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Abstract

This paper gives a Caccioppoli-type estimate for very weak solutions to obstacle
problems of the A-harmonic equation divA(x,∇u) = 0 with |A(x, ξ)| ≈ w(x)|ξ |p−1,
where 1 <p < ∞ and w(x) be a Muckenhoupt A1 weight.
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1 Introduction
Let w be a locally integrable non-negative function in Rn and assume that 0 <w < ∞

almost everywhere. We say that w belongs to the Muckenhoupt class Ap, 1 <p < ∞, or

that w is an Ap weight, if there is a constant Ap(w) such that

sup
B

(
1
|B|

∫
B
wdx

)(
1
|B|

∫
B
w1/(1−p)dx

)p−1

= Ap(w) < ∞ (1:1)

for all balls B in Rn. We say that w belongs to A1, or that w is an A1 weight, if there

is a constant A1(w) such that

1
|B|

∫
B

wdx ≤ A1(w)essinfBw

for all balls B in Rn.

As customary, μ stands for the measure whose Radon-Nikodym derivative w is

μ(E) =
∫
E

wdx.

It is well known that A1 ⊂ Ap whenever p > 1, see [1]. We say that a weight w is

doubling if there is a constant C > 0 such that

μ(2B) ≤ Cμ(B)

whenever B ⊂ 2B are concentric balls in Rn, where 2B is the ball with the same cen-

ter as B and with radius twice that of B. Given a measurable subset E of Rn, we will

denote by Lp(E, w), 1 <p < ∞, the Banach space of all measurable functions f defined

on E for which
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||f ||Lp(E,w) =
⎛
⎝∫

E

|f (x)|pw(x)dx
⎞
⎠

1
p

< ∞.

The weighted Sobolev class W1,p(E, w) consists of all functions f, and its first general-

ized derivatives belong to Lp (E, w). The symbols Lploc(E,w) and W1,p
loc(E,w) are self-

explanatory.

If x0 Î Ω and t > 0, then Bt denotes the ball of radius t centered at x0. For the func-

tion u(x) and k > 0, let Ak = {x Î Ω : |u(x)| >k}, Ak,t = Ak ∩ Bt. Let Tk(u) be the usual

truncation of u at level k > 0, that is

Tk(u) = max{−k,min{k, u}}.

Let Ω be a bounded regular domain in Rn, n ≥ 2. By a regular domain, we under-

stand any domain of finite measure for which the estimates for the Hodge decomposi-

tion in (2.1) and (2.2) are satisfied. A Lipschitz domain, for example, is regular. We

consider the second-order degenerate elliptic equation (also called A-harmonic equa-

tion or Leray-Lions equation)

divA(x,∇u) = 0 (1:2)

where A(x, ξ) : � × Rn → Rn is a carathéodory function satisfying the following

assumptions

1. 〈A(x, ξ), ξ〉 ≥ αw(x)|ξ |p,
2. |A(x, ξ)| ≤ βw(x)|ξ |p−1,

where 0 <a ≤ b < ∞, w Î A1 and w ≥ k0 > 0. Suppose ψ is any function in Ω with

values in the extended reals [-∞, +∞] and that θ Î W1,r(Ω, w), max{1, p -1} <r ≤ p. Let

Kr
ψ ,θ = Kr

ψ ,θ (�,w) = {v ∈ W1,r(�,w) : v ≥ ψ , a.e. x ∈ � and v − θ ∈ W1,r
0 (�,w)}.

The function ψ is an obstacle, and θ determines the boundary values.

We introduce the Hodge decomposition for |∇(v − u)|r−p∇(v − u) ∈ L
r

r−p+1 (�,w),

from Lemma 1 in Section 2,

|∇(v − u)|r−p∇(v − u) = ∇ϕ +H (1:3)

and the following estimate holds

‖H‖
L

r
r − p + 1 (�,w)

≤ cAp(w)γ |r − p|‖∇(v − u)‖r−p+1
Lr(�,w). (1:4)

Definition 1 A very weak solution to the Kr
ψ ,θ-obstacle problem is a function

u ∈ Kr
ψ ,θ (�,w)such that
∫
�

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx ≥
∫
�

〈A(x,∇u),H〉dx (1:5)

whenever v ∈ Kr
ψ ,θ (�,w)and H comes from the Hodge decomposition (1.3).
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The local and global higher integrability of the derivatives in obstacle problems with

w(x) ≡ 1 was first considered by Li and Martio [2] in 1994, using the so-called reverse

Hölder inequality. Gao and Tian [3] gave a local regularity result for weak solutions to

obstacle problem in 2004. Recently, regularity theory for very weak solutions of the

A-harmonic equations with w(x) ≡ 1 have been considered [4], and the regularity the-

ory for very solutions of obstacle problems with w(x) ≡ 1 have been explored in [5].

This paper gives a Caccioppoli-type estimate for solutions to obstacle problems with

weight, which is closely related to the local regularity theory for very weak solutions of

the A-harmonic equation (1.2).

Theorem There exists r1 Î (p - 1, p) such that for arbitrary ψ ∈ W1,p
loc(�,w)and r1 <r

<p, a solution u to the Kr
ψ ,θ-obstacle problem with weight w(x) Î A1 satisfies the follow-

ing Caccioppoli-type estimate

∫
Ak,ρ

|∇u|rdμ ≤ C

⎡
⎢⎣

∫
Ak,R

|∇ψ |rdμ +
1

(R − ρ)r

∫
Ak,R

|u|rdμ

⎤
⎥⎦

where 0 <r <R < +∞ and C is a constant depends only on n, p and b/a.

2 Preliminary Lemmas
The following lemma comes from [6] which is a Hodge decomposition in weighted

spaces.

Lemma 1 Let Ω be a regular domain of Rn and w(x) be an A1 weight. If

u ∈ W1,p−ε

0 (�,w), 1 <p < ∞, -1 <ε <p - 1, then there exist ϕ ∈ W
1,

p−ε

1−ε
0 (�,w)and a

divergence-free vector field H ∈ L
p−ε

1−ε (�,w)such that

|∇u|−ε∇u = ∇ϕ +H

and

‖∇ϕ‖
L

p − ε

1 − ε (�,w)

≤ cAp(w)γ ‖∇u‖1−ε
Lp−ε(�,w) (2:1)

‖H‖
L

p − ε

1 − ε (�,w)

≤ cAp(w)γ |ε|‖∇u‖1−ε
Lp−ε(�,w) (2:2)

where g depends only on p.

We also need the following lemma in the proof of the main theorem.

Lemma 2 [7]Let f(t) be a non-negative bounded function defined for 0 ≤ T0 ≤ t ≤ T1.

Suppose that for T0 ≤ t <s ≤ T1, we have

f (t) ≤ A(s − t)−α + B + θ f (s),

where A, B, a, θ are non-negative constants and θ < 1. Then, there exist a constant c,

depending only on a and θ, such that for every r, R, T0 ≤ r <R ≤ T1 we have

f (ρ) ≤ c[A(R − ρ)−α + B].
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3 Proof of the main theorem

Let u be a very weak solution to the Kr
ψ ,θ-obstacle problem. Let BR1 ⊂⊂ � and 0 <R0 ≤

τ <t ≤ R1 be arbitrarily fixed. Fix a cut-off function φ ∈ C∞
0 (Bt) such that

suppφ ⊂ Bt, 0 ≤ φ ≤ 1, φ = 1 in Bτ and |∇φ| ≤ 2(t − τ )−1.

Consider the function

v = u − Tk(u) − φr(u − ψ+
k ),

where Tk(u) is the usual truncation of u at the level k defined in Section 1 and

ψ+
k = max{ψ ,Tk(u)}. Now v ∈ Kr

ψ−Tk(u),θ−Tk(u)
(�,w). Indeed,

v − (θ − Tk(u)) = u − θ − φr(u − ψ+
k ) ∈ W1,r

0 (�,w)

since φ ∈ C∞
0 (�) and

v − (ψ − Tk(u)) = (u − ψ) − φr(u − ψ+
k ) ≥ (1 − φr)(u − ψ) ≥ 0

a.e. in Ω. Let

E(v, u) = |φr∇u|r−pφr∇u + |∇(v − u + Tk(u))|r−p∇(v − u + Tk(u)). (3:1)

From an elementary formula [[8], (4.1)]

||X|−εX − |Y|−εY| ≤ 2ε 1 + ε

1 − ε
|X − Y|1−ε , X,Y ∈ Rn, 0 ≤ ε < 1

and ∇v = ∇(u − Tk(u)) − φr∇(u − ψ+
k ) − rφr−1∇φ(u − ψ+

k ), we can derive that

|E(v, u)| ≤ 2p−r p − r + 1
r − p + 1

|φr∇u − φr∇(u − ψ+
k ) − rφr−1∇φ(u − ψ+

k )|r−p+1. (3:2)

From (3.1), we get that
∫
Ak,t

〈A(x,∇u), |φr∇u|r−pφr∇u〉dx =
∫
Ak,t

〈A(x,∇u),E(v, u)〉dx

−
∫
Ak,t

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx.
(3:3)

Now we estimate the left-hand side of (3.3),
∫
Ak,t

〈A(x,∇u), |φr∇u|r−pφr∇u〉dx ≥
∫
Ak,τ

〈A(x,∇u), |∇u|r−p∇u〉dx ≥ α

∫
Ak,τ

|∇u|rdμ. (3:4)

Using (1.3), we get

|∇(v − u + Tk(u))|r−p∇(v − u + Tk(u)) = ∇ϕ +H (3:5)

and (1.4) yields

‖H‖
L

r
r − p + 1 (�,w)

≤ cAp(w)γ |r − p|‖∇(v − u + Tk(u))‖r−p+1
Lr(�,w). (3:6)

Since u - Tk(u) is a very weak solution to the Kr
ψ−Tk(u),θ−Tk(u)-obstacle problem, we

derive, by
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Definition 1, that
∫
�

〈A(x,∇(u−Tk(u))), |∇(v−u+Tk(u))|r−p∇(v−u+Tk(u))〉dx ≥
∫
�

〈A(x,∇(u−Tk(u))),H〉dx

that is
∫
Ak,t

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx ≥
∫
Ak,t

〈A(x,∇u),H〉dx. (3:7)

Combining the inequalities (3.3), (3.4) and (3.7), we obtain

α

∫
Ak,τ

|∇u|rdμ ≤
∫
Ak,t

〈A(x,∇u),E(v, u)〉dx −
∫
Ak,t

〈A(x,∇u),H〉dx

≤ β
2p−r(p − r + 1)

r − p + 1

∫
Ak,t

|∇u|p−1|φr∇ψ+
k − rφr−1∇φ(u − ψ+

k )|r−p+1dμ

+ β

∫
Ak,t

|∇u|p−1|H|dμ

≤ β
2p−r(p − r + 1)

r − p + 1

∫
Ak,t

|∇u|p−1|φr∇ψ |r−p+1dμ

+ β
2p−r(p − r + 1)

r − p + 1

∫
Ak,t

|∇u|p−1|rφr−1∇φ(u − ψ+
k )|r−p+1dμ

+ β

∫
Ak,t

|∇u|p−1|H|dμ

≤ β
2p−r(p − r + 1)

r − p + 1

⎛
⎜⎝

∫
Ak,t

|∇u|rdμ

⎞
⎟⎠

p−1
r

⎛
⎜⎝

∫
Ak,t

|∇ψ |rdμ

⎞
⎟⎠

r−p+1
r

+ β
2p−r(p − r + 1)

r − p + 1

⎛
⎜⎝

∫
Ak,t

|∇u|rdμ

⎞
⎟⎠

p−1
r

⎛
⎜⎝

∫
Ak,t

|rφp−1∇φ(u − ψ+
k )|rdμ

⎞
⎟⎠

r−p+1
r

+ β

⎛
⎜⎝

∫
Ak,t

|∇u|rdμ

⎞
⎟⎠

p−1
r

⎛
⎜⎝

∫
Ak,t

|H|
r

r − p + 1 dμ

⎞
⎟⎠

r−p+1
r

.

Let c1 = 2p−r(p−r+1)
r−p+1 , by (3.6) and Young’s inequality

ab ≤ εap
′
+ c2(ε, p)bp,

1
p′ +

1
p
= 1, a, b ≥ 0, ε ≥ 0, p ≥ 1,

we can derive that

α

∫
Ak,τ

|∇u|rdμ ≤βc1ε
∫
Ak,t

|∇u|rdμ + βc1c2(ε, p)
∫
Ak,t

|∇ψ |rdμ

+ βc1ε
∫
Ak,t

|∇u|rdμ + βc1c2(ε, p)
∫
Ak,t

|rφr−1∇φ(u − ψ+
k )|rdμ

+ βcAp(w)γ (p − r)ε
∫
Ak,t

|∇u|rdμ

+ βcAp(w)γ (p − r)c2(ε, p)
∫
�

|∇(v − u + Tk(u))|rdμ,

where c is the constant given by Lemma 1. Since v - u + Tk(u) = 0 on Ω\Ak,t, by the

equality
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∇v = ∇(u − Tk(u)) − φr∇(u − ψ+
k ) − rφr−1∇φ(u − ψ+

k ),

we obtain that
∫
�

|∇(v − u + Tk(u))|rdμ =
∫
Ak,t

|∇(v − u)|rdμ

=
∫
Ak,t

|φr∇(u − ψ+
k ) + rφr−1∇φ(u − ψ+

k )|rdμ

≤ 2r−1
∫
Ak,t

|∇(u − ψ+
k )|rdμ + 2r−1r

∫
Ak,t

|∇φ(u − ψ+
k )|rdμ

≤ 22r−2
∫
Ak,t

|∇u|rdμ + 22r−2
∫
Ak,t

|∇ψ |rdμ + r22r−2
∫
Ak,t

|ur|
(t − τ )r

dμ.

Finally, we obtain

∫
Ak,τ

|∇u|rdμ ≤β(2c1 + cAp(w)
γ (p − r))ε + βcAp(w)

γ c2(ε, p)2
2r−2(p − r)

α

∫
Ak,t

|∇u|rdμ

+
βc1c2(ε, p) + 22r−2βcAp(w)

γ c2(ε, p)(p − r)

α

∫
Ak,t

|∇ψ |rdμ

+ r
βc1c2(ε, p) + 22r−1βcAp(w)

γ c2(ε, p)(p − r)

α

∫
Ak,t

|u|r
(t − τ )r

dμ.

(3:8)

Now we want to eliminate the first term in the right-hand side containing ∇u.
Choosing ε and r1 such that

η =
β(2c1 + cAp(w)

γ (p − r))ε + βcAp(w)
γ c2(ε, p)2

2r−2(p − r)

α
< 1

and let r, R be arbitrarily fixed with R0 ≤ r <R ≤ R1. Thus, from (3.8), we deduce

that for every t and τ such that r ≤ τ <t ≤ R, we have
∫
Ak,τ

|∇u|rdμ ≤ η

∫
Ak,t

|∇u|rdμ +
c3
α

∫
Ak,t

|∇ψ |dμ +
c4

α(t − τ )r

∫
Ak,t

|u|rdμ, (3:9)

where

c3 = βc1c2(ε, p) + 22r−2βcAp(w)γ c2(ε, p)(p − r)

and

c4 = rβc1c2(ε, p) + r22r−1βcAp(w)γ c2(ε, p)(p − r).

Applying Lemma 2 in (3.9), we conclude that
∫
Ak,ρ

|∇u|rdμ ≤ cc3
α

∫
Ak,R

|∇ψ |rdμ +
cc4

α(R − ρ)r

∫
Ak,R

|u|rdμ,

where c is the constant given by Lemma 2. This ends the proof of the main theorem.
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