − rw − (a + b)] in L2(�),

w = 0, �w = 0 on ∂�.
(4:2)

We note that the operator (Δ2 +cΔ - r)-1 is a compact, self-adjoint and linear map

from L2(Ω) into L2(Ω) with norm 2
λk+1(λk+1−c)−λk(λk−c) , and

‖ ((a + b) − r){(w2 + 1)+ − (w1 + 1)+} + r{(w2 + 1)+ − (w1 + 1)+} − r(w2 − w1) ‖
≤ max{(a + b) − r, r}||w2 − w1|| <

1
2

{λk+1(λk+1 − c) − λk(λk − c)}||w2 − w1||.

Thus the right hand side of (4.2) defines a Lipschitz mapping from L2(Ω) into L2(Ω)

with Lipschitz constant <1. By the contraction mapping principle, there exists a unique

solution w Î L2(Ω) of (4.2). By Lemma 2.1, the solution u Î H. We complete the

proof. ■
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