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1 Introduction
During the past decades, with the development of the theory of differential and integral
equations, a lot of integral inequalities, for example [1-12], have been discovered,
which play an important role in the research of boundedness, global existence, stability
of solutions of differential and integral equations.
In [9], the following two theorems for retarded integral inequalities were established.
Theorem A: R, = [0, o). Let u, f, g be nondecreasing continuous functions defined
on R, and let ¢ be a nonnegative constant. Moreover, let v € C(R,, R,) be nondecreas-
ing with w(x) >0 on (0, ») and & € C'(R,, R,) be nondecreasing with a(¢) <  on R,.
m, n are constants, and m > n >0. If

u"(t) < cmrﬁn L " " [f(s)u™(s)w(u(s)) +g(s)u™(s)] ds, teR,,
m-—nJo

then for t € [0, &]

a(t) a(t) 1
u(t)f{ﬂ’l[Q(H/0 8(s)ds) + ; f(s)ds]ym=n,

.
1
where $2(1) = L 45 15 0,0 is the inverse of Q, O (e0) = o0, and &€ R,
1 w(sm—n)

is chosen so that (¢ + fo"‘(t)g(s)ds) + fo"(t)f(s)ds € Dom(£271).
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Theorem B: Under the hypothesis of Theorem B, if
m m m a(t) " m 3 "
u"(t) < cm—n+m . ./(; f(s)u (s)a)(u(s))ds+m o /0 g(s)u" (s)w(u(s))ds, teR,,
then for ¢t € [0, &]

u(t) < {271 + [*Of(s)ds + [ a(s)ds]pmn.

Recently, in [10], the author provided a more general result.

Theorem C: R = [0,00), R" = (0, «). Let f{¢, s) and g(t,s) € C(R§ x R{, R§) be nonde-
creasing in ¢ for every s fixed. Moreover, let ¢ € C(R{, R) be a strictly increasing func-
tion such that JCILTO¢(x) =00 and suppose that ¢ € C(R}, R,) is a nondecreasing
function. Further, let n, @ € C(R{, Rj) be nondecreasing with {1, w}(x) >0 for x € (0, )
and /xoo n((/)—ll ) ds =00, with x, defined as below. Finally, assume that

0

a € C'(R;, RY) is nondecreasing with a(2) < . If u € C(Ry, Ry) satisfies

a(t)
P (u()) < c(t) +/0 [f (t $)n(u(s))ew(u(s)) + g(t s)n(u(s))lds, te Ry
then there exists 7 € R* so that for all £ € [0, 7] we have

v(p() + [£f(t,5) ds € Dom (y 1),

and

u(t) < ¢ HG (W W (p(0) + [ (1, 5)ds])),

where G(x) = /xo 77(¢>’11 (S))ds.

X
1
with x > ¢(0) > x >Oif/ ds =00 and x > ¢(0) > x5 > 0 if
° o n(¢~1(s) °

x 1
/ N0
a(t)
p(1) = Ge(0) + f 8(t,5)ds

* 1
vix)= / BRI CRI0)) M

Here G ' and y ' are inverse functions of G and y, respectively.

In [11], Xu presented the following two theorems:

Theorem D: R, = [0, ). Let 4, f, g be real-valued nonnegative continuous functions
defined for x > 0, y = 0 and let ¢ be a nonnegative constant. Moreover, let w € C(R,, R,)
be nondecreasing with () >0 on (0, =) and a, 3, € C'(R,, R,) be nondecreasing with
o(x) < x, B(y) <y on R,. m, n are constants, and m > n >0. If

a(x) rB(Y)
i) za@+b) s " g setu)

+g(t,s)u"(t,s)] dsdt, x,y€R,,
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then for x € [0, &], y € [0, 1]

. o) (A )
u(xy) < (2720 7)) + / [ stesyasanynen,

where
a'(t)

. dt
[a(t) + b(0)]m

ply) ~La(0) + o "+ " [

a(x) rBQ)
+ / / g(t, s) dsdt,
0 0

Q is defined as in Theorem A, and &, 1 are chosen so that
20(x,y)) + [ [PV f(1,5) dsdt € Dom(271).
Theorem E: Under the hypothesis of Theorem D, if

mre® B0
u™(x,y) <a(x) +b(y) + mn /0 ; f(t s)u"(t, s)w(u(t, s))dsdt

m R
+ //g(t,s)u"(t,s)w(u(t,s))dsdt, X,y € Ry,
m-—nJo Jo
then

u(xy) < (2712000 7)) + JEO [20 f(o,s)dsde + [ 7 g(t,s)dsde]) mn
where
— N a(t)

: ) dt.
" a(t) +b(0)]m

m-n
a(xy) = [a(0) +b(y)] m +
In this paper, motivated by the above work, we will prove more general theorems
and establish some new integral inequalities. Also we will give some examples so as to
illustrate the validity of the present integral inequalities.

2 Main results

In the rest of the paper we denote the set of real numbers as R, and R, = [0, =) is a
subset of R. Dom(f) and Im(f) denote the definition domain and the image of f;
respectively.

Theorem 2.1: Assume that x, a € C(R,, R,) and a(t) is nondecreasing. f;, g;, h;, 9,f;,
0.8, dh; e C(R, x R,, R,),i=1,2 Let w e C(R,, R,) be nondecreasing with w(x) >0
on (0, «). p, q are constants, and p > g >0. If « € C*(R,, R,) is nondecreasing with o
(t) < tonR,, and

a(t) s
xF (1) < a(r) +/ [f1(s, )x9(s)w(x(s)) + g1 (s, )x9(s) + f hi(z, 0)x7()dr] ds
e : ’ &
+/O [f2(s, )27 (s) o (x(5)) + 82 (s, t)x“(s)+/0 ha(t, t)x(t)drlds, teR,,

then there exists t € R, such that for t € [0, t]

x(6) < (2 HRH(@D) + 7 ; ‘7[f(;’(‘)f1 (s,0) + fo fo(s, O)ds]} P, @)
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where H(t) =a P (1) + p;"{f(;*(‘) [81(5,0) + [ I (z, t)dr] ds
0+ [ (e, 0de] ds) 3
+/0 [£2(s t)+/0 2(z, t)dr] ds) (3)

2(r) = / S, r> 0.0 s the inverse of , and Q (e0) = co.
a)(sp 67)

Proof: The proof for the existence of ¢ can be referred to Remark 1 in [10]. We

notice (3) obviously holds for ¢ = 0. Now given an arbitrary number T € (0, t], for ¢ €
(0, T, we have

xP (1) <a(T) + /a(t) [£1(s, )x9(s)w(x(s)) + g1 (s, )x9(s) + /s hi(z, 0)x(z)dz] ds
. )
+/0 [f2(s, )x(s)w(x(s)) + £2(s, £)x7(s) +/(; hy(z, t)x7(7)dr] ds.

Let the right-hand side of (4) be z(¢), then &”(¢) < z(t) and «”((¢)) < z(a () < z(£). So

a(t)
Z(1) = [file (), 02" (e () (x(e(1))) + 81 (1), )27 (e (1)) +/(; hy(z, 0x(r)dr o (1)

. /am [af1 (s.0) 93150 g, 0 Jom(z, 0x()dr
o at

F(s)o(x(5)) + .

| ds

+ [fa(t, )xT (D) w(x(t)) + g2 (t, )x9(t) + ‘/01 hy(z, £)x7(7)dz]

+ /Ot [8f2i§ir ) X (s)w(x(s)) + agZB(j ) xX(s) + 9 fos hz(fé?xq(f)dr | ds
a(t)

= {lA«(1), Do (x(a (1)) + g1 («(1), 1) +/0 ha(z, )de o (1)

+/ L[Bfl(s t) o(x(s)) + 8g1(s t)+3fgh1(r,t)dr

d
ot I ds

+[f2(t, o (x(1)) + g2(t, 1) + / ha(z, t)dr]

/ [3f2(5 Dogate) + 00 2fo hza(:' T 1920 (1)

Then

20) _d TR (s Do (x(s) + g1 (s, 1) + [3 1 (z, t)dr] ds
q
o) a (5)

L dfaUals De(x(s)) + g2(50) + f3 ha(r, )dr] ds
dt :
An integration for (5) from 0 to ¢, considering z(0) = a(7), yields
p—q

p—q _ a(t) s
z P (t) <a p (T) + p ) q{/o [f1(s, ) (x(s)) + g1 (s, 1) +/(; hi(z, t)dr] ds ©

[ 16006 + 82050 + [ hate. el
0 0
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Then

p—q

— 1 1
e ? (1) <H(T)+" p T (s Deole? () + fi fals Deo(z? (5))ds] %)

Let the right-hand side of (7) be y(£). Then we have zp;q (t) < y(ty
p—q d
27 (a() = y(a@) <y "

a(t) afl (S, t) 1

_ 1
v =" q[fl(a(t),t)w(zf’(Oé(t)))o/(t)+/ w(zP (s)) ds

Rt Do(e? (1) + /‘W“&” (P (5))ds] ®)

- qdlf3 fi(s ) + [y fols, t)ds] 1

) 0t w(yr=a(1)),
that is
Y@ _p—aqdlfyfils 0+ [ fals t)ds] o
: < .

o) " a
Integrating (9) from O to ¢, considering y(0) = H(T), it follows

Q) - 2Hm) <’ ) IO fis,0) + [ fals, 1)) (10)
So

1 1
x(t) <zP () <yP =9 < )

- p—a [ t !
@ e+ / fi(s, 1) + / f(s, s, 1 € (0, 1],
Taking ¢t = T in (11), then
_ 1
x(T) < {2 " 2H(T) + ) D £ 5,1y + [T fals, TYds] 1y o,

Considering T € (0, ¢t] is arbitrary, substituting 7" with ¢, and then the proof is
complete.

Remark 1 : We note that the right-hand side of (2) is well defined since Q2 (e0) = co.

Remark 2 : If wetake p =2, g =1, w(u) = u, hi(s, t) = hy(s, ) =0orp =2, q = 1, hy(s,
t) = hy(s, t) = 0, respectively, then our Theorem 2.1 reduces to [12, Theorems 2.1, 2.2].

Corollary 2.1: Assume that x, a, o, o, Q are defined as in Theorem 2.1. f;, g, h; € C
(R,, R,), my ny, l;€ C'R,, R,),i=1,21f

a(t)
K (t) < a(t) +/0 [m1 (£)f ()27 (s)w(x(s)) + n1(£)g1(s)x7(s)
+ /: L ()1 (2)x(z)dT )ds + /(;t [m2(0)f2(5)x7(s)w(x(s)) + na(t)g2(s)x7(s) (12)

R f (O (1)(1)dr]ds, € €R.,
0
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then we can find some t € R, such that for t € [0, t]
- 1
) = (27 1@HO) + PO m O s+ ima e, 03)

where

p—q _ a(t) s
H(t)=a ?» (t)+" ) "{/0 [nl(t)g1(5)+/0 L ()i (x)de] ds
(14)

+ /t [n2(t)g2(s) + /S L(t)hy(t)dr] ds}.
0 0

p
Remark 3: If a(t) = Cr—o my(t) = m(t) = 1, 11(£) =0, my(t) = ny(t) = I(t) =0 for t €

R, then Corollary 1 reduces to Theorem A [9, Theorem 2.1]. If a(t) = CPB‘J’ my(t) =

1, g1(6) =0, 1(t) =0, my(t) = 1, ny(t) = I5(t) = 0 for t € R*, then Corollary 2.1 reduces
to Theorem B [9, Theorem 2.2].

Corollary 2:2: Assume that x, a, o, o, Q are defined as in Theorem 2.1. f, g, &, 9,
04 dhe C(R, xR, R,). If

a(t) s
() < a(t) + /0 [f (s, ) (s)oo (x(s)) + g(s, )2 (5) + /0 h(t, )x(t)de] ds, t € R,, (15)

then for t € [0, t]

_ a(t)
SORICRI O R | £, 0ds]) P, (16)
p 0
where
_ P p—q a(t) s
W =a v @)+ " (s 0 ¢ [y Rz ] ds) (17)

Corollary 2:3: Assume that x, a, o, @, Q are defined as in Theorem 2.1. f, g, h € C(R
LR, m o le CHR,, R,). If

a(t)
K (t) <a(t) +/ [m()f (s)x7(s)w(x(s)) + n(t)g(s)x"(s)
7 (18)
+/ I(O)h()x(t)dz]ds, t € R,,
0
then for t € [0, t]
) < (22w + "7 (OS], (19)
where
o pP—4, ra@ s
H(t)=a ? (t)+ i {fo [n()g(s) +f0 I(6)h(7)dr] ds}. (20)

Motivated by Corollary 2.2 and Theorem C [10], we will give the following more
general theorem:

Theorem 2:2: Assume that f{s, ), g(s, t), h(s, £) € C(R, x R,, R,) are nondecreasing
in ¢ for each s fixed, and ¢ € C(R,, R,) is a strictly increasing function with
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xlgg ¢(x) = o0, w, o € C(R,, R,) are nondecreasing with v (x) >0, w(x) >0 for x €
° 1
(0, ) and /[0 w(¢_1(s))ds = 09, a(t), oft) are defined as in Theorem 2.1, and 4(0) >

ty >0. If x € C(R,, R,) satisfies the following integral inequality containing multiple

integrals
s a0+ [ ps 0w [ s oo
°a3(t) . 0 (21)
. /0 /0 h(z, O (x(z))drds,
then we can find some ¢t € R, such that for t € [0, t]
Y(H(0) + f32®) g(s, )ds € Dom(Y 1),
and
x(t) < o UYL (Y(H() + [ g(s, 0)ds)]), (22)
where
H(1) = J(a(t) + [ O f(s, 0)ds + 2O [ h(z, t)drds, (23)
J(t) = [nt 1/f(¢—11(s))ds’ t >t Y(t) = /t: w(¢_1(}_1(5))) ds, t1 >0, t>0. (24)

Proof: The proof for the existence of ¢ can be referred to Remark 1 in [10]. We
notice (22) obviously holds for £ = 0. Now given an arbitrary number T >0, T € (0, t].
Define

a;(t)

o) =a(r) + [ o ) (et + [ st oo
" /OW) /Osh(T,T)tﬁ(x(t))drds.
Then for t € (0, T,
X(t) < ¢ (d(1), (25)
and
4(0) = £l (0, T (ol (0))ar' (1) + 8Leta (8), T (xleta () Yo ez ()2 (0
+o'5(0) /0 N e Ty ()
< Flen (0, T (¢~ (e (£))a's (0) + 8(aa(0), T (6 (d(@2(1))))
ol @ (0))e'2(0) +a 30V (6 A ) [ e >
< Flen (0, Y (9™ ()1 (0) + (a2 (1), T (9 (d(0))
ol¢ @020+ 3w (07 (@) [ e, 1y
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So

d'(1)

V(61 (d(1))) <f(a1 (1), T)e'1 (1) + g2 (1), T)ew(¢ ™ (d(2(1))))e'2 (1)

as(t) (27)
+a’3(t)/ h(z, T)dr.
0
Integrating (27) from O to ¢, considering J is increasing, we can obtain

ap (1)

(1)
d(t) =J " [J(a(T)) + o ST+ /0 8(s (¢~ (d(s)))ds
as(t) ps
+ /0 /0 h(z, T)dvds] (28)

ay(t)
<IH) [ gl Mol @A, te 11

Define G(t) = H(T) + /az(t) g(s, T)w(¢~ ' (d(s)))ds, then
0

d(t) <J Y(G(t)), te(0,T], (29)
and
G'(1) = g(a (1), (¢~ (d(2(1)))) (1)

< g(a2(t), D (¢™ 7 (Ge2(1)))))er'2(1) (30)
< g(e2(1), D (¢~' U1 (G(1)))e (1),

that is,

¢ ,
oo (1 (Gl = S0 TG0 (31)

Integrating (31) from O to ¢, considering G(0) = H(T) and Y is increasing, it follows
G(1) < YHY(H(T)) + [22© g(s, T)ds], e (0,T]. (32)

Combining (25), (29) and (32) we have

as(t)

x(t) < ¢ 'Y N(Y(H(T)) +/ &(s, T)ds)]}, te(0,T] (33)
0
Taking ¢ = T in (33), it follows
x(T) < ¢~ U Y (Y(H(T)) + [>T g(s, T)ds)]).

Considering T € (0, t] is arbitrary, substituting T with ¢t we have completed the proof.

Remark 4: If K(s, £) = 0, o1(f) = o5(£) = a(t), then Theorem 2.2 becomes Theorem C
[10, Theorem 1].

Now we will apply the concept of establishing Theorem 2.2 to the situation with two
independent variables.

Theorem 2:3: Assume that f(x, y), gi(x, y), hi(x, y) € C(R, xR, R,),i=1,2,and pe C

(R,, R,) is a strictly increasing function with xlg{.lo(ﬁ(x) =0 a(x,y) e C(R, x R, R,) is
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nondecreasing in x for every fixed y and nondecreasing in y for every fixed x. o(x), B(y) €
CMR,, R,) are nondecreasing with o(x) < x, B(y) < y. y, w € C(R,, R,) are nondecreasing
oo
1
with w(x) >0, w(x) >0 for x € (0, =) and/ ds = 00, where 0 < £, < a(0, 0).
! w VE76) ’

0

If ue C(R, x R,, R,) satisfies the following integral inequality containing multiple
integrals

B() o)
¢(u(x,y)) Sa(x/y)+/0 ; (s )9 (uls 1) + &1 (s, ) (uls, £))w(uls, 1))

+/0 /Oshl(g,r)t/f(u(f,r))dédr]dsdt

e (34
e [ [ 1 09 (s, 0) + 205, 0 s De(uts, 0)
o Jo
+/0 /0 ha(&, o)W (u(&, ©))dedT] dsdt,
then we can find some x > 0, y > 0 so that for all x € [0,x], y € [0,¥]
~ BW) palx) x
Y(H(x, y))+f ' / 21(s, t)dsdt+/y/ 22(s, t)dsdt € Dom(Y 1)
0 0 0 0
and
~ B() palx)
u(x,y) <o 'UTHYH(Y(H(x y)) +/ / 1(s, t) dsdt
0 0 (35)

+ /Oy /Oxgz(s, t)dsdt)]}

where J, Y are defined as in Theorem 2.2, and

~ B(y) proalx) t ps
Fi(x,y) =I(a(x ) + / ' o / / (&, 1)dede ] dsdt

+/0y/0x [fz(S,t)+/0[/05h2(E,r)d§dr] dsdt.

Proof: The process for seeking for x, y can also be referred to Remark 1 in [10].
If we take x = 0 or y = 0, then (35) holds trivially. Now fix xo € (0, x},yo € (0, y], and
X € (07 xO]’ y € (07 3’0] Let

B) palx)
2(x ) =a(x, 7o) + / G 000t 0) + 16 00 s Dot )
+ /l[Shl(é,f)lﬁ(u(f,f))dédfl dsdt
Oy 03c (36)
. / / (s 00 (u(s, 1)) + 82(5, 0¥ (s, ) o(u(s, 1))
0 0
+/0 /(; hy(&, o)y (u(€, t))dédr|dsdt.

Considering a(x, y) is nondecreasing, we have u(x, y) < ¢ Tz, ) < @ Hzlxo, ¥)).
Moreover,
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a(xo)
zy(x0,y) = ﬂ/()’)/o [f1(s, )W (uls, B())) + 81 (s, BU)Y (uls, B)))ew(uls, B(1)))

By) ps
+ f / (&, 0) (u(E, ©)dedr] ds
0 0
e [ 1 2t ) + 8205 U s P)o(5.1)
. /0 ' /0 “ha(&, T (u(e, T))dedrds
a(xo) BWY) ps
<80 /0 il 1) + 81 (5, B0 (s, B1))) + fo ' /0 (&, 0)dzdr ] ds
. f 1) v 1) + 205 Peu(s )
. / ' / “ha(e, T)dedr sy (6 (e(xo,))).

So

yxoy) o (1) .
V(61 (20 y))) = B (Y)/O [f1(s, B()) +81(s B(r)) (9™ (2(s, B())))

By) s Xo
+ /0 /0 o (&, 7)dede]ds + /0 (5, 7) ¥ (u(s 7)) + 825 Poo(d~ (5. 1))

+/y /Shz(s,r)dsdt]ds.
o Jo

Integrating (38) from 0 to y we have
J(2(x0,¥)) = J(a(x0, y0)) <
B() palxo) t ps
/ / [fi(s, t) + 1 (s, (o~ (2(5, 1)) + f / hi (&, v)dédr]dsdt
0 0 0 Jo

Y Xo t s
+f / [f2(s, 1) + g2 (s, Do (9~ (2(s, 1)) +/ / hy (&, T)dEdr | dsdt.
o Jo o Jo

Let

B(y) palxo)

u(xo, ) = J(a(xo. o)) + / / i(s.1) + 81 (5 oo™ (<(5,1)))
+ /Ot/OS hy(§, t)dédr] dsdt + /: ]:0 [f2(s,2) + g2 (s, t)a)(qb_l(z(s, t)))
N /0 [ /0 (&, 7)dede] dsdt.

Then

2(x09) <1 u(xo,p)]
<7 oo )+ [ . / " (5 D (s, ) st
- 0 0

* /y /"0 8a(s, (¢~ (z(s, 1)) dsdt].
0 0
Furthermore let

~ BW) a(xo)
v(x0,y) =H (%o, yo) + ./0 /0 g1(s, (¢~ (2(s, 1)) dsdt

i /oy /Oxo 82(s, (9™ (2(s, 1)) dsdr.

37)

(38)

(39)
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Then
2(x0,y) < J7 [v(x0, )], (41)

and
a(xo)
v(x0,7) =B'(7) / 21(s B (7 (2(s, B(})))) ds
* f 225, V)o(¢7 (2(5))) ds

a(xo) X0
<180 / 81(5 Br))ds + f 825 Pdslo(d ™ 07 ((x0, 1)),

that is,

w(g (v;(x??) sy = B O 8165 B+ [3° g2 )ds. (42)

Integrating (42) from 0 to y, considering v(x,, 0) = 2| (xo,y0) we have

Y (u(x0,7)) — Y(H(x0,70)) < [P0 [0 g (s, t)dsdt + [V [ ga(s, t) dsdt.e?
Then

v(x0,y) < YUY (H(x0,0)) + 2O 200 gy (s, e)dsde + [V [ ga(s, 1) dsdt],
and

u(x,y) < ¢ U7 (W, )] < oYY (Y(H (%0, 10))
/ v / ) (s, )dsdt / ’ / " ea(s, Odsdt)]} 43
0 0 gl ' 0 0 g2 ' '

Take x = x9, ¥ = yo and we have

- B(yo) po(xo)
u(xo,y0) <6 U Y (Y (ko y0) + / / g1 (s, 1)dsdt
0 0

. /0 " /0 " oa(s t)dsdt)]).

Since xo € (0,x], yo € (0,y] are arbitrary, substitute xo, yo with x, ¥ and the proof is

(44)

complete.

Corollary 2.4: Assume that flx, ¥), g(x, ¥), h(x, y) € C(R, x R, R,), and a, ¢, v, o, @,
B, ], Y are defined as in Theorem 2.3. If u € C(R, x R,, R,) satisfies the following inte-
gral inequality containing multiple integrals

B palx)
st awn)+ [ [T 1 0w 0) + sl 00 (s Doluts )
+ /Olfosh(s,r)w(u(é,r))dédr] dsdt,

then we can find some x > 0, y > 0 such that for all x € [0,x], y € [0, ]

- B pelx)
Y(H(x,y)) + / / g1(s, t)dsdt € Dom(Y™'),
0 0
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and

~ Bly) proa(x)
u(vy) < Y (V) + ] / 8(s 1)dsdo)]),

where

~ B(y) roalx) t ps
H(x,y) =](a(x,y))+/0 ’ ; [f(s, t)+‘/0 /0 h(&, t)d&dr] dsdt].

Remark 5: If we take /(x, y) = 0, w (u(x, y)) = u"(x, ), ¢, y) = u"(x, ), m > n >0,
then Corollary 2.4 reduces to Theorem D [11, Theorem 2.1].

Corollary 2.5: Assume that f;, gi(x, y) € C(R, x R, R,),i=1,2,and a, ¢, y, ®, ], ¥
are defined as in Theorem 2.3. If u € C(R, x R,, R,) satisfies the following integral

inequality containing multiple integrals

Bly) palx)
(u(x,y)) < alxy) + fo /0 [f1 (s, )% (u(s, 1)) + g1 (s, ) v (u(s, £))o(u(s, t))|dsdt
e [ [ 1t 05, 0) + 205,09 s D)o uts ) s,
0 0

then we can find some x > 0, y > 0 such that for all x € [0,x], y € [0, y]

- B) palx) y px
Y(H(x,y)) + / / g1(s, t) dsdt + f / g (s, t)dsdt € Dom(Y‘l),
0 0 0 0

and

- By palx)
u(x,y) sq)_l{]_l[Y_l(Y(H(x,y)) +/ ' / g1(s, t) dsdt
0 0

. /Oy /Oxgz(s, ) dsdo)]),

where

~ B() pa(x) x
H(x,y) =I(a(x,y))+/0 ' /0 fi(s, t) dsdt+/0y/0 fa(s, t) dsdt.

Remark 6: If we take fi(x, y) = fo(x, ¥) = 0, w(ulx, y) = ", ), ¢, y) = u"(x, y), m
> n, then Corollary 8 reduces to Theorem E [11, Theorem 2.2].

3 Applications
In this section, we will present two examples in order to illustrate the validity of the
above results. In the first example, we will try to prove the global existence of the solu-
tions of a delay differential equation, while in the second example, we will obtain the
bound of the solutions of an integral equation.

For the sake of proving the global existence of solutions of differential equations, we

first recall some basic facts. Consider the following equation

X'(1) = H(t, X(1), X (e (1))

X(0) = Xo (45)

with Xy € R", He C(R, x R*", R"), a € C'(R,, R,) satisfying a(t) < t for £ > 0. A
result in [13] guarantees that for every X, € R”, Equation 45 has a solution, but the
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uniqueness of solutions cannot be guaranteed. Furthermore, every solution of (45) has
a maximal time of existence 7' >0, and if T <eo, then lim sup || X(t) I|= cc,
Example 1: Consider the following differential equation group
p+q
(@) =y 2 (1) +F(x(), 1) (46)
(1)) = G(t x(«(1)))
where p is an even number. a(t) is a nondecreasing function, a(t) € C'(R,, R,), o/t)

<t Yt o= 0. p > g >0. Assume |F(x(0),1)] < fi(O)K(0)lv(Ix])

Fo(t) = max(1, i (0)) Fo() = max(1,7: () where i, Fo,v e O(R,,R,) / U(ls)ds Sy
and v is nondecreasing.
Let u?(t) = &°(¢) + y°(¢), then
p+q
W'(0) = (@) + (") =y 2 () +F(x(1), 1) + G(t, x(ex(1)))

If (x(¢), y(¢)) is a solution of (46) defined on the maximal existence interval [0, T),

(47)

integrating (47) from O to ¢, we have
. P4
W (1) < Iu"(0)|+/0 [y 2 ()1 IF(x(s), $)l + 1G(s, x(e(s)))1] ds
. Ptd N y
S/O [lu 2 () + [l ()v(Ixl) + fa () IxT (e (s))1] ds
e Pra .
S/O [l 2 ()] +F(S) () lv(lul) + f2(s) 1w’ (e (s))1] ds.

Then
. P+4q _ _
|u"(t)lflu"(0)|+/0 [lu 2 () + () () v(lul) + f2(s)|u(ee(s))] ds

=< Iu”(0)|+/0 () ()leo(lul) + o (5)lu” (o (5)) ] ds

t a(t) T a-lr
= Iup(0)|+/ fs(S)lu"(S)lw(Iul)+/ fz,( 1 )Iu"(r)ldr,
0 0 o' (a~1r)
p—q
where . From Theorem 2.1 we have

o(lul =v(lul) +lu 2 |
1

Tl e
0
1

lu(t)l < {7 [2(u"~(0)] + ’ ; q/o o (a~1r)
- (@7 (0)] + p;q fo 7o (s)ds) + p;"fo BE)dBP—9,0<t<T.

Obviously we have {|x()|, |y(#)|} < |u(?)|. So x(¢), y(¢) do not blow up in finite time.
Then T = oo, and the solutions of (46) are global.
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Example 2: Considering the following integral equation

By) pralx)
u(x, Y)in(u(x,y) + 1) = a(x,y) + f / [F(s 1, u(s,)) + G(s 1, u(x, )] dsd, (48)

where u € C(R, x R,, R,), |F (%, y, u(x, y))| < flx, y)ulx, y),

|G(x, y, ulx, y)| < glx, Yu*(x, y), f, g€ CR, x R,, R,), a(x, y), a(x), B(y) are defined
as in Theorem 2.3.

Let @(u) = uln(u + 1), @ (u) = u, N(u) = u. Then one can easily see the conditions of
Theorem 2.3 are satisfied. So we can obtain the bound of u(x, y) as

~ By) palx)
u(y) <6 0 Y (V(EL ) + /0 fo g(s, 0)dsde]}, xe[0,x], ye[0y] (49)

where x, ¥ are determined similar to the process in Theorem 2.3, and

~ B(y) proalx)
Fi(x ) = Ja(x 7)) + / [ s s

Remark 7: we note that the methods in [1-12] are not available for the estimate of
bound for the solution of Equation 48.
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