
RESEARCH Open Access

Regularization and iterative method for general
variational inequality problem in hilbert spaces
Yeol JE Cho1 and Narin Petrot2*

* Correspondence: narinp@nu.ac.th
2Department of Mathematics,
Faculty of Science, Naresuan
University, Phitsanulok 65000,
Thailand
Full list of author information is
available at the end of the article

Abstract

Without the strong monotonicity assumption of the mapping, we provide a
regularization method for general variational inequality problem, when its solution
set is related to a solution set of an inverse strongly monotone mapping.
Consequently, an iterative algorithm for finding such a solution is constructed, and
convergent theorem of the such algorithm is proved. It is worth pointing out that,
since we do not assume strong monotonicity of general variational inequality
problem, our results improve and extend some well-known results in the literature.
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1. Introduction
It is well known that the ideas and techniques of the variational inequalities are being

applied in a variety of diverse fields of pure and applied sciences and proven to be pro-

ductive and innovative. It has been shown that this theory provides the most natural,

direct, simple, unified, and efficient framework for a general treatment of a wide class

of linear and nonlinear problems. The development of variational inequality theory can

be viewed as the simultaneous pursuit of two different lines of research. On the one

hand, it reveals the fundamental facts on the qualitative aspects of the solutions to

important classes of problems. On the other hand, it also enables us to develop highly

efficient and powerful new numerical methods for solving, for example, obstacle, uni-

lateral, free, moving, and complex equilibrium problems.

In 1988, Noor [1] introduced and studied a class of variational inequalities, which is

known as general variational inequality, GVIK(A, g), is as follows: Find u* Î H, g(u*) Î
K such that

〈A(u∗), g(v) − g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1:1)

where K is a nonempty closed convex subset of a real Hilbert space H with inner

product 〈·, ·〉, and T, g: H ® H be mappings. It is known that a class of nonsymmetric

and odd-order obstacle, unilateral, and moving boundary value problems arising in

pure and applied can be studied in the unified framework of general variational

inequalities (e.g., [2] and the references therein). Observe that to guarantee the exis-

tence and uniqueness of a solution of the problem (1.1), one has to impose conditions

on the operator A and g, see [3] for example in a more general case. By the way, it is
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worth noting that, if A fails to be Lipschitz continuous or strongly monotone, then the

solution set of the problem (1.1) may be an empty one.

Related to the variational inequalities, we have the problem of finding the fixed

points of the nonlinear mappings, which is the subject of current interest in functional

analysis. It is natural to consider a unified approach to these two different problems (e.

g., [3-8]). Motivated and inspired by the research going in this direction, in this article,

we present a method for finding a solution of the problem (1.1), which is related to

the solution set of an inverse strongly monotone mapping and is as follows: Find u* Î
H, g(u*) Î S(T) such that

〈A(u∗), g(v) − g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1:2)

when A is a generalized monotone mapping, T: K ® H is an inverse strongly mono-

tone mapping, and S(T) = {x Î K: T(x) = 0}. We will denote by GVIK(A, g, T) for a set

of solution to the problem (1.2). Observe that, if T =: 0, the zero operator, then the

problem (1.2) reduces to (1.1). Moreover, we would also like to notice that although

many authors have proven results for finding the solution of the variational inequality

problem and the solution set of inverse strongly monotone mapping (e.g., [4,8,9]), it is

clear that it cannot be directly applied to the problem GV IK(A, g, T) due to the pre-

sence of g.

2. Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and

|| · ||, respectively. Let K be a nonempty closed convex subset of H. In this section, we

will recall some well-known results and definitions.

Definition2.1. Let A: H ® H be a mapping and K ⊂ H. Then, A is said to be semi-

continuous at a point x in K if

lim
t→0

〈A(x + th), y〉 = 〈A(x), y〉, x + th ∈ K, y ∈ H.

Definition2.2. A mapping T: K ® H is said to be l-inverse strongly monotone, if

there exists a l > 0 such that

〈T(x) − T(y), x − y〉 ≥ λ||T(x) − T(y)||2, ∀ x, y ∈ K.

Recall that a mapping B: K ® H is said to be k-strictly pseudocontractive if there

exists a constant k Î [0, 1) such that

||Bx − By||2 ≤ ||x − y||2 + k||(I − B)(x) − (I − B)(y)||2, ∀ x, y ∈ K.

Let I be the identity operator on K. It is well known that if B: K ® H is a k-strictly

pseudocontrative mapping, then the mapping T := I - B is a
(
1−k
2

)
-inverse strongly

monotone, see [4]. Conversely, if T: K ® H is a l-inverse strongly monotone with

λ ∈ (0, 12 ], then B := I - T is (1 - 2l)-strictly pseudocontrative mapping. Actually, for

all x, y Î K, we have

〈T(x) − T(y), x − y〉 ≥ λ||T(x) − T(y)||2
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On the other hand, since H is a real Hilbert space, we have

||(I − T)(x) − (I − T)(y)||2 = ||x − y||2 + ||T(x) − T(y)||2 − 2〈T(x) − T(y), x − y〉.

Hence,

||(I − T)(x) − (I − T)(y)||2 = ||x − y||2 + (1 − 2λ)||T(x) − T(y)||2.

Moreover, we have the following result:

Lemma 2.3. [10]Let K be a nonempty closed convex subset of a Hilbert space H and

B: K ® H a k-strictly pseudocontractive mapping. Then, I - B is demiclosed at zero,

that is, whenever {xn} is a sequence in K such that {xn} converges weakly to x Î K and

{(I - B)(xn)} converges strongly to 0, we must have (I - B)(x) = 0.

Definition2.4. Let A, g: H ® H. Then A is said to be g-monotone if

〈A(x) − A(y), g(x) − g(y)〉 ≥ 0, ∀ x, y ∈ H

For g = I, the identity operator, Definition 2.4 reduces to the well-known definition

of monotonicity. However, the converse is not true.

Now we show an example in proof of our main problem (1.2).

Example 2.5. Let a, b be strictly positive real numbers. Put H = {(x1, x2)| -a ≤ x1 ≤ a,

-b ≤ x2 ≤ b} with the usual inner product and norm. Let K = {(x1, x2) Î H: 0 ≤ x1 ≤ x2}

be a closed convex subset of H. Let T: K ® H be a mapping defined by T(x) = (I - PΔ)

(x), where Δ = {x := (x1, x2) Î H: x1 = x2} is a closed convex subset of H, and PΔ is a

projection mapping from K onto Δ. Clearly, T is 1
2-inverse strongly monotone, and S

(T) = Δ ∩ K. Now, if A =
[−1 2

0 −1

]
is a considered matrix operator and g = -I, where I

is the 2 × 2 identity matrix. Then, we can verify that A is a g-monotone operator.

Indeed, for each x := (x1, x2), y := (y1, y2) Î H, we have

〈A(x) − A(y), g(x) − g(y)〉 =
(
[x1 − y1 x2 − y2] ×

[−1 2
0 −1

])
×

[−(x1 − y1)
−(x2 − y2)

]
= (x1 − y1)2 − 2(x1 − y1)(x2 − y2) + (x2 − y2)2

= ((x1 − y1) − (x2 − y2))2 ≥ 0.

Moreover, if u∗ := (u∗
1, u

∗
2) ∈ GVIK(A, g), then we must have 〈A(u*), g(y) - g(u*)〉 ≥ 0,

for all y = (y1, y2) Î H, g(y) Î K. This equivalence becomes

2u∗
1 − u∗

2

u∗
1

≥ u∗
1 − y1

u∗
2 − y2

, (2:1)

for all y = (y1, y2) Î H, g(y) Î K. Notice that g-1(K) = {(y1, y2) Î H|y1 ≥ y2}. Thus, in

view of (2.1), it follows that {x = (x1, x2) Î H|x1 = x2} ⊂ GVIK(A, g). Hence, GVIK(A, g,

T) ≠ ∅.

Remark 2.6. In Example 2.5, the operator A is not a monotone mapping on H.

We need the following concepts to prove our results.

Let R stand for the set of real numbers. Let F : K × K → R be an equilibrium

bifunction, that is, F(u, u) = 0 for every u Î K.

Definition2.7. The equilibrium bifunction F : K × K → R is said to be
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(i) monotone, if for all u, v Î K, then we have

F(u, v) + F(v, u) ≤ 0, (2:2)

(ii) strongly monotone with constant τ; if for all u, v Î K, then we have

F(u, v) + F(v, u) ≤ −τ ||u − v||2, (2:3)

(iii) hemicontinuous in the first variable u; if for each fixed v, then we have

lim
t→+0

F(u + t(z − u), v) = F(u, v), ∀(u, z) ∈ K × K. (2:4)

Recall that the equilibrium problem for F : K × K → R is to find u* Î K such that

F(u∗, v) ≥ 0, ∀v ∈ K. (2:5)

Concerning to the problem (2.5), the following facts are very useful.

Lemma 2.8. [11]Let F : K × K → Rbe such that F(u, v) is convex and lower semicon-

tinuous in the variable v for each fixed u Î K. Then,

(1) if F(u, v) is hemicontinuous in the first variable and has the monotonic property,

then U* = V*, where U* is the solution set of (2.5), and V* is the solution set of F(u,

v*) ≤ 0 for all u Î K. Moreover, in this case, they are closed and convex;

(2) if F(u, v) is hemicontinuous in the first variable for each v Î K and F is strongly

monotone, then U* is a nonempty singleton. In addition, if F is a strongly monotone

mapping, then U* = V* is a singleton set.

The following basic results are also needed.

Lemma 2.9. Let {xn} be a sequence in H. If xn ® x wealky and ||xn|| ® ||x||, then xn
® x strongly.

Lemma 2.10. [12]. Let an, bn, cn be the sequences of positive real numbers satisfying

the following conditions.

(i) an+1 ≤ (1 - bn)an + cn, bn < 1,

(ii)
∑∞

n=0 bn = +∞, limn→+∞( cnbn ) = 0.

Then, limn®+∞ an = 0.

3. Regularization
Let a Î (0, 1) be a fixed positive real number. We now construct a regularization solu-

tion ua for (1.2), by solving the following general variational inequality problem: find

ua Î H, g(ua) Î K such that

〈A(uα) + αμ(T ◦ g)(uα) + αg(uα), g(v) − g(uα)〉 ≥ 0∀v ∈ H, g(v) ∈ K, 0 < μ < 1. (3:1)

Theorem 3.1. Let K be a closed convex subset of a Hilbert space H and g: H ® H be

a mapping such that K ⊂ g(H). Let A: H ® H be a hemicontinuous on K and g-
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monotone mapping, T: K ® H be l-inverse strongly monotone mapping. If g is an

expanding affine continuous mapping and GVIK(A, g, T) ≠ ∅, then the following conclu-

sions are true.

(a) For each a Î (0, 1), the problem (3.1) has the unique solution ua:

(b) If a ↓ 0, then {g(ua)} converges. Moreover, lim
α→0+

g(uα) = g(u∗)for some u* Î GVIK

(A, g, T).

(c) There exists a positive constant M such that

||g(uα) − g(uβ)||2 ≤ M(β − α)
α2

, (3:2)

when 0 <a <b < 1.

Proof. First, in view of the definition 2.2, we will always assume that λ ∈ (0, 12 ]. Now,

related to mappings A, T, and g, we define functions FA, FT : g−1(K) × g−1(K) → R by

FA(u, v) = 〈A(u), g(v) − g(u)〉 and FT(u, v) = 〈(T ◦ g)(u), g(v) − g(u)〉,

for all (u, v) Î g-1(K) × g-1(K). Note that, FA, FT are equilibrium monotone bifunc-

tions, and g-1(K) is a closed convex subset of H.

Now, let a Î (0, 1) be a given positive real number. We construct a function

Fα : g−1(K) × g−1(K) → R by

Fα(u, v) = [FA + αμFT](u, v) + α〈g(u), g(v) − g(u)〉, (3:3)

for all (u, v) Î g-1(K) × g-1(K).

(a) Observe that, the problem (3.1) is equivalent to the problem of finding ua Î g-1

(K) such that

Fα(uα , v) ≥ 0, ∀v ∈ g−1(K). (3:4)

Moreover, one can easily check that Fa(u, v) is a monotone hemicontinuous in the

variable u for each fixed v Î g-1(K). Indeed, it is strongly monotone with constant aξ >

0, where g is an ξ-expansive. Thus, by Lemma 2.8(ii), the problem (3.4) has a unique

solution ua Î g-1(K) for each a > 0. This prove (a).

(b) Note that for each y Î GVIK(A, g, T) we have [FA + aμFT](y, ua) ≥ 0. Conse-

quently, by (3.4), we have

0 ≥ −Fα(uα , y)

= − [
FA(uα, y) + αμFT(uα , y) + α〈g(uα), g(y) − g(uα)〉

]
≥ − [

FA(uα, y) + αμFT(uα, y) + α〈g(uα), g(y) − g(uα)〉
] − [FA(y, uα) + αμFT(y, uα)]

= −[FA(uα, y) + FA(y, uα)] − αμ[FT(uα , y) + FT(y, uα)] − α〈g(uα), g(y) − g(uα)〉
≥ α〈g(uα), g(uα) − g(y)〉.

This means

〈g(uα), g(y) − g(uα)〉 ≥ 0, ∀y ∈ GVIK(A, g,T).
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Consequently,

||g(uα)|| ||g(y)|| ≥ 〈g(uα), g(y)〉 ≥ 〈g(uα), g(uα)〉 = ||g(uα)||2, (3:5)

that is, ||g(ua)|| ≤ ||g(y)|| for all y Î GVIK(A, g, T). Thus, {g(ua)} is a bounded subset

of K. Consequently, the set of weak limit points as a ® 0 of the net (g(ua)) denoted

by ωw(g(ua)) is nonempty. Pick z Î ωw(g(ua)) and a null sequence {ak} in the interval

(0, 1) such that {g(uαk)} weakly converges to z as k ® ∞. Since K is closed and convex,

we know that K is weakly closed, and it follows that z Î K. Now, since K ⊂ g(H), we

let u* Î H be such that z = g(u*) and claim that u* Î GVIK(A, g, T).

To prove such a claim, we will first show that g(u*) Î S(T). To do so, let us pick a

fixed y Î GVIK(A, g, T). By (3.3) and the monotonicity of FA, we have

α
μ

k FT(uαk , y) + αk〈g(uαk), g(y) − g(uαk)〉 ≥ −FA(uαk , y) ≥ FA(y, uαk) ≥ 0,

equivalently,

FT(uαk , y) + α
1−μ

k 〈g(uαk), g(y) − g(uαk)〉 ≥ 0,

for each k Î N. Using the above together with the assumption that T is an l-inverse
strongly monotone mapping, we have

λ||T(g(uαk)) − T(g(y))||2 ≤ 〈T(g(uαk)), g(uαk) − g(y)〉
= −FT(uαk , y)

≤ α
1−μ

k 〈g(uαk), g(y) − g(uαk)〉
≤ α

1−μ

k

[||g(uαk)|| ||g(y)|| − ||g(uαk)||2
]

≤ α
1−μ

k ||g(y)||2

]

for each k Î N. Letting k ® +∞, we obtain

lim
k→+∞

||T(g(uαk)) − T(g(y))|| = lim
k→+∞

||T(g(uαk))|| = 0.

On the other hand, we know that the mapping I - T is a strictly pseudocontractive,

thus by lemma 2.3, we have T demiclosed at zero. Consequently, since {g(uαk)} weakly
converges to g(u*), we obtain T(g(u*)) = T(g(y)) = 0. This proves g(u*) Î S(T), as

required.

Now, we will show that u* Î GVIK(A, g, T). Notice that, from the monotonic prop-

erty of Fa and (3.4), we have

FA(v, uαk) + α
μ

k FT(v, uαk) + αk〈g(v), g(uαk) − g(v)〉 = Fα(v, uαk) ≤ −Fα(uαk , v) ≤ 0,

for all v Î g-1(K). That is,

FA(v, uαk) + α
μ

k FT(v, uαk) ≤ αk〈g(v), g(v) − g(uαk)〉, (3:6)

for all v Î g-1(K). Since ak ↓ 0 as k ® ∞, we see that (3.6) implies FA(v, u*) ≤ 0 for

any v Î H, g(v) Î K. Consequently, in view of Lemma 2.8(1), we obtain our claim

immediately.
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Next we observe that the sequence {g(uαk)} actually converges to g(u*) strongly. In

fact, by using a lower semi-continuous of norm and (3.5), we see that

||g(u∗)|| ≤ lim inf
k→∞

||g(uαk)|| ≤ lim sup
k→∞

||g(uαk)|| ≤ ||g(u∗)||,

since u* Î GVIK(A, g, T). That is, ||g(uαk)|| → ||g(u∗)|| as k ® ∞. Now, it is

straight-forward from Lemma 2.9, that the weak convergence to g(u*) of {g(uαk)}
implies strong convergence to g(u*) of {g(uαk)}. Further, in view of (3.5), we see that

||g(u∗)|| = inf{||g(y)|| : y ∈ GVIK(A, g,T)}. (3:7)

Next, we let {g(uαj)} ⊂ (g(uα)), where {aj} be any null sequence in the interval (0, 1).

By following the lines of proof as above, and passing to a subsequence if necessary, we

know that there is ũ ∈ GVIK(A, g,T) such that g(uαj) → g(ũ) as j ® ∞. Moreover, in

view of (3.5) and (3.7), we have ||g(ũ)|| = ||g(u∗)||. Consequently, since the function ||

g(·)|| is a lower semi-continuous function and GVIK(A, g, T) is a closed convex set, we

see that (3.7) gives u∗ = ũ. This has shown that g(u*) is the strong limit of the net (g

(ua)) as a ↓ 0.

(c) Let 0 <a <b < 1 and ua, ub are solutions of the problem (3.1). Thus, since FA and

FT are monotone mappings, by (3.4), we have

0 ≤ (βμ − αμ)FT(uβ , uα) + β〈g(uβ), g(uα) − g(uβ)〉 + α〈g(uα), g(uβ) − g(uα)〉,

that is,〈
g(uα) − β

α
g(uβ), g(uα) − g(uβ)

〉
≤

(
βμ − αμ

α

)
FT(uβ , uα). (3:8)

Notice that,
〈
g(uα) − β

α
g(uβ), g(uα) − g(uβ)

〉
= ||g(uα) − g(uβ)||2 + α − β

α
〈g(uβ), g(uα))〉 − α − β

α
||g(uβ)||2

≥ ||g(uα) − g(uβ)||2 + α − β

α
〈g(uβ), g(uα))〉,

since 0 <a <b. Using the above, by (3.8), we have

||g(uα) − g(uβ)||2 ≤ β − α

α
θ2 +

βμ − αμ

α
FT(uβ , uα), (3:9)

where θ = sup{||g(ua)||: a Î (0, 1)}. Moreover, since FT is a Lipschit continuous

mapping (with Lipschitz constant 1
λ
), it follows that

||g(uα) − g(uβ)||2 ≤ β − α

α
θ2 +

βμ − αμ

α
M1

for some M1 > 0. Further, by applying the Lagranges mean-value theorem to a con-

tinuous function h(t) = t-μ on [1, +∞), we know that

||g(uα) − g(uβ)||2 ≤ M(β − α)
α2

, (3:10)

for some M > 0. This completes the proof. □
Remark 3.2. If g =: I, the identity operator on H, then we see that Theorem 3.1

reduces to a result presented by Kim and Buong [9].
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4. Iterative Method
Now, we consider the regularization inertial proximal point algorithm:

〈cn[A(zn+1) + αμ
n (T ◦ g)(zn+1) + αng(zn+1)] + g(zn+1) − g(zn), g(v) − g(zn+1)〉 ≥ 0

∀ v ∈ H, g(v) ∈ K, z1 ∈ H, g(z1) ∈ K.
(4:1)

The well definedness of (4.1) is guaranteed by the following result.

Proposition 4.1. Assume that all hypothesis of the Theorem 3.1 are satisfied. Let z Î
g-1(K) be a fixed element. Define a bifunction Fz : g

-1(K) × g-1(K) ® ℝ by

Fz(u, v) := 〈c[A(u) + αμ(T ◦ g)(u) + αg(u)] + g(u) − g(z), g(v) − g(u)〉,

where c, a are positive real numbers. Then, there exists the unique element u* Î g-1

(K) such that Fz(u*, v) ≥ 0 for all v Î g-1(K).

Proof. Assume that g is an ξ- expanding mapping. Then, for each u, v Î g-1(K), we

see that

Fz(u, v) + Fz(v, u) ≤ (1 + cα)〈g(u) − g(v), g(v) − g(u)〉
= −(1 + cα)||g(u) − g(v)||2
≤ −ξ(1 + cα)||u − v||2.

This means F is ξ(1 + ca)-strongly monotone. Consequently, by Lemma 2.8, the

proof is completed. □
The result of the next theorem shows some sufficient conditions for the convergent

of regularization inertial proximal point algorithm (4.1).

Theorem 4.2. Assume that all the hypotheses of the Theorem 3.1 are satisfied. If the

parameters cn and an are chosen as positive real numbers such that

(C1) lim
n→∞ αn = 0,

(C2) lim
n→∞

αn−αn+1

α2
n+1

= 0,

(C3) lim inf
n→∞ cnαn > 0,

then the sequence {g(zn)} defined by (4.1) converges strongly to the element g(u*) as n

® +∞, where u* Î GVIK(A, g, T).

Proof. From (4.1) we have

〈cn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + (1 + cnαn)g(zn+1) − g(zn), g(v) − g(zn+1)〉 ≥ 0

that is

〈cn[A(zn+1)+αμ
n (T◦g)(zn+1)]+(1+cnαn)g(zn+1), g(v)−g(zn+1)〉 ≥ 〈g(zn), g(v)−g(zn+1)〉,

or equivalently,

(1 + cnαn)
〈

cn
(1 + cnαn)

[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)

〉
≥

〈g(zn), g(v) − g(zn+1)〉,
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so 〈
cn

(1 + cnαn)
[A(zn+1) + αμ

n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)
〉

≥
1

(1 + cnαn)
〈g(zn), g(v) − g(zn+1)〉.

Hence

〈κn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)〉 ≥ βn〈g(zn), g(v) − g(zn+1)〉,

where

βn =
1

(1 + cnαn)
, and κn = cnβn. (4:2)

On the other hand, by Theorem 3.1, there is un Î g-1(K) such that

〈A(un) + αμ(T ◦ g)(un) + αg(un), g(v) − g(un)〉 ≥ 0, (4:3)

for all n Î N. This implies

〈cn[A(un) + αμ
n (T ◦ g)(un)] + (1 + cnαn)g(un) − g(un), g(v) − g(un)〉 ≥ 0,

and so
〈

cn
(1 + cnαn)

[A(un) + αμ
n (T ◦ g)(un)] + g(un), g(v) − g(un)

〉
≥

〈
1

(1 + cnαn)
〈g(un), g(v) − g(un)

〉
.

Thus,

〈κn[A(un) + αμ
n (T ◦ g)(un)] + g(un), g(v) − g(un)〉 ≥ βn〈g(un), g(v) − g(un)〉. (4:4)

By setting v = un in (4.2) we have

〈κn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + g(zn+1), g(un)− g(zn+1)〉 ≥ βn〈g(zn), g(un)− g(zn+1)〉,

and v = zn+1 in (4.4) we have

〈κn[A(un) + αμ
n (T ◦ g)(un)] + g(un), g(zn+1) − g(un)〉 ≥ βn〈g(un), g(zn+1) − g(un)〉,

and adding one obtained result to the other, we get

κn〈A(zn+1) − A(un) + αμ
n (T ◦ g)(zn+1) − (T ◦ g)(un))), g(un) − g(zn+1)〉 + 〈g(zn+1) − g(un), g(un) − g(zn+1)〉

≥ βn〈g(zn) − g(un), g(un) − g(zn+1)〉. (4:5)

Notice that, since A is a g-monotone mapping, and T is a l-inverse strongly mono-

tone, we have

〈A(zn+1) − A(un), g(un) − g(zn+1)〉 ≤ 0,

and

〈(T ◦ g)(zn+1)) − (T ◦ g)(un)), g(un) − g(zn+1)〉 ≤ 0.

Thus, by (4.5), we obtain

〈g(zn+1) − g(un), g(un) − g(zn+1)〉 ≥ βn〈g(zn) − g(un), g(un) − g(zn+1)〉,
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that is,

〈g(zn+1) − g(un), g(zn+1) − g(un)〉 ≤ βn〈g(zn) − g(un), g(zn+1) − g(un)〉.

Consequently,

||g(zn+1) − g(un)||2 ≤ βn||g(zn) − g(un)|| ||g(zn+1) − g(un)||,

which implies that

||g(zn+1) − g(un)|| ≤ βn||g(zn) − g(un)||. (4:6)

Using the above Equation 4.6 and (3.2), we know that

||g(zn+1) − g(un+1)|| ≤ ||g(zn+1) − g(un)|| + ||g(un) − g(un+1)||

≤ βn||g(zn) − g(un)|| +
√
M(αn − αn+1)

α2
n+1

≤ (1 − bn)||g(zn) − g(un)|| + dn

where

bn =
cnαn

(1 + cnαn)
, dn =

√
M(αn − αn+1)

α2
n+1

.

Consequently, by the condition (C3), we have
∑∞

n=1 bn = ∞. Meanwhile, the condi-

tions (C2) and (C3) imply that lim
n→∞

dn
bn

= 0. Thus, all the conditions of Lemma 2.10 are

satisfied, then it follows that ||g(zn+1) - g(un+1)|| ® 0 as n ® ∞. Moreover, by (C1)

and Theorem 3.1, we know that there exists u* Î GVIK(A, g, T) such that g(un) con-

verges strongly to g(u*). Consequently, we obtain that g(zn) converges strongly to g(u*)

as n ® +∞. This completes the proof. □
Remark 4.3. The sequences {an} and {cn} which are defined by

αn =
(
1
n

)p

, 0 < p < 1, and cn =
1
αn

satisfy all the conditions in Theorem 4.2.

Remark 4.4. It is worth noting that, because of condition (C2) of Theorem 4.2, the

important natural choice {1/n} does not include in the class of parameters {an}. This

leads to a question: Can we find another regularization inertial proximal point algo-

rithm for the problem (1.2) that includes a natural parameter choice {1/n}?

Remark 4.5. If F is a nonexpansive mapping, then I - F is an inverse strongly mono-

tone mapping, and the fixed points set of mapping F and the solution set S(I - F) are

equal. This means that our results contain the study of finding a common element of

(general) variational inequalities problems and fixed points set of nonexpansive map-

ping, which were studied in [4-8] as special cases.
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