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Abstract

In this article, we define a tangential property which can be used not only for single-
valued mappings but also for multi-valued mappings, and used it in the prove for
the existence of a common fixed point theorems of Gregus type for four mappings
satisfying a strict general contractive condition of integral type in metric spaces. Our
theorems generalize and unify main results of Pathak and Shahzad (Bull. Belg. Math.
Soc. Simon Stevin 16, 277-288, 2009) and several known fixed point results.
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Introduction
The Banach Contraction Mapping Principle, appeared in explicit form in Banach’s thesis

in 1922 [1] (see also [2]) where it was used to establish the existence of a solution for an

integral equation. Since then, because of its simplicity and usefulness, it has become a

very popular tool in solving existence problems in many branches of mathematical ana-

lysis. Banach contraction principle has been extended in many different directions, see

[3-5], etc. In 1969, the Banach’s Contraction Mapping Principle extended nicely to set-

valued or multivalued mappings, a fact first noticed by Nadler [6]. Afterward, the study

of fixed points for multi-valued contractions using the Hausdorff metric was initiated by

Markin [7]. Later, an interesting and rich fixed point theory for such mappings was

developed (see [[8-13]]). The theory of multi-valued mappings has applications in opti-

mization problems, control theory, differential equations, and economics.

In 1982, Sessa [14] introduced the notion of weakly commuting mappings. Jungck

[15] defined the notion of compatible mappings to generalize the concept of weak

commutativity and showed that weakly commuting mappings are compatible but the

converse is not true [15]. In recent years, a number of fixed point theorems have been

obtained by various authors utilizing this notion. Jungck further weakens the notion of

compatibility by introducing the notion of weak compatibility and in [16] Jungck and

Rhoades further extended weak compatibility to the setting of single-valued and multi-

valued maps. In 2002, Aamri and Moutawakil [17] defined property (E.A). This con-

cept was frequently used to prove existence theorems in common fixed point theory.

Three years later, Liu et al.[18] introduced common property (E.A). The class of (E.A)
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maps contains the class of noncompatible maps. Recently, Pathak and Shahzad [19]

introduced the new concept of weak tangent point and tangential property for single-

valued mappings and established common fixed point theorems.

The aim of this article is to develop a tangential property, which can be used only

single-valued mappings, based on the work of Pathak and Shahzad [19]. We define a

tangential property, which can be used for both single-valued mappings and multi-

valued mappings, and prove common fixed point theorems of Gregus type for four

mappings satisfying a strict general contractive condition of integral type.

Preliminaries
Throughout this study (X, d) denotes a metric space. We denote by CB(X), the class of all

nonempty bounded closed subsets of X. The Hausdorff metric induced by d on CB(X) is

given by

H(A,B) = max
{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)
}

for every A, B Î CB(X), where d(a, B) = d(B, a) = inf{d(a, b): b Î B} is the distance

from a to B ⊆ X.

Definition 2.1. Let f : X ® X and T : X ® CB(X).

1. A point x Î X is a fixed point of f (respecively T ) iff fx = x (respecively x Î Tx).

The set of all fixed points of f (respecively T) is denoted by F (f) (respecively F (T)).

2. A point x Î X is a coincidence point of f and T iff fx Î Tx.

The set of all coincidence points of f and T is denoted by C(f, T).

3. A point x Î X is a common fixed point of f and T iff x = fx Î Tx.

The set of all common fixed points of f and T is denoted by F (f, T).

Definition 2.2. Let f : X ® X and g : X ® X. The pair (f, g) is said to be

(i) commuting if fgx = gfx for all x Î X;

(ii) weakly commuting [14] if d(fgx, gfx) ≤ d(fx, gx) for all x Î X;

(iii) compatible [15] if limn®∞ d(fgxn, gfxn) = 0 whenever {xn} is a sequence in X such that

lim
n→∞ f xn = lim

n→∞ gxn = z,

for some z Î X;

(iv) weakly compatible [20]fgx = gfx for all x Î C(f, g).

Definition 2.3. [16] The mappings f : X ® X and A : X ® CB(X) are said to be

weakly compatible fAx = Afx for all x Î C(f, A).

Definition 2.4. [17] Let f : X ® X and g : X ® X. The pair (f, g) satisfies property (E.

A) if there exist the sequence {xn} in X such that

lim
n→∞ f xn = lim

n→∞ gxn = z ∈ X. (1)

See example of property (E.A) in Kamran [21,22] and Sintunavarat and Kumam [23].

Definition 2.5. [18] Let f, g, A, B : X ® X. The pair (f, g) and (A, B) satisfy a com-

mon property (E.A) if there exist sequences {xn} and {yn} in X such that

lim
n→∞ f xn = lim

n→∞ gxn = lim
n→∞Ayn = lim

n→∞Byn = z ∈ X. (2)
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Remark 2.6. If A = f, B = g and {xn} = {yn} in (2), then we get the definition of prop-

erty (E.A).

Definition 2.7. [19] Let f, g : X ® X. A point z Î X is said to be a weak tangent

point to (f, g) if there exists sequences {xn} and {yn} in X such that

lim
n→∞ f xn = lim

n→∞ gyn = z ∈ X. (3)

Remark 2.8. If {xn} = {yn} in (3), we get the definition of property (E.A).

Definition 2.9. [19] Let f, g, A, B : X ® X. The pair (f, g) is called tangential w.r.t.

the pair (A, B) if there exists sequences {xn} and {yn} in X such that

lim
n→∞ f xn = lim

n→∞ gyn = lim
n→∞Axn = lim

n→∞Byn = z ∈ X. (4)

Main results
We first introduce the definition of tangential property for two single-valued and two

multi-valued mappings.

Definition 3.1. Let f, g : X ® X and A, B : X ® CB(X). The pair (f, g) is called tan-

gential w.r.t. the pair (A, B) if there exists two sequences {xn} and {yn} in X such that

lim
n→∞ f xn = lim

n→∞ gyn = z (5)

for some z Î X, then

z ∈ lim
n→∞Axn = lim

n→∞Byn ∈ CB(X). (6)

Throughout this section, ℝ+ denotes the set of nonnegative real numbers.

Example 3.2. Let (ℝ+, d) be a metric space with usual metric d, f, g : ℝ+ ® ℝ+ and

A, B : ℝ+ ® CB(ℝ+) mappings defined by

fx = x + 1, gx = x + 2, Ax =
[
x2

2
,
x2

2
+ 1

]
, and Bx = [x2 + 1, x2 + 2] for all x ∈ R+.

Since there exists two sequences xn = 2 +
1
n
and yn = 1 +

1
n
such that

lim
n→∞ f xn = lim

n→∞ gyn = 3

and

3 ∈ [2, 3] = lim
n→∞Axn = lim

n→∞Byn.

Thus the pair (f, g) is tangential w.r.t the pair (A, B).

Definition 3.3. Let f : X ® X and A : X ® CB(X). The mapping f is called tangential

w.r.t. the mapping A if there exist two sequences {xn} and {yn} in X such that

lim
n→∞ f xn = lim

n→∞ f yn = z (7)

for some z Î X, then

z ∈ lim
n→∞Axn = lim

n→∞Ayn ∈ CB(X). (8)

Example 3.4. Let (ℝ+, d) be a metric space with usual metric d, f : ℝ+ ® ℝ+ and A :

ℝ+ ® CB(ℝ+) mappings defined by

fx = x + 1 and Ax = [x2 + 1, x2 + 2].

Sintunavarat and Kumam Journal of Inequalities and Applications 2011, 2011:3
http://www.journalofinequalitiesandapplications.com/content/2011/1/3

Page 3 of 12



Since there exists two sequences xn = 1 +
1
n
and yn = 1 − 1

n
such that

lim
n→∞ f xn = lim

n→∞ f yn = 2

and

2 ∈ [2, 3] = lim
n→∞Axn = lim

n→∞Ayn.

Therefore the mapping f is tangential w.r.t the mapping A.

Define Ω = {w : (ℝ+)4 ® ℝ+| w is continuous and w(0, x, 0, x) = w(x, 0, x, 0) = x}.

There are examples of w Î Ω:

(1) w1(x1, x2, x3, x4) = max{x1, x2, x3, x4};

(2) w2(x1, x2, x3, x4) =
x1 + x2 + x3 + x4

2
;

(3) w3(x1, x2, x3, x4) = max{√x1x3,
√
x2, x4}.

Next, we prove our main results.

Theorem 3.5. Let f, g : X ® X and A, B : X ® CB(X) satisfy
⎛
⎜⎝1 + α

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Ax,By)∫
0

ψ(t) dt

⎞
⎟⎠

p

< α

⎛
⎜⎝

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

p⎛
⎜⎝

d(By,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

+

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p ⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

+a

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

+ (1 − a)w

⎛
⎜⎝

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(By,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

(9)

for all x, y Î X for which the righthand side of (9) is positive, where 0 <a < 1, a ≥ 0,

p ≥ 1, w Î Ω and ψ : ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable

nonnegative and such that

ε∫
0

ψ(t) dt > 0 (10)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) ffa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

Proof. It follows from z Î f(X) ∩ g(X) that z = fu = gv for some u, v Î X. Using that a

point z is a weak tangent point to (f, g), there exist two sequences {xn} and {yn} in X such

that

lim
n→∞ f xn = lim

n→∞ gyn = z. (11)
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Since the pair (f, g) is tangential w.r.t the pair (A, B) and (11), we get

z ∈ lim
n→∞Axn = lim

n→∞Byn = D (12)

for some D Î CB(X). Using the fact z = fu = gv, (11) and (12), we get

z = fu = gv = lim
n→∞ f xn = lim

n→∞ gyn ∈ lim
n→∞Axn = lim

n→∞Byn = D. (13)

We show that z Î Bv. If not, then condition (9) implies
⎛
⎜⎝1 + α

⎛
⎜⎝

d(f xn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Axn,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

< α

⎛
⎜⎝

⎛
⎜⎝

d(Axn,fxn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎛
⎜⎝

d(Bv,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

+

⎛
⎜⎝

d(Axn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p ⎛
⎜⎝

d(f xn,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

+a

⎛
⎜⎝

d(f xn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

+ (1 − a)w

⎛
⎜⎝

⎛
⎜⎝

d(Axn,f xn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Bv,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Axn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(f xn,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠ .

(14)

Letting n ® ∞, we get
⎛
⎜⎝

H,(D,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ (1 − a)w

⎛
⎜⎝0,

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

, 0,

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

= (1 − a)

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

.

(15)

Since
⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

H(D,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ (1−a)

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

, (16)

which is a contradiction. Therefore z Î Bv. Again, we claim that z Î Au. If not, then

condition (9) implies
⎛
⎜⎝1 + α

⎛
⎜⎝

d(fu,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎛
⎜⎝

H(Au,Byn)∫
0

ψ(t) dt

⎞
⎟⎠

p

< α

⎛
⎜⎝

⎛
⎜⎝

d(Au,fu)∫
0

ψ(t) dt

⎞
⎟⎠

p⎛
⎜⎝

d(Byn,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

+

⎛
⎜⎝

d(Au,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p ⎛
⎜⎝

d(fu,Byn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

+a

⎛
⎜⎝

d(fu,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

+ (1 − a)w

⎛
⎜⎝

⎛
⎜⎝

d(Au,fu)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Byn ,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Au,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fu,Byn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠ .

(17)
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Letting n ® ∞, we get

⎛
⎜⎝

H(Au,D)∫
0

ψ(t) dt)

⎞
⎟⎠

p

≤ (1 − a)w

⎛
⎜⎝

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt)

⎞
⎟⎠

p

, 0,

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt)

⎞
⎟⎠

p

, 0

⎞
⎟⎠

= (1 − a)

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt)

⎞
⎟⎠

p

.

(18)

Since
⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

H(Au,D)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ (1−a)

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

. (19)

which is a contradiction. Thus z Î Au.

Now we conclude z = gv Î Bv and z = fu Î Au. It follows from v Î C(g, B), u Î C(f,

A) that ggv = gv, ffu = fu and Afu = Bgv. Hence gz = z, fz = z and Az = Bz.

Since the pair (g, B) is weakly compatible, gBv = Bgv. Thus gz Î gBv = Bgv = Bz.

Similarly, we can prove that fz Î Az. Consequently, z = fz = gz Î Az = Bz. Therefore,

the maps f, g, A and B have a common fixed point. □

If we setting w in Theorem 3.5 by
w(x1, x2, x3, x4) = max{x1, x2, (x1)

1
2 (x3)

1
2 , (x4)

1
2 (x3)

1
2 },

then we get the following corollary:

Corollary 3.6. Let f, g : X ® X and A, B : X ® CB(X) satisfy
⎛
⎜⎝1 + α

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt)

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Ax,By)∫
0

ψ(t) dt

⎞
⎟⎠

p

< α

⎛
⎜⎝

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt)

⎞
⎟⎠

p⎛
⎜⎝

d(By,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

+

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt)

⎞
⎟⎠

p ⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

+a

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

+ (1 − a)max

⎧⎪⎨
⎪⎩

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(By,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

p
2
⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p
2

,

⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

p
2

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

for all x, y Î X for which the righthand side of (20) is positive, where 0 <a < 1, a ≥

0, p ≥ 1 and ψ : ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable non-

negative and such that

ε∫
0

ψ(t) dt > 0 (21)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),
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(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

If we setting w in Theorem 3.5 by
w(x1, x2, x3, x4) = max{x1, x2, (x1)

1
2 (x3)

1
2 , (x4)

1
2 (x3)

1
2 },

and p = 1, then we get the following corollary:

Corollary 3.7. Let f, g : X ® X and A, B : X ® CB(X) satisfy
⎛
⎜⎝1 + α

d(fx,gy)∫
0

ψ(t)dt

⎞
⎟⎠

H(Ax,By)∫
0

ψ(t) dt

<

⎛
⎜⎝α

d(Ax,fx)∫
0

ψ(t) dt

d(By,gy)∫
0

ψ(t) dt +

d(Ax,gy)∫
0

ψ(t) dt

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

+a

d(fx,gy)∫
0

ψ(t) dt + (1 − a)max

⎧⎪⎨
⎪⎩

d(Ax,fx)∫
0

ψ(t) dt,

d(By,gy)∫
0

ψ(t) dt,

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

1
2
⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

,

⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(22)

for all x, y Î X for which the righthand side of (22) is positive, where 0 <a < 1, a ≥ 0

and ψ : ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable nonnegative

and such that

ε∫
0

ψ(t) dt > 0 (23)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

If a = 0 in Corollary 3.7, we get the following corollary:

Corollary 3.8. Let f, g : X ® X and A, B : X ® CB(X) satisfy

H(Ax,By)∫
0

ψ(t) dt

< a

d(fx,gy)∫
0

ψ(t) dt + (1 − a)max

⎧⎪⎨
⎪⎩

d(Ax,fx)∫
0

ψ(t) dt ,

d(By,gy)∫
0

ψ(t) dt,

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

1
2
⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

,

⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24)
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for all x, y Î X for which the righthand side of (24) is positive, where 0 <a < 1 and ψ

: ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable nonnegative and

such that

ε∫
0

ψ(t) dt > 0 (25)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

If a = 0, g = f and B = A in Corollary 3.7, we get the following corollary:

Corollary 3.9. Let f : X ® X and A : X ® CB(X) satisfy

H(Ax,Ay)∫
0

ψ(t) dt

< a

d(fx,fy)∫
0

ψ(t) dt + (1 − a)max

⎧⎪⎨
⎪⎩

d(Ax,fx)∫
0

ψ(t) dt ,

d(Ay,fy)∫
0

ψ(t) dt,

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

1
2
⎛
⎜⎝

d(Ax,fy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

,

⎛
⎜⎝

d(fx,Ay)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎛
⎜⎝

d(Ax,fy)∫
0

ψ(t) dt

⎞
⎟⎠

1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

for all x, y Î X for which the righthand side of (26) is positive, where 0 <a < 1 and ψ

: ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable nonnegative and

such that

ε∫
0

ψ(t)dt > 0 (27)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a sequence {xn} in X such that limn®∞ fxn Î X,

(b) f is tangential w.r.t A,

(c) f fa = fa for a Î C(f, A),

(d) the pair (f, A) is weakly compatible.

Then f and A have a common fixed point in X.

If ψ (t) = 1 in Corollary 3.7, we get the following corollary:

Corollary 3.10. Let f, g : X ® X and A, B : X ® CB(X) satisfy

(1 + αd(fx, gy))H(Ax,By) < α(d(Ax, fx)d(By, gy) + d(Ax, gy)d(fx,By ))

+ ad(fx, gy) + (1 − a)max
{
d(Ax, fx), d(By, gy) ,

(d(Ax, fx))
1
2 (d(Ax, gy))

1
2 , (d(fx,By))

1
2 (d(Ax, gy))

1
2

} (28)

for all x, y Î X for which the righthand side of (28) is positive, where 0 <a < 1 and a
≥ 0. If the following conditions (a)-(d) holds:
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(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

If ψ(t) = 1 and a = 0 in Corollary 3.7, we get the following corollary:

Corollary 3.11. Let f, g : X ® X and A, B : X ® CB(X) satisfy

H(Ax,By) < ad(fx, gy) + (1 − a)max
{
d(Ax, fx), d(By, gy),

(d(Ax, fx))
1
2 (d(Ax, gy))

1
2 , (d(fx,By))

1
2 (d(Ax, gy))

1
2

}
(29)

for all x, y Î X for which the righthand side of (29) is positive, where 0 <a < 1. If the

following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

If ψ(t) = 1, a = 0, g = f, and B = A in Corollary 3.7, we get the following corollary:

Corollary 3.12. Let f : X ® X and A : X ® CB(X) satisfy

H(Ax,Ay) < ad(fx, fy) + (1 − a)max
{
d(Ax, fx), d(Ay, fy),

(d(Ax, fx))
1
2 (d(Ax, fy))

1
2 , (d(fx,Ay))

1
2 (d(Ax, fy))

1
2

}
(30)

for all x, y Î X for which the righthand side of (30) is positive, where 0 <a < 1. If the

following conditions (a)-(d) holds:

(a) there exists a sequence {xn} in X such that limn®∞ fxn Î X,

(b) f is tangential w.r.t A,

(c) f fa = fa for a Î C(f, A),

(d) the pair (f, A) is weakly compatible.

Then f and A have a common fixed point in X.

Define Λ = {l : (ℝ+)5 ® ℝ+| l is continuous and l(0, x, 0, x, 0) = l(x, 0, x, 0, 0) = kx

where 0 <k < 1}.

Theorem 3.13. Let f, g : X ® X and A, B : X ® CB(X) satisfy

⎛
⎜⎝1 + α

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Ax,By)∫
0

ψ(t) dt

⎞
⎟⎠

p

< λ

⎛
⎜⎝

⎛
⎜⎝

d(Ax,fx)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(By,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Ax,gy)∫
0

ψ(t) dt)

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fx,By)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fx,gy)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

(31)
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for all x, y Î X for which the righthand side of (31) is positive, where a ≥ 0, p ≥ 1, l
Î Λ and ψ : ℝ+ ® ℝ+ is a Lebesgue integrable mapping which is a summable nonne-

gative and such that

ε∫
0

ψ(t) dt > 0 (32)

for each ε > 0. If the following conditions (a)-(d) holds:

(a) there exists a point z Î f(X) ∩ g(X) which is a weak tangent point to (f, g),

(b) (f, g) is tangential w.r.t (A, B),

(c) f fa = fa, ggb = gb and Afa = Bgb for a Î C(f, A) and b Î C(g, B),

(d) the pairs (f, A) and (g, B) are weakly compatible.

Then f, g, A, and B have a common fixed point in X.

Proof. Since z Î f(X) ∩ g(X), z is a weak tangent point to (f, g) and the pair (f, g) is

tangential w.r.t the pair (A, B). It follows similarly Theorem 3.5 that there exist

sequences {xn} and {yn} in X such that

z = fu = gv = lim
n→∞ f xn = lim

n→∞ gyn ∈ lim
n→∞Axn = lim

n→∞Byn = D (33)

for some D Î CB(X). We claim that z Î Bv. If not, then condition (31) implies

⎛
⎜⎝1 + α

⎛
⎜⎝

d(f xn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Axn,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

< λ

⎛
⎜⎝

⎛
⎜⎝

d(Axn,f xn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Bv,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Axn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(f xn,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(f xn,gv)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠ .

(34)

Letting n ® ∞, we get

⎛
⎜⎝

H(D,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ λ

⎛
⎜⎝0,

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

, 0,

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

, 0

⎞
⎟⎠

= k

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

.

(35)

Since

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

H(D,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ k

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

d(z,Bv)∫
0

ψ(t) dt

⎞
⎟⎠

p

, (36)

which is a contradiction. Therefore z Î Bv. Again, we claim that z Î Au. If not, then

condition (31) implies
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⎛
⎜⎝1 + α

⎛
⎜⎝

d(fu,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠

⎛
⎜⎝

H(Au,Byn)∫
0

ψ(t) dt

⎞
⎟⎠

p

< λ

⎛
⎜⎝

⎛
⎜⎝

d(Au,fu)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Byn ,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(Au,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fu,Byn)∫
0

ψ(t) dt

⎞
⎟⎠

p

,

⎛
⎜⎝

d(fu,gyn)∫
0

ψ(t) dt

⎞
⎟⎠

p⎞
⎟⎠ .

(37)

Letting n ®∞, we get

⎛
⎜⎝

H(Au,D)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ λ

⎛
⎜⎝

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

, 0,

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

, 0, 0

⎞
⎟⎠

= k

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

.

(38)

Since
⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

H(Au,D)∫
0

ψ(t) dt

⎞
⎟⎠

p

≤ k

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

<

⎛
⎜⎝

d(z,Au)∫
0

ψ(t) dt

⎞
⎟⎠

p

(39)

which is a contradiction. Thus z Î Au.

Now we conclude z = gv Î Bv and z = fu Î Au. It follows from Theorem 3.5 that z

= fz = gz Î Az = Bz. Therefore the maps f, g, A and B have a common fixed point. □
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