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Abstract

We introduce a mean of a real-valued measurable function f on a probability space
induced by a strictly monotone function �. Such a mean is called a �-mean of f and
written by M�(f). We first give a new interpretation of Jensen’s inequality by �-mean.
Next, as an application, we consider some geometric properties of M�(f), for example,
refinement, strictly monotone increasing (continuous) �-mean path, convexity, etc.
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1. Introduction
We are interested in means of real-valued measurable functions induced by strictly

monotone functions. These means are somewhat different from continuously differen-

tiable means, i.e., C1-means introducing by Fujii et al. [1], but they include many

known numerical means. Here we first give a new interpretation of Jensen’s inequality

by such a mean and we next consider some geometric properties of such means, as an

application of it.

Throughout the paper, we denote by (Ω, μ), I and f a probability space, an interval of

ℝ and a real-valued measurable function on Ω with f(ω) Î I for almost all ω Î Ω,

respectively. Let C(I) be the real linear space of all continuous real-valued functions

defined on I. Let C+
sm(I) (resp. C

−
sm(I)) be the set of all � Î C(I) which is strictly mono-

tone increasing (resp. decreasing) on I. Then C+
sm(I) (resp. C

−
sm(I)) is a positive (resp.

negative) cone of C(I). Put Csm(I) = C+
sm(I) ∪ C−

sm(I). Then Csm(I) denotes the set of all

strictly monotone continuous functions on I.

Let Csm,f(I) be the set of all � Î Csm (I) with � ∘ f Î L1 (Ω, μ). Let � be an arbitrary

function of Csm,f(I). Since �(I) is an interval of ℝ and μ is a probability measure on Ω,

it follows that∫
(ϕ ◦ f )dμ ∈ ϕ(I).

Then there exists a unique real number M�(f) Î I such that
∫
(ϕ ◦ f )dμ = ϕ(Mϕ(f )).

Since � is one-to-one, it follows that

Mϕ(f ) = ϕ−1
(∫

(ϕ ◦ f )dμ

)
.
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We call M�(f) a �-quasi-arithmetic mean of f with respect to μ (or simply, �-mean of f).

A �-mean of f has the following invariant property:

Mϕ(f ) = Maϕ+b(f )

for each a, b Î ℝ with a ≠ 0.

Assume that μ(Ω\{ω1, ..., ωn}) = 0 for some ω1, ..., ωn Î Ω, f is a positive measurable

function on Ω and I = ℝ. Then M�(f) will denote a weighted arithmetic mean, a

weighted geometric mean, a weighted harmonic mean, etc. of {f(ω1), ..., f(ωn)} if �(x) =

x, �(x) = log x, ϕ(x) = 1
x, etc., respectively.

In Section 2, we prepare some lemmas which we will need in the proof of our main

results.

In Section 3, we first see that a �-mean function: ∇� ® M�(f) is order-preserving as

a new interpretation of Jensen’s inequality (see Theorem 1). We next see that there is

a strictly monotone increasing �-mean (continuous) path between two �-means (see

Theorem 2). We next see that the �-mean function is strictly concave (or convex) on a

suitable convex subset of Csm,f(I) (see Theorem 3). We also observe a certain bounded-

ness of �-means, more precisely,

sup
s≥0

M(1−s)ϕ+sψ (f ) = Mψ−ϕ(f )

under some conditions (see Theorem 4).

In Section 4, we treat a special �-mean in which � is a C2-functions with no station-

ary points.

In Section 5, we will give a new refinement of the geometric-arithmetic mean

inequality as an application of our results.

2. Lemmas
This section is devoted to collecting some lemmas which we will need in the proof of

our main results. The first lemma is to describe geometric properties of convex func-

tion, but this will be standard, so we will omit the proof (cf. [[2], (13.34) Exercise: Con-

vex functions].

Lemma 1. Let � be a real-valued function on I. Then the following three assertions

are pairwise equivalent:

(i) � is convex (resp. strictly convex).

(ii) For any c Î I°, a function lc,� defined by

λc,ϕ(x) =
ϕ(x) − ϕ(c)

x − c
(x ∈ I\{c})

is monotone increasing (resp. strictly monotone increasing) on I\{c}.

(iii) For any c Î I°, there is a real constant mc Î ℝ such that

ϕ(x) − ϕ(c) − mc(x − c) ≥ 0 (resp. > 0)

for all x Î I\{c}, i.e., the line through (c, �(c)) having slope mc is always below or on

(resp. below) the graph of �.
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Here I° denotes the interior of I.

For �, ψ Î Csm(I) and c Î I°, put

λc,ϕ,ψ(x) =
ψ(x) − ψ(c)
ϕ(x) − ϕ(c)

(x ∈ I\{c}).

This function has the following invariant property:

λc,ϕ,ψ = λc,aϕ+b,aψ+b

for each a, b Î ℝ with a ≠ 0. In this case, we have the following

Lemma 2. Let ϕ,ψ ∈ C+
sm(I). Then, the following three assertions are pairwise equiva-

lent:

(i) For any c Î I°, lc,�,ψ is monotone increasing (resp. strictly monotone increasing)

on I\{c}.

(ii) For any c Î I°, there is a real constant mc Î ℝ such that

ψ(x) − ψ(c) − mc(ϕ(x) − ϕ(c)) ≥ 0 (resp. > 0)

for all x ÎI\{c}.
(iii) ψ ∘ �-1 is convex (resp. strictly convex) on �(I).

Proof. (i) ⇒ (ii). Fix c Î I° arbitrarily. For any x ÎI\{c}, put u = �(x) and then

(λc,ϕ,ψ ◦ ϕ−1)(u) =
(ψ ◦ ϕ−1)(u) − (ψ ◦ ϕ−1)(ϕ(c))

u − ϕ(c)
. (1)

If lc,�,ψ is monotone increasing (resp. strictly monotone increasing) on I\{c}, then

lc,�,ψ ∘ �-1 is also monotone increasing (resp. strictly monotone increasing) on �(I)

\{�(c)} and hence by (1) and Lemma 1, we can find a real constant mc Î ℝ which is

independent of x such that

(ψ ◦ ϕ−1)(u) − (ψ ◦ ϕ−1)(ϕ(c)) − mc(u − ϕ(c)) ≥ 0 (resp. > 0).

Since u = �(x), we have

ψ(x) − ψ(c) − mc(ϕ(x) − ϕ(c)) ≥ 0 (resp. > 0).

(ii) ⇒ (iii). Take u Î �(I) and d Î (�(I))∘ arbitrarily. Put x = �-1 (u) and c = �-1 (d).

Then x Î I and c Î I°. If we can find a real constant mc Î ℝ which is independent of

u such that

ψ(x) − ψ(c) − mc(ϕ(x) − ϕ(c)) ≥ 0 (resp. > 0),

then

(ψ ◦ ϕ−1)(u) − (ψ ◦ ϕ−1)(d) − mc(u − d) ≥ 0 (resp. > 0),

and hence ψ ∘ �-1 is convex (resp. strictly convex) on �(I) by Lemma 1.

(iii) ⇒ (i). Take c Î I° and x Î I\{c} arbitrarily. Put u = �(x) and d = �(c).
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Then u Î �(I)\{d} and d Î (�(I))∘, hence

(λc,ϕ,ψ ◦ ϕ−1)(u) =
(ψ ◦ ϕ−1)(u) − (ψ ◦ ϕ−1)(d)

u − d
. (2)

If ψ ∘ �-1 is convex (resp. strictly convex) on �(I), then by (2) and Lemma 11, lc,�,ψ ∘
�-1 and hence lc,�,ψ is monotone increasing (resp. strictly monotone increasing) on I

\{c}. □
For each � Î Csm(I), t Î [0, 1] and x, y Î I, put

x∇t,ϕy = ϕ−1((1 − t)ϕ(x) + tϕ(y)).

This can be regarded as a �-mean of {x, y} with respect to a probability measure

which represents a weighted arithmetic mean (1-t) x + ty.

For each � Î Csm(I), denote by ∇� a three variable real-valued function:

(t, x, y) → x∇t,ϕy

on (0, 1) × {(x, y) Î I2 : x ≠ y}. For each �, ψ Î Csm (I), we write ∇� ≤ ∇ψ (resp. ∇� < ∇ψ)

if

x∇t,ϕy ≤ x∇t,ψy (resp. x∇t,ϕy < x∇t,ψy)

for all t Î (0, 1) and x, y Î I with x ≠ y.

Remark. The continuity of � implies that ∇� ≤ ∇ψ (resp. ∇� < ∇ψ) if and only if

x∇ 1
2 ,ϕ

y ≤ x∇ 1
2 ,ψ

y (resp. x∇ 1
2 ,ϕ

y < x∇ 1
2 ,ψ

y)

for all x, y Î I with x ≠ y.

These order relations “≤” and “<” play an important role in our discussion.

Lemma 3. Let �, ψ Î Csm (I). Then

(i) ∇� = ∇ψ holds if and only if ψ = a� + b for some a, b Î ℝ with a ≠ 0.

(ii) If ψ ∈ C+
sm(I), then ∇� ≤ ∇ψ (resp. ∇� < ∇ψ) holds if and only if ψ ∘ �-1 is convex

(resp. strictly convex) on �(I).

(iii) If ψ ∈ C−
sm(I), then ∇� ≤ ∇ψ (resp. ∇� < ∇ψ) holds if and only if ψ ∘ �-1 is con-

cave (resp. strictly concave) on �(I).

Proof. (i) Suppose that ∇� = ∇ψ holds. Take u, v Î �(I) with u ≠ v arbitrarily and put

x = �-1(u) and y = �-1(v), hence x ≠ y. By hypothesis,

ψ(ϕ−1((1 − t)u + tv)) = (1 − t)ψ(ϕ−1(u)) + tψ(ϕ−1(v))

for all t Î (0, 1). This means that ψ ∘ �-1 is convex and concave on �(I) and hence

we can write ψ(�-1(u)) = au + b for all u Î �(I) and some a, b Î ℝ. Therefore, ψ(x) =

a�(x) + b for all x Î I. Since ψ is non-constant, it follows that a ≠ 0.

The reverse assertion is straightforward.

(ii) Assume that ψ is monotone increasing. Take u, v Î �(I) with u ≠ v arbitrarily

and put x = �-1(u) and y = �-1(v), hence x ≠ y. If ∇� ≤ ∇ψ holds, then

ψ(ϕ−1((1 − t)ϕ(x) + tϕ(y))) ≤ (1 − t)ψ(x) + tψ(y)
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and hence

ψ(ϕ−1((1 − t)u + tv)) ≤ (1 − t)ψ(ϕ−1(u)) + tψ(ϕ−1(v))

for all t Î (0, 1). This means that ψ ∘ �-1 is convex.
Conversely, if ψ ∘ �-1 is convex, we see that ∇� ≤ ∇ψ holds by observing the reverse

of the above proof.

Also a similar observation implies that ∇� < ∇ψ holds if and only if ψ ∘ �-1 is strictly

convex on I.

(iii) Assume that ψ is monotone decreasing. Then -ψ is monotone increasing. Hence,

by (ii), we have that ∇� ≤ ∇-ψ (resp. ∇� < ∇-ψ) holds if and only if (-ψ) ∘ �-1 is convex

(resp. strictly convex) on �(I). However, since ∇ψ = ∇-ψ holds by (i) and (-ψ) ∘ �-1 is

convex (resp. strictly convex) on �(I) iff ψ ∘ �-1 is concave (resp. strictly concave) on

�(I), we obtain the desired result. □
Lemma 4. Let ϕ,ψ ∈ C+

sm(I)(or C
−
sm(I)) with ∇� < ∇ψ. For each s Î [0, 1], define ξs =

(1 - s) � + sψ. Then

(i) Each ξs belongs to C+
sm(I)(resp. C

−
sm(I)) when ϕ,ψ ∈ C+

sm(I)(resp. C
−
sm(I)).

(ii) For each t Î (0, 1) and x, y Î I with x ≠ y, a function s → x∇t,ξs yis strictly

monotone increasing on [0, 1].

Proof. (i) Straightforward.

(ii) Assume ϕ,ψ ∈ C+
sm(I) with ∇� < ∇ψ. Take t Î (0, 1) and x, y Î I with x ≠ y arbi-

trarily. To show that a function s → x∇t,ξs y is strictly monotone increasing on [0, 1],

let 0 ≤ s1 <s2 ≤ 1. Take c Î I∘ arbitrarily. Since ∇� < ∇ψ holds, it follows from Lemmas

2 and 3 that lc,�,ψ is strictly monotone increasing on I\{c}. Moreover, we have

λc,ξs1 ,ξs2 (x) =
ξs2 (x) − ξs2 (c)
ξs1 (x) − ξs1 (c)

=
s2(ψ(x) − ψ(c)) + (1 − s2)(ϕ(x) − ϕ(c))
s1(ψ(x) − ψ(c)) + (1 − s1)(ϕ(x) − ϕ(c))

=
s2λc,ϕ,ψ(x) + 1 − s2
s1λc,ϕ,ψ(x) + 1 − s1

.

for each x Î I\{c}. Therefore, we have

λc,ξs1 ,ξs2 (x) = s2λc,ϕ,ψ(x) + 1 − s2 (s1 = 0) (3)

and

λc,ξs1 ,ξs2 (x) =
s2
s1

− s2 − s1
s21

1

λc,ϕ,ψ(x) − s1−1
s1

(s1 	= 0) (4)

for each x Î I\{c}. If s1 = 0, then it is trivial by (3) that λc,ξs1 ,ξs2 is strictly monotone

increasing on I\{c}. If s1 ≠ 0, then

s1 − 1
s1

< 0 < λc,ϕ.ψ(x)

for all x Î I\{c}. So, by (4), λc,ξs1 ,ξs2 is also strictly monotone increasing on I\{c}. Hence

we see that ∇ξs1
< ∇ξs2 holds by (i), Lemmas 2 and 3. This implies that
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s → x∇t,ξs y. Then a function s → x∇t,ξs y is strictly monotone increasing on [0, 1], as

required.

For the case of ϕ,ψ ∈ C−
sm(I), since −ϕ,−ψ ∈ C+

sm(I), it follows from the above dis-

cussion that a function s → x∇t,−ξs y is strictly monotone increasing on [0, 1]. However,

by Lemma 3-(i), x∇t,−ξs y = x∇t,ξs y, where t Î (0, 1) and x, y Î I with x ≠ y, and then

we obtain the desired result. □
Lemma 5. Let � and ψ be two functions on I such that ψ - � is strictly monotone

increasing (resp. decreasing) on I and ψ is convex (resp. concave) on I. Then

(1 − t)ϕ(x) + tψ(y) − ((1 − t)ϕ + tψ)((1 − t)x + ty) > 0 (resp. < 0)

holds for all t Î (0, 1) and x, y Î I with x <y.

Proof. Let x, y Î I with x <y and t Î (0, 1). Put z = (1 - t)x + ty. Then, we must show

that (1 - t) �(x) + tψ(y) - ((1 - t)� + tψ)(z) > 0 (resp. < 0). Since x <z <y and ψ- � is

strictly monotone increasing (resp. decreasing) on I, it follows that

ψ(z) − ψ(x) − ϕ(z) + ϕ(x) > 0 (resp. < 0).

Also since ψ is convex (resp. concave) on I, it follows from Lemma 1 that lz,ψ is

monotone increasing (resp. decreasing). Therefore, we have

(1 − t)ϕ(x) + tψ(y) − ((1 − t)ϕ + tψ)(z)

= t(ψ(y) − ψ(z)) − (1 − t)(ϕ(z) − ϕ(x))

> t(ψ(y) − ψ(z)) − (1 − t)(ψ(z) − ψ(x))

(resp. <)

= t(1 − t)(y − x)
(

ψ(y) − ψ(z)
(1 − t)(y − x)

− ψ(z) − ψ(x)
t(y − x)

)

= t(1 − t)(y − x)
(

ψ(y) − ψ(z)
y − z

− ψ(x) − ψ(z)
x − z

)
= t(1 − t)(y − x)(λz,ψ(y) − λz,ψ(x))

≥ 0

(resp. ≤ 0),

so that (1 - t) �(x) + tψ(y) - ((1 - t)� + tψ)(z) > 0 (resp. < 0), as required. □
The following lemma gives an equality condition of Jensen’s inequality. For the sake

of completeness, we will give a proof.

Lemma 6. Let δ be a strictly convex or strictly concave function on I. Suppose that g

is a real-valued integrable function on Ω such that g(ω) Î I for almost all ω Î Ω and

δ ∘ g Î L1 (Ω, μ). Then δ(
∫
gdμ) =

∫
(δ ◦ g)dμ if and only if g is a constant function.

Proof. We first consider the strictly convex case. Put c =
∫
gdμ. If c = inf I, then c ≤ g

(ω) for almost all ω Î Ω and so g(ω) = c must hold for almost all ω Î Ω. Similarly, if

c = max I, then g(ω) = c for almost all ω Î Ω. Therefore, we can without loss of gen-

erality assume that c belongs to I∘. Since δ is strictly convex, we can from Lemma 1

find a real constant mc Î ℝ such that

δ(x) > mc(x − c) + δ(c) (5)

for all x Î I\{c}. Replacing x by g(ω) in (5), we obtain

δ(g(ω)) ≥ mc(g(ω) − c) + δ(c)
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for almost all ω Î Ω. Integrating both sides of this equation, we have∫
(δ ◦ g)dμ ≥

∫
(mc(g − c) + δ(c))dμ = δ(c) = δ(

∫
gdμ). (6)

Now assume that δ(
∫
gdμ) =

∫
(δ ◦ g)dμ. Then (6) implies that

δ(g(ω)) = mc(g(ω) − c) + δ(c)

for almost all ω Î Ω. If μ({g ≠ c}) > 0, then we can find ωc Î Ω such that δ(g(ωc)) =

mc (g(ωc) - c) + δ(c) and g(ωc) ≠ c. This contradicts (5) and hence g(ω) = c for almost

all ω Î Ω.

Conversely, assume that g is a constant function on Ω. Then it is trivial that

δ(
∫
gdμ) =

∫
(δ ◦ g)dμ.

For the strictly concave case, since -δ is strictly convex on I, it follows from the

above discussion that −δ(
∫
gdμ) =

∫
(−δ ◦ g)dμ iff g is a constant function on Ω.

However, since −δ(
∫
gdμ) =

∫
(−δ ◦ g)dμ iff δ(

∫
gdμ) =

∫
(δ ◦ g)dμ, we obtain the

desired result. □
Lemma 7. Suppose that f is non-constant and �, ψ Î Csm,f (I). Then

(i) If either ψ ∘ �-1 is convex (resp. strictly convex) on �(I) and ψ ∈ C+
sm(I)or ψ ∘ �-1

is concave (resp. strictly concave) on �(I) and ψ ∈ C−
sm(I), then

Mϕ(f ) ≤ Mψ(f ) (resp.Mϕ(f ) < Mψ(f ))

holds.

(ii) If either ψ ∘ �-1 is convex (resp. strictly convex) on �(I) and ψ ∈ C−
sm(I)or ψ ∘ �-1

is concave (resp. strictly concave) on �(I) and ψ ∈ C+
sm(I), then

Mϕ(f ) ≥ Mψ(f ) (resp.Mϕ(f ) > Mψ(f ))

holds.

Proof. (i) Put δ = ψ ∘ �-1 and g = � ∘ f. Assume that g is convex on �(I) and

ψ ∈ C+
sm(I). Since g and δ ∘ g are integrable functions on Ω, we have

δ

(∫
gdμ

)
≤

∫
(δ ◦ g)dμ (7)

by Jensen’s inequality. This means M� (f) ≤ Mψ (f) because ψ is monotone increasing

on I.

Next assume that g is concave on �(I) and ψ ∈ C−
sm(I). Then

δ

(∫
gdμ

)
≥

∫
(δ ◦ g)dμ (8)

by Jensen’s inequality. This also means M� (f) ≤ Mψ (f) because ψ is monotone

decreasing on I.

For the strict case, since g is a non-constant function on Ω, we obtain the desired

results from (7), (8), Lemma 6 and the above argument. □
(ii) Similarly.
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3. Main results
In this section, we first give a new interpretation of Jensen’s inequality by �-mean.

Next, as an application, we consider some geometric properties of �-means of a real-

valued measurable function f on Ω.

The first result asserts that a �-mean function: ∇� ® M� (f) is well defined and order

preserving, and this assertion simultaneously gives a new interpretation of Jensen’s

inequality. However, this assertion also teaches us that a simple inequality yields a

complicated inequality.

Theorem 1. Suppose that f is non-constant and �, ψ Î Csm,f (I). Then

(i) If ∇� ≤ ∇ψ holds, then M� (f) ≤ Mψ (f).

(ii) If ∇� < ∇ψ holds, then M� (f) <Mψ (f).

Proof. (i) Suppose that ∇� ≤ ∇ψ holds. If ψ is monotone increasing on I, then ψ ∘ �-1

is convex on �(I) by Lemma 3-(ii). Therefore, we have M� (f) ≤ Mψ (f) by Lemma 7-(i).

If ψ is monotone decreasing on I, then ψ ∘ �-1 is concave on �(I) by Lemma 3-(iii).

Therefore, we have M� (f) ≤ Mψ (f) by Lemma 7-(i).

(ii) Similarly. □
Let �, ψ Î Csm,f (I) and t Î (0, 1). Then, we can easily see that if either both � and ψ

are monotone increasing or both � and ψ are monotone decreasing, then (1 - t)� + tψ

is also an element of Csm,f (I) [cf. Lemma 4-(i)]. The next result asserts that there is a

strictly monotone increasing �-mean (continuous) path between two �-means.

Theorem 2. Suppose that f is non-constant and �, ψ Î Csm,f (I) with ∇� < ∇ψ.

(i) If ϕ,ψ ∈ C+
sm(I)[or C

−
sm(I)], then a function: s ® M(1-s)�+sψ(f) is strictly monotone

increasing on [0, 1].

(ii) If ϕ,ψ − ϕ ∈ C+
sm(I) [resp. C

−
sm(I)] and ψ(x) - �(x) ≥ 0 (resp. ≤ 0) for all x Î I,

then a function: s ® M(1-s)�+sψ (f) is strictly monotone increasing and continuous on

[0.1].

Proof. (i) Suppose that ϕ,ψ ∈ C+
sm(I)[or C

−
sm(I)]. For each s Î [0, 1], define ξs = (1 - s)� +

sψ. Let 0 ≤ s1 <s2 ≤ 1. Then, we must show that Mξs1
(f ) < Mξs2

(f ). By Lemma 4-(ii), a

function s → x∇t,ξs y is strictly monotone increasing on [0, 1] for each t Î (0, 1) and x, y Î
I with x ≠ y, and hence we see that ∇ξs1

< ∇ξs2 holds. Therefore, we have from Theorem

1-(ii) that Mξs1
(f ) < Mξs2

(f ), as required.

(ii) Suppose that ϕ,ψ − ϕ ∈ C+
sm(I) and �(x) ≤ ψ(x) for all x Î I. Since ψ = � + (ψ- �),

it follows that ψ ∈ C+
sm(I). For each s Î [0, 1], put as = M(1-s)�+ sψ (f). Then, we must

show that a function s ® as is continuous on [0, 1]. To do this, take 0 ≤ s <t ≤ 1 arbitra-

rily. By (i), we have as <at. Note that

(1 − t)ϕ(αt) + tψ(αt) = (1 − t)
∫
(ϕ ◦ f )dμ + t

∫
(ψ ◦ f )dμ

and

(1 − s)ϕ(αs) + sψ(αs) = (1 − s)
∫
(ϕ ◦ f )dμ + s

∫
(ψ ◦ f )dμ.
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Therefore, we have

ϕ(αt) − ϕ(αs) + t(ψ − ϕ)(αt) − s(ψ − ϕ)(αs) = (t − s)
(∫

((ψ − ϕ) ◦ f )dμ

)
. (9)

Since ϕ,ψ − ϕ ∈ C+
sm(I) and �(x) ≤ ψ(x) for all x Î I by hypothesis, it follows that

ϕ(αt) − ϕ(αs) > 0 and t(ψ − ϕ)(αt) − s(ψ − ϕ)(αs) > 0.

Hence, after taking the limit with respect to s in the Eq. (9), we obtain

lim
s→t−0

ϕ(αs) = ϕ(αt) and lim
s→t−0

s(ψ − ϕ)(αs) = t(ψ − ϕ)(αt).

However, since �-1 is continuous on �(I), we conclude that

lim
s→t−0

αs = αt.

Similarly, after taking the limit with respect to t in the Eq. (9), we obtain

lim
t→s+0

αt = αs.

These observations imply that a function s ® as is continuous on [0, 1], as required.

For the case that ϕ,ψ − ϕ ∈ C−
sm(I) and �(x) ≥ ψ(x) for all x Î I, a similar argument

above implies that a function s ® as is also continuous on [0, 1]. □
The next result asserts that the �-mean function is strictly concave (or convex) on a

suitable convex subset of Csm,f(I).

Theorem 3. Suppose that f is non-constant and �, ψ Î Csm,f(I) with ∇� < ∇ψ. Then

(i) If ϕ,ψ − ϕ ∈ C+
sm(I)(resp. C

−
sm(I)) and ψ is convex (resp. concave) on I, then

(1 − t)Mϕ(f ) + tMψ (f ) < M(1−t)ϕ+tψ(f )

holds for all t Î (0, 1).

(ii) If ψ ,ϕ − ψ ∈ C−
sm(I)(resp. C

+
sm(I)) and ψ is convex (resp. concave) on I, then

(1 − t)Mϕ(f ) + tMψ (f ) > M(1−t)ϕ+tψ(f )

holds for all t Î (0, 1).

Proof. (i) Suppose that ϕ,ψ − ϕ ∈ C+
sm(I)[resp. C

−
sm(I)] and ψ is convex [resp. con-

cave] on I. Since ψ = � + (ψ- �), it follows from hypothesis that ψ ∈ C+
sm(I) [resp.

C−
sm(I)]. Put x = M�(f) and y = Mψ(f), and so x <y by Theorem 1-(ii). Also, we have

from definition that

ϕ(x) =
∫

(ϕ ◦ f )dμ and ψ(y) =
∫

(ψ ◦ f )dμ.

Let 0 <t < 1 and put u = M(1-t)�+tψ(f). Then, we have

((1 − t)ϕ + tψ)(u) =
∫
(((1 − t)ϕ + tψ) ◦ f )dμ

by definition. Therefore,

(1 − t)ϕ(x) + tψ(y) = (1 − t)
∫

(ϕ ◦ f )dμ + t
∫
(ψ ◦ f )dμ

=
∫
(((1 − t)ϕ + tψ) ◦ f )dμ

= ((1 − t)ϕ + tψ)(u).
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Put z = (1 - t)x + ty. Then, by the above equality and Lemma 5, we have

((1 − t)ϕ + tψ)(z) < (resp. >)(1 − t)ϕ(x) + tψ(y) = ((1 − t)ϕ + tψ)(u).

Since (1 - t)� + tψ is strictly increasing (resp. decreasing), it follows that z <u, that is,

(1 − t)x + ty < u.

This means that (1 - t)M�(f) + tMψ(f) <M(1-t)�+tψ(f).

(ii) Similarly.

Remark. It seems that Theorem 3 is slightly related to [3,4] which discuss a compari-

son between a convex linear combination of the arithmetic and geometric means and

the generalized logarithmic mean.

The following result describes a certain boundedness of �-means.

Theorem 4. Suppose that f is non-constant and �, ψ Î Csm,f(I) with ∇� < ∇ψ.

(i) If ϕ,ψ − ϕ ∈ C+
sm(I) [or C−

sm(I)], then a function: s ® M(1-s)�+sψ(f) is strictly

monotone increasing on [0, ∞) and

lim
s→∞M(1−s)ϕ+sψ (f ) = Mψ−ϕ(f ).

(ii) If ϕ,ψ − ϕ ∈ C+
sm(I)[resp. C

−
sm(I)] and ψ(x) - �(x) ≥ 0 (resp. ≤ 0) for all x Î I,

then a function: s ® M(1-s)�+sψ(f) is strictly monotone increasing and continuous on

[0, ∞).

Proof. (i) Suppose that ϕ,ψ − ϕ ∈ C+
sm(I). For each s ≥ 1, put ξs = (1 - s)� + sψ. Since

ξs = � + s(ψ - �), it follows from hypothesis that each ξs is in C+
sm(I), and then ξs Î Csm,

f(I). Since ψ = � + (ψ- �), it follows from hypothesis that ψ is also in C+
sm(I). Then by

Lemmas 2 and 3, we have that lc,�,ψ is strictly monotone increasing on I\{c} for any c

Î I°. Let 1 ≤ s1 <s2 < ∞ and take c Î I° arbitrarily. In this case, we obtain the equality

(4), as observe in the proof of Lemma 4-(ii). Note that

s1 − 1
s1

< 1 < λc,ϕ,ψ(x)

for all x Î I\{c}. So, by (4), λc,ξs1 ,ξs2is also strictly monotone increasing on I\{c}. Then

by Lemmas 2 and 3, we conclude that ∇ξs1
< ∇ξs2. Therefore, we have from Theorem

1-(ii) that Mξs1
(f ) < Mξs2

(f ) and then a function: s ® M(1-s)�+sψ(f) is strictly monotone

increasing on [1, ∞) and hence [0, ∞) by Theorem 2-(i).

Moreover, we can easily see that

λc,ξs,ψ−ϕ(x) =
1
s

− 1
s2

1

λc,ϕ,ψ(x) − s−1
s

and

s − 1
s

< 1 < λc,ϕ,ψ(x)
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for all s ≥ 1, x Î I\{c} and c Î I°. This implies that λc,ξs,ψ−ϕ is strictly monotone

increasing on I\{c} for each s ≥ 1 and c Î I°. Then by Lemmas 2 and 3, we conclude

that ∇ξs < ∇ψ−ϕ for each s ≥ 1. Therefore, we have from Theorem 1-(ii) that

Mξs(f ) < Mψ−ϕ(f ) for each s ≥ 1.

Now take s ≥ 1 arbitrarily and put αs = Mξs(f ) and a = Mψ-�(f), so as <a. Since
ϕ,ψ − ϕ ∈ C+

sm(I), it follows that �(as) <�(a) and (ψ- �)(as) < (ψ- �)(a). By definition,

we have

(ψ − ϕ)(α) =
∫
((ψ − ϕ) ◦ f )dμ.

Also since ξs = s( 1s ϕ + ψ − ϕ), it follows from an invariant property of �-mean that

αs = M 1
s ϕ+ψ−ϕ

(f ) and then

1
s
ϕ(αs) + (ψ − ϕ)(αs) =

∫ (
1
s
ϕ + ψ − ϕ

)
◦ fdμ

Therefore, we have

0 < (ψ − ϕ)(α) − (ψ − ϕ)(αs)

=
1
s

(
ϕ(αs) −

∫
(ϕ ◦ f )dμ

)

<
1
s

(
ϕ(α) −

∫
(ϕ ◦ f )dμ

)
.

Hence, after taking the limit with respect to s, we obtain

lim
s→∞(ψ − ϕ)(αs) = (ψ − ϕ)(α).

However, since (ψ- �)-1 is continuous on (ψ- �)(I), we conclude that

lim
s→∞ αs = α,

that is,

lim
s→∞M(1−s)ϕ+sψ (f ) = Mψ−ϕ(f ).

For the decreasing case, replacing � and ψ by -� and -ψ, respectively, apply the

above discussion for the increasing case.

(ii) Refer to the Proof of Theorem 2-(ii). □

4. �-means by C2-functions
In this section, we treat a special �-mean in which � is a C2-functions with no station-

ary points. For each real-valued measurable function f on Ω, let C2
sm∗,f (I) be the set of

all C2-functions � in Csm,f(I) with no stationary points, that is, �’(t) ≠ 0 for all t Î I.

Lemma 8. Let ϕ,ψ ∈ C2
sm∗,f (I). Then

(i) The following two statements are equivalent:

(a) ψ ∘ �-1 is convex (resp. concave) on �(I).

(b) (ψ ′′(x)
ψ ′(x) − ϕ′′(x)

ϕ′(x) )ψ
′(x) ≥ 0(resp. ≤ 0) for all x Î I°.

(ii) The following two statements are equivalent:
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(c) ψ ∘ �-1 is strictly convex (resp. strictly concave) on �(I).

(d) (ψ ′′(x)
ψ ′(x) − ϕ′′(x)

ϕ′(x) )ψ
′(x) > 0(resp. < 0) for all x Î I°.

Proof. (i) Define τ(u) = ψ((�-1(u)) for each u Î �(I). Then a simple calculation yields

that

τ ′′(u) =

(
ψ ′′(x)
ψ ′(x) − ϕ′′(x)

ϕ′(x)

)
ψ ′(x)

(ϕ′(x))2

for all u Î (�(I))°, where x = �-1(u). This equation implies that (a) and (b) are

equivalent.

(ii) Similarly. □

Lemma 9. Let � and ψ be C1-functions on I. Then,

(i) If �’(x) <ψ’(x) for all x Î I° and ψ’ is monotone increasing on I, then

((1 − t)ϕ + tψ)((1 − t)x + ty) < (1 − t)ϕ(x) + tψ(y)

holds for all x, y Î I with x <y and t Î (0, 1).

(ii) If �’(x) >ψ’(x) for all x Î I° and ψ’ is monotone decreasing on I, then

((1 − t)ϕ + tψ)((1 − t)x + ty) > (1 − t)ϕ(x) + tψ(y)

holds for all x, y Î I with x <y and t Î (0, 1).

Proof. (i) Suppose that �’(x) <ψ’(x) for all x Î I° and ψ’ is monotone increasing on I.

Let x, y Î I with x <y and t Î (0, 1). Put z = (1 - t)x + ty. Then, we must show that

((1 - t)� + tψ)(z) < (1 - t)�(x) + tψ(y). By the mean value theorem, we have

(1 − t)ϕ(x) + tψ(y) − ((1 − t)ϕ + tψ)(z)

= t(ψ(y) − ψ(z)) − (1 − t)(ϕ(z) − ϕ(x))

= tψ ′(z + (y − z)θ)(y − z) − (1 − t)ϕ′(x + (z − x)θ ′)(z − x)

= t(1 − t)(ψ ′(z + (y − z)θ) − ϕ′(x + (z − x)θ ′))(y − x)

≥ t(1 − t)(ψ ′(x + (z − x)θ ′) − ϕ′(x + (z − x)θ ′))(y − x)

for some θ, θ’Î (0, 1) because z + (y- z)θ ≥ x + (z- x)θ’ and hence ψ’(z + (y- z)θ) ≥ ψ’(

x + (z- x)θ’) by hypothesis. Since x + (z- x)θ’ Î I°, it follows from hypothesis that

ψ ′(x + (z − x)θ ′) > ϕ′(x + (z − x)θ ′)

and so (1 - t)�(x) + tψ(y) - ((1 - t)� + tψ)(z) > 0 from the preceding inequalities.

Therefore, we obtain the desired inequality.

(ii) Similarly. □
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Corollary 1. Suppose that f is non-constant and ϕ,ψ ∈ C2
sm∗,f (I). Then

(i) If ϕ′′(x)
ϕ′(x) ≤ ψ ′′(x)

ψ ′(x)for all x Î I°, then M�(f) ≤ Mψ(f).

(ii) If ϕ′′(x)
ϕ′(x) <

ψ ′′(x)
ψ ′(x)for all x Î I° then M�(f) <Mψ(f).

Proof. (i) Suppose that ϕ′′(x)
ϕ′(x) ≤ ψ ′′(x)

ψ ′(x) for all x Î I°. If ψ is monotone increasing on I,

then ψ’(x) > 0 for all x Î I° and hence ψ ∘ �-1 is convex on �(I) by Lemma 8-(i).

Therefore, by Lemma 3-(ii), ∇� ≤ ∇ψ holds and then M�(f) ≤ Mψ(f) by Theorem 1-(i). If

ψ is monotone decreasing on I, then ψ’(x) < 0 for all x Î I° and hence ψ ∘ �-1 is con-

cave on �(I) by Lemma 8-(i). Therefore, by Lemma 3-(iii), ∇� ≤ ∇ψ also holds and then

M�(f) ≤ Mψ(f) by Theorem 1-(i).

(ii) Similarly. □
Remark. Let (Ω, μ) be a probability space, 0 <p <q < ∞ and let f be a non-constant

real-valued function in Lq(Ω, μ). Then the well-known inequality: ||f||p < ||f||q follows

immediately from Corollary 1 (ii), by considering a family {�r : r > 0} of functions on

ℝ+, where �r(x) = xr (x > 0).

Let ϕ,ψ ∈ C2
sm∗,f (I) and let t Î (0, 1). Then, we can easily see that if either both �

and ψ are monotone increasing on I or both � and ψ are monotone decreasing on I,

then (1 − t)ϕ + tψ ∈ C2
sm∗,f (I). In this case, we have the following

Corollary 2. Suppose that f is non-constant and ϕ,ψ ∈ C2
sm∗,f (I). If

ϕ′′(x)
ϕ′(x) <

ψ ′′(x)
ψ ′(x)and

�’(x)ψ’(x) > 0 for all x Î I°, then a function: s ® M(1-s)�+sψ(f) is strictly increasing on

[0, 1].

Proof. Suppose that ϕ′′(x)
ϕ′(x) <

ψ ′′(x)
ψ ′(x) and �’(x)ψ’(x) > 0 for all x Î I°. We define ξ(s, x) =

(1 - s)�(x) + sψ(x) for each s Î (0, 1). We can easily see that

∂2

∂x2 ξ(s, x)
∂
∂xξ(s, x)

− ϕ′′(x)
ϕ′(x)

=
sψ ′(x)

(
ψ ′′(x)
ψ ′(x) − ϕ′′(x)

ϕ′(x)

)
(1 − s)ϕ′(x) + sψ ′(x)

> 0

for each s Î (0, 1) and x Î I°. Then, we have from Corollary 1-(ii) that M�(f) <M(1-s)�

+sψ(f) for all s Î (0, 1). Similarly, we can see that M(1-s)�+sψ(f) <Mψ(f) for all s Î (0, 1).

Now put

A(s, x) =
∂2

∂x2 ξ(s, x)
∂
∂xξ(s, x)

for each s Î (0, 1) and x Î I°. Then a simple calculation implies that

∂

∂s
A(s, x) =

(
ψ ′′(x)
ψ ′(x) − ϕ′′(x)

ϕ′(x)

)
ϕ′(x)ψ ′(x)(

(1 − t)ϕ′(x) + tψ ′(x)
)2 > 0

for each s Î (0, 1) and x Î I°. Therefore, for a fixed x Î I°, a function: s ® A(s, x) is

strictly increasing on (0, 1). Therefore, Corollary 1-(ii) implies that a function: s ® M

(1-s)�+sψ(f) is strictly increasing on (0, 1) and hence [0, 1]. □

Nakasuji et al. Journal of Inequalities and Applications 2011, 2011:48
http://www.journalofinequalitiesandapplications.com/content/2011/1/48

Page 13 of 15



Corollary 3. Suppose that f is non-constant and that ϕ,ψ ∈ C2
sm∗,f (I)is such that

ϕ′′(x)
ϕ′(x) <

ψ ′′(x)
ψ ′(x)for for all x Î I°. Then

(i) If either 0 <�’ <ψ’ and ψ“ ≥ 0 on I° or ψ’ <�’ < 0 and ψ“ ≤ 0 on I°, then

(1 − t)Mϕ(f ) + tMψ (f ) < M(1−t)ϕ+tψ(f )

holds for all t Î (0, 1).

(ii) If either �’ <ψ’ < 0 and ψ“ ≥ 0 on I° or 0 <ψ’ <�’ and ψ“ ≤ 0 on I°, then

(1 − t)Mϕ(f ) + tMψ (f ) > M(1−t)ϕ+tψ(f )

holds for all t Î (0, 1).

Proof. (i) Suppose that 0 <�’ <ψ’ and ψ“ ≥ 0 on I°. Put x = M�(f) and y = Mψ(f), and

so x <y by Corollary 1-(ii). Take t Î ℝ with 0 <t < 1 arbitrarily. By hypothesis, (1 - t)�

+ tψ is strictly monotone increasing on I. Put u = M(1-t)�+tψ(f). As observe in the proof

of Theorem 3-(i), we have

(1 − t)ϕ(x) + tψ(y) = ((1 − t)ϕ + tψ)(u). (10)

Put z = (1 - t)x + ty. Then, by (10) and Lemma 9-(i), we have

((1 − t)ϕ + tψ)(z) < (1 − t)ϕ(x) + tψ(y) = ((1 − t)ϕ + tψ)(u),

and then z <u, that is, (1 - t)M�(f) + tMψ(f) <M(1-t)�+tψ(f).

In the case of ψ’ <�’ < 0 and ψ ≤ 0 on I°, we apply Lemma 9-(ii).

(2) Similarly. □

5. Remarks

(i) Let I = ℝ+. Put ϕ(x) = 1
x and ψ(x) = x for each x Î I. Of course, these functions

belong to Csm(I). The harmonic-arithmetic mean inequality asserts that ∇� < ∇ψ. Take

a non-constant positive measurable function f on a probability space (Ω, μ) such that

� ∘ f and ψ ∘ f are in L1(Ω, μ). Then, we have from Theorem 1-(ii) that M�(f) <Mψ(f).

Observe that this inequality means

1 <

(∫
1
f
dμ

)(∫
fdμ

)
.

This is a special case of Jensen’s inequality (or Schwarz’s inequality). We note that if

0 <m ≤ f ≤ M, then (
∫ 1

f dμ)(
∫
fdμ) ≤ (m+M)2

4mM
. The right side of this inequality is called

a Kantorovich constant (cf. [5-7]).

(ii) A similar consideration for the geometric-arithmetic mean inequality yields that∫
logfdμ < log

∫
fdμ.
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This is also a special case of Jensen’s inequality. We note that if 0 <m ≤ f ≤ M, then

log
∫
fdμ − ∫

logfdμ ≤ h
1

h−1

(
elogh

1
h−1

)−1

, where h = M
m. The right side of this

inequality is called Specht’s ratio (cf. [8]).

(iii) For each t Î [0, 1], put log[t] x = (1 - t)log x + tx(x > 0). Then log[t] is a strictly

monotone increasing real-valued continuous function on ℝ+. Denote by exp[t] the

inverse function of log[t]. Let x1, ..., xn > 0 and p1, ..., pn > 0 with
∑n

k=1 pk = 1. Then

Theorem 2-(i) (or Corollary 2) implies that t → exp[t]

(∑n
k=1 pk log[t] xk

)
is strictly

monotone increasing on [0, 1]. Note that exp[0]

(∑n
k=1 pk log[0] xk

)
=

∏n
k=1 x

pk
k and

exp[1]

(∑n
k=1 pk log[1] xk

)
=

∑n
k=1 pkxk. Therefore, we obtain that

n∏
k=1

xpkk ≤ exp[t]

(
n∑

k=1

pk log[t] xk

)
≤

n∑
k=1

pkxk(0 ≤ t ≤ 1).

This is a new refinement of geometric-arithmetic mean inequality (cf. [9]).
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