
RESEARCH Open Access

On the refinements of the Jensen-Steffensen
inequality
Iva Franjić1, Sadia Khalid2* and Josip Pečarić2,3

* Correspondence:
saadiakhalid176@gmail.com
2Abdus Salam School of
Mathematical Sciences, GC
University, 68-b, New Muslim
Town, Lahore 54600, Pakistan
Full list of author information is
available at the end of the article

Abstract

In this paper, we extend some old and give some new refinements of the Jensen-
Steffensen inequality. Further, we investigate the log-convexity and the exponential
convexity of functionals defined via these inequalities and prove monotonicity
property of the generalized Cauchy means obtained via these functionals. Finally, we
give several examples of the families of functions for which the results can be
applied.
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1. Introduction
One of the most important inequalities in mathematics and statistics is the Jensen

inequality (see [[1], p.43]).

Theorem 1.1. Let I be an interval in ℝ and f : I ® ℝ be a convex function. Let n ≥ 2,

x = (x1, ..., xn) Î In and p = (p1, ..., pn) be a positive n-tuple, that is, such that pi >0 for

i = 1, ..., n. Then

f

(
1
Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif (xi), (1)

Where

Pk =
k∑
i=1

pi, k = 1, . . . ,n. (2)

If f is strictly convex, then inequality (1) is strict unless x1 = ... = xn.

The condition “p is a positive n-tuple” can be replaced by “p is a non-negative n-

tuple and Pn >0”. Note that the Jensen inequality (1) can be used as an alternative defi-

nition of convexity.

It is reasonable to ask whether the condition “p is a non-negative n-tuple” can be

relaxed at the expense of restricting x more severely. An answer to this question was

given by Steffensen [2] (see also [[1], p.57]).

Theorem 1.2. Let I be an interval in ℝ and f : I ® ℝ be a convex function. If x = (x1,

..., xn) Î In is a monotonic n-tuple and p = (p1, ..., pn) a real n-tuple such that
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0 ≤ Pk ≤ Pn, k = 1, . . . ,n − 1, Pn > 0, (3)

is satisfied, where Pk are as in (2), then (1) holds. If f is strictly convex, then inequality

(1) is strict unless x1 = ... = xn.

Inequality (1) under conditions from Theorem 1.2 is called the Jensen-Steffensen

inequality. A refinement of the Jensen-Steffensen inequality was given in [3] (see also

[[1], p.89]).

Theorem 1.3. Let x and p be two real n-tuples such that a ≤ x1 ≤ ... ≤ xn ≤ b and (3)

hold. Then for every convex function f : [a, b] ® ℝ

Fn(x1, . . . , xn) ≥ Fn−1(x1, . . . , xn−1) ≥ · · · ≥ F2(x1, x2) ≥ F1(x1) = 0 (4)

holds, where

Fk(x1, . . . , xk) = Gk(x1, . . . , xk, p1, . . . , pk−1, P̄k), (5)

Gk(x1, . . . , xk, p1, . . . , pk) =
1
Pk

k∑
i=1

pif (xi) − f

(
1
Pk

k∑
i=1

pixi

)
, (6)

Pk are as in (2) and

P̄k =
n∑
i=k

pi, k = 1, . . . ,n. (7)

Note that the function Gn defined in (6) is in fact the difference of the right-hand

and the left-hand side of the Jensen inequality (1).

In this paper, we present a new refinement of the Jensen-Steffensen inequality,

related to Theorem 1.3. Further, we investigate the log-convexity and the exponential

convexity of functionals defined as differences of the left-hand and the right-hand sides

of these inequalities. We also prove monotonicity property of the generalized Cauchy

means obtained via these functionals. Finally, we give several examples of the families

of functions for which the obtained results can be applied.

In what follows, I is an interval in ℝ, Pk are as in (2) and P̄k are as in (7). Note that if

(3) is valid, since P̄k = Pn − Pk−1, it follows that P̄k satisfy (3) as well.

2. New refinement of the Jensen-Steffensen inequality
The aim of this section is to give a new refinement of the Jensen-Steffensen inequality.

In the proof of this refinement, the following result is needed (see [[1], p.2]).

Proposition 2.1. If f is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2, x1 ≠

x2, y1 ≠ y2, then the following inequality is valid

f (x2) − f (x1)
x2 − x1

≤ f (y2) − f (y1)
y2 − y1

. (8)

If the function f is concave, the inequality reverses.

The main result states.

Theorem 2.2. Let x = (x1, ..., xn) Î In be a monotonic n-tuple and p = (p1, ..., pn) a

real n-tuple such that (3) holds. Then for a convex function f : I ® ℝ we have

F̄n(x1, . . . , xn) ≥ F̄n−1(x2, · · · , xn) ≥ · · · ≥ F̄2(xn−1, xn) ≥ F̄1(xn) = 0, (9)
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where

F̄k(xn−k+1, xn−k+2, . . . , xn)

= Ḡk(xn−k+1, xn−k+2, . . . , xn,Pn−k+1, pn−k+2, . . . , pn),
(10)

Ḡk(xn−k+1, . . . , xn, pn−k+1, . . . , pn)

=
1

P̄n−k+1

n∑
i=n−k+1

pif (xi) − f

⎛
⎝ 1

P̄n−k+1

n∑
i=n−k+1

pixi

⎞
⎠ .

(11)

For a concave function f, the inequality signs in (9) reverse.

Proof. The claim is that for a convex function f,

F̄k(xn−k+1, . . . , xn) ≥ F̄k−1(xn−k+2, . . . , xn)

holds for every k = 2, ..., n. This inequality is equivalent to

Pn−k+1

Pn
(f (xn−k+2) − f (xn−k+1)) ≤ f (x̄n−k+2) − f (x̄n−k+1), (12)

where

x̄n−k+1 =
1
Pn

⎛
⎝Pn−k+1xn−k+1 +

n∑
i=n−k+2

pixi

⎞
⎠ .

If x is increasing then xn−k+1 ≤ x̄n−k+1, while if x is decreasing then xn−k+1 ≥ x̄n−k+1

for every k. Furthermore, without loss of generality, we can assume that x is strictly

monotonic and that 0 < Pk < Pn for k = 1, ..., n - 1. Now, applying (8) for a convex

function f when x is strictly increasing yields inequality

f (xn−k+2) − f (xn−k+1)
xn−k+2 − xn−k+1

≤ f (x̄n−k+2) − f (x̄n−k+1)
Pn−k+1

Pn
(xn−k+2 − xn−k+1)

,

while if x is strictly decreasing we get inequality

f (x̄n−k+2) − f (x̄n−k+1)
Pn−k+1

Pn
(xn−k+2 − xn−k+1)

≤ f (xn−k+2) − f (xn−k+1)
xn−k+2 − xn−k+1

,

both of which are equivalent to (12). If f is concave, the inequalities reverse. Thus,

the proof is complete. □
Remark 2.3. A slight extension of the proof of Theorem 1.3 in [3]shows that Theorem

1.3 remains valid if the n-tuple x is assumed to be monotonic instead of increasing. The

proof is in fact analogous to the proof of Theorem 2.2.

Let us observe inequalities (4) and (9). Motivated by them, we define two functionals

�1(x,p, f ) = Fk(x1, . . . , xk) − Fj(x1, . . . , xj), 1 ≤ j < k ≤ n, (13)

�2(x,p, f ) = F̄k(xn−k+1, . . . , xn) − F̄j(xn−j+1, . . . , xn), 1 ≤ j < k ≤ n. (14)

where functions Fk and F̄k are as in (5) and (10), respectively, x = (x1, ..., xn) Î In is a

monotonic n-tuple and p = (p1, ..., pn) is a real n-tuple such that (3) holds. If function
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f is convex on I, then Theorems 1.3 and 2.2, joint with Remark 2.3, imply that Fi(x, p,

f) ≥ 0, i = 1, 2.

Now, we give mean value theorems for the functionals Fi, i = 1, 2.

Theorem 2.4. Let x = (x1, ..., xn) Î [a, b]n be a monotonic n-tuple and p = (p1, ..., pn)

a real n-tuple such that (3) holds. Let f Î C2[a, b] and F1 and F2 be linear functionals

defined as in (13) and (14). Then there exists ξ Î [a, b] such that

�i(x,p, f ) =
f ′′(ξ)
2

�i(x,p, f0), i = 1, 2, (15)

where f0(x) = x2.

Proof. Analogous to the proof of Theorem 2.3 in [4]. □
Theorem 2.5. Let x = (x1, ..., xn) Î [a, b]n be a monotonic n-tuple and p = (p1, ..., pn)

a real n-tuple such that (3) holds. Let f, g Î C2[a, b] be such that g“(x) ≠ 0 for every x

Î [a, b] and let F1 and F2 be linear functionals defined as in (13) and (14). If F1 and

F2 are positive, then there exists ξ Î [a, b] such that

�i(x,p, f )
�i(x,p, g)

=
f ′′ (ξ)

g′′ (ξ)
, i = 1, 2. (16)

Proof. Analogous to the proof of Theorem 2.4 in [4]. □
Remark 2.6. If the inverse of the function f“/g“ exists, then (16) gives

ξ =
(
f ′′

g′′

)−1 (
�i(x,p, f )
�i(x,p, g)

)
, i = 1, 2. (17)

3. Log-convexity and exponential convexity of the Jensen-Steffensen
differences
We begin this section by recollecting definitions of properties which are going to be

explored here and also some useful characterizations of these properties (see [[5],

p.373]). Again, I is an open interval in ℝ.

Definition 1. A function h : I ® ℝ is exponentially convex on I if it is continuous and

n∑
i,j=1

αiαjh(xi + xj) ≥ 0

holds for every n Î N, ai Î ℝ and xi such that xi + xj Î I, i, j = 1, ..., n.

Proposition 3.1. Function h : I ® ℝ is exponentially convex if and only if h is contin-

uous and

n∑
i,j=1

αiαjh
( xi + xj

2

)
≥ 0

holds for every n Î N, ai Î ℝ and xi Î I, i = 1, ..., n.

Corollary 3.2. If h is exponentially convex, then the matrix
[
h

( xi + xj
2

)]n
i,j=1

is a posi-

tive semi-definite matrix. Particularly,

det
[
h

(xi + xj
2

)]n
i,j=1

≥ 0 for every n ∈ N, xi ∈ I, i = 1, . . . ,n.
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Corollary 3.3. If h : I ® (0, ∞) is an exponentially convex function, then h is a log-

convex function, that is, for every x, y Î I and every l Î [0, 1] we have

h(λx + (1 − λ)y) ≤ hλ(x)h1−λ(y).

Lemma 3.4. A function h : I ® (0, ∞) is log-convex in the J-sense on I, that is, for

every x, y Î I,

h2
(x + y

2

)
≤ h (x) h

(
y
)

holds if and only if the relation

α2h(x) + 2αβh
(x + y

2

)
+ β2h(y) ≥ 0

holds for every a, b Î ℝ and x, y Î I.

Definition 2. The second order divided difference of a function f : [a, b] ® ℝ at

mutually different points y0, y1, y2 Î [a, b] is defined recursively by[
yi; f

]
= f

(
yi
)
, i = 0, 1, 2,[

yi, yi+1; f
]
=
f (yi+1) − f (yi)

yi+1 − yi
, i = 0, 1,

[
y0, y1, y2; f

]
=

[
y1, y2; f

] − [
y0, y1; f

]
y2 − y0

. (18)

Remark 3.5. The value [y0, y1, y2; f] is independent of the order of the points y0, y1
and y2. This definition may be extended to include the case in which some or all the

points coincide (see [[1], p.16]). Namely, taking the limit y1 ® y0 in (18), we get

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y2; f ] =
f (y2) − f (y0) − f ′(y0)(y2 − y0)

(y2 − y0)
2 , y2 �= y0,

provided that f’ exists, and furthermore, taking the limits yi ® y0, i = 1, 2, in (18), we

get

lim
y2→y0

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y0; f ] =
f ′′(y0)

2

provided that f″ exists.

Next, we study the log-convexity and the exponential convexity of functionals Fi (i =

1, 2) defined in (13) and (14).

Theorem 3.6. Let ϒ = {fs : s Î I} be a family of functions defined on [a, b] such that

the function s ↦ [y0, y1, y2; fs] is log-convex in J-sense on I for every three mutually dif-

ferent points y0, y1, y2 Î [a, b]. Let Fi (i = 1, 2) be linear functionals defined as in (13)

and (14). Further, assume Fi(x, p, fs) > 0 (i = 1, 2) for fs Î ϒ. Then the following state-

ments hold.

(i) The function s ↦ Fi(x, p, fs) is log-convex in J-sense on I.

(ii) If the function s ↦ Fi(x, p, fs) is continuous on I, then it is log-convex on I.
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(iii) If the function s ↦ Fi(x, p, fs) is differentiable on I, then for every s, q, u, v Î I

such that s ≤ u and q ≤ v, we have

μs,q(x,�i,ϒ) ≤ μu,v(x,�i,ϒ) (i = 1, 2) (19)

where

μs,q(x,�i,�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�i(x,p, fs)
�i(x,p, fq)

) 1
s−q

, s �= q,

exp

(
d
ds�i(x,p, fs)

�i(x,p, fs)

)
, s = q

(20)

and Ξ is the family functions fs belong to.

Proof. (i) For a, b Î ℝ and s, q Î I, we define a function

g(y) = α2fs(y) + 2αβf s+q
2
(y) + β2fq(y).

Applying Lemma 3.4 for the function s ↦ [y0, y1, y2; fs] which is log-convex in J-sense

on I by assumption, yields that

[y0, y1, y2; g] = α2[y0, y1, y2; fs] + 2αβ[y0, y1, y2; f s+q
2
] + β2[y0, y1, y2; fq] ≥ 0

which in turn implies that g is a convex function on I and therefore we have Fi(x, p,

g) ≥ 0 (i = 1, 2). Hence,

α2�i(x,p, fs) + 2αβ�i(x,p, f s+q
2
) + β2�i(x,p, fq) ≥ 0.

Now using Lemma 3.4 again, we conclude that the function s ↦ Fi(x, p, fs) is log-

convex in J-sense on I.

(ii) If the function s ↦ Fi(x, p, fs) is in addition continuous, from (i) it follows that it

is then log-convex on I.

(iii) Since by (ii) the function s ↦ Fi(x, p, fs) is log-convex on I, that is, the function s

↦ log Fi(x, p, fs) is convex on I, applying (8) we get

log�i(x,p, fs) − log�i(x,p, fq)
s − q

≤ log�i(x,p, fu) − log�i(x,p, fv)
u − v

(21)

for s ≤ u, q ≤ v, s ≠ q, u ≠ v, and therefore conclude that

μs,q(x,�i,ϒ) ≤ μu,v(x,�i,ϒ), i = 1, 2.

If s = q, we consider the limit when q ® s in (21) and conclude that

μs,s(x,�i,ϒ) ≤ μu,v(x,�i,ϒ), i = 1, 2.

The case u = v can be treated similarly. □
Theorem 3.7. Let Ω = {fs : s Î I} be a family of functions defined on [a, b] such that

the function s ↦ [y0, y1, y2; fs] is exponentially convex on I for every three mutually dif-

ferent points y0, y1, y2 Î [a, b]. Let Fi(i = 1, 2) be linear functionals defined as in (13)

and (14). Then the following statements hold.
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(i) If n Î N and s1, ..., sn Î I are arbitrary, then the matrix⎡
⎣�i

⎛
⎝x,p, f sj + sk

2

⎞
⎠

⎤
⎦

n

j,k=1

is a positive semi-definite matrix for i = 1, 2. Particularly,

det

⎡
⎣�i

⎛
⎝x,p, f sj + sk

2

⎞
⎠

⎤
⎦

n

j,k=1

≥ 0. (22)

(ii) If the function s ↦ Fi(x, p, fs) is continuous on I, then it is also exponentially

convex function on I.

(iii) If the function s ↦ Fi(x, p, fs) is positive and differentiable on I, then for every s,

q, u, v Î I such that s ≤ u and q ≤ v, we have

μs,q(x,�i,	) ≤ μu,v(x,�i,	) (i = 1, 2) (23)

where μs, q(x, Fi, Ω) is defined in (20).

Proof. (i) Let aj Î ℝ (j = 1, ..., n) and consider the function

g(y) =
n∑

j,k=1

αjαkfsjk(y)

for n Î N, where sjk =
sj + sk
2

, sj Î I, 1 ≤ j, k ≤ n and fsjk ∈ 	. Then

[
y0, y1, y2; g

]
=

n∑
j,k=1

αjαk
[
y0, y1, y2; fsjk

]

and since
[
y0, y1, y2; fsjk

]
is exponentially convex by assumption it follows that

[
y0, y1, y2; g

]
=

n∑
j,k=1

αjαk
[
y0, y1, y2; fsjk

] ≥ 0

and so we conclude that g is a convex function. Now we have

�i
(
x,p, g

) ≥ 0,

which is equivalent to

n∑
j,k=1

αjαk�i
(
x,p, fsjk

) ≥ 0, i = 1, 2,
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which in turn shows that the matrix
[
�i

(
x,p, fsjk

)]n
j,k=1 is positive semi-definite, so

(22) is immediate.

(ii) If the function s ↦ Fi(x, p, fs) is continuous on I, then from (i) and Proposition

3.1 it follows that it is exponentially convex on I.

(iii) If the function s ↦ Fi(x, p, fs) is differentiable on I, then from (ii) it follows that

it is exponentially convex on I. If this function is in addition positive, then Corollary

3.3 implies that it is log-convex, so the statement follows from Theorem 3.6 (iii). □
Remark 3.8. Note that the results from Theorem 3.6 still hold when two of the points

y0, y1, y2 Î [a, b] coincide, say y1 = y0, for a family of differentiable functions fs such

that the function s ↦ [y0, y1, y2; fs] is log-convex in J-sense on I, and furthermore, they

still hold when all three points coincide for a family of twice differentiable functions

with the same property. The proofs are obtained by recalling Remark 3.5 and taking the

appropriate limits. The same is valid for the results from Theorem 3.7.

Remark 3.9. Related results for the original Jensen-Steffensen inequality regarding

exponential convexity, which are a special case of Theorem 3.7, were given in [6].

4. Examples
In this section, we present several families of functions which fulfil the conditions of

Theorem 3.7 (and Remark 3.8) and so the results of this theorem can be applied for

them.

Example 4.1. Consider a family of functions

	1 = {gs : R → [0,∞) : s ∈ R}

defined by

gs(x) =

⎧⎪⎨
⎪⎩

1
s2
esx, s �= 0,

1
2
x2, s = 0.

We have d2

dx2 gs(x) = esx > 0which shows that gs is convex on ℝ for every s Î ℝ and

s 	→ d2

dx2 gs(x)is exponentially convex by Example 1 given in Jakšetić and Pečarić (sub-

mitted). From Jakšetić and Pečarić (submitted), we then also have that s ↦ [y0, y1, y2;

gs] is exponentially convex.

For this family of functions, μs, q(x, Fi, Ξ) (i = 1, 2) from (20) become

μs,q(x,�i,	1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�i(x,p,gs)
�i(x,p,gq)

) 1
s−q , s �= q,

exp
(

�i(x,p,id·gs)
�i(x,p,gs)

− 2
s

)
, s = q �= 0,

exp
(

�i(x,p,id·g0)
3�i(x,p,g0)

)
, s = q = 0.

Example 4.2. Consider a family of functions

	2 = {fs : (0,∞) → R : s ∈ R}
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defined by

fs(x) =

⎧⎨
⎩

xs

s(s−1) , s �= 0, 1,
− log x, s = 0,
x log x, s = 1.

Here, d2

dx2 fs(x) = xs−2 = e(s−2) ln x > 0 which shows that fs is convex for x > 0 and

s 	→ d2

dx2 fs(x)is exponentially convex by Example 1 given in Jakšetić and Pečarić (sub-

mitted). From Jakšetić and Pečarić (submitted), we have that s ↦ [y0, y1, y2; fs] is expo-

nentially convex.

In this case, μs, q(x, Fi, Ξ) (i = 1, 2) defined in (20) for xj > 0 (j = 1, ..., n) are

μs,q(x,�i,	2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
�i(x,p,fs)
�i(x,p,fq)

) 1
s−q , s �= q,

exp
(

1−2s
s(s−1) − �i(x,p,fsf0)

�i(x,p,fs)

)
, s = q �= 0, 1,

exp
(
1 − �i(x,p,f 20 )

2�i(x,p,f0)

)
, s = q = 0,

exp
(
−1 − �i(x,p,f0f1)

2�i(x,p,f1)

)
, s = q = 1.

If Fi is positive, then Theorem 2.5 applied for f = fs Î Ω2 and g = fq Î Ω2 yields that

there exists ξ ∈ [min
1≤i≤n

xi, max
1≤i≤n

xi] such that

ξ s−q =
�i(x,p, fs)
�i(x,p, fq)

.

Since the function ξ ↦ ξs-q is invertible for s ≠ q, we then have

min{x1, xn} = min
1≤i≤n

xi ≤
(

�i(x,p, fs)
�i(x,p, fq)

) 1
s−q ≤ max

1≤i≤n
xi = max{x1, xn}, (24)

which together with the fact that μs, q(x, Fi, Ω2) is continuous, symmetric and mono-

tonous (by (23)), shows that μs, q(x, Fi, Ω2) is a mean.

Now, by substitutions xi → xti, s → s
t,q → q

t (t �= 0, s �= q)from (24) we get

min{xt1, xtn} = min
1≤i≤n

xti ≤
(

�i(xt ,p, fs/t)
�i(xt,p, fq/t)

) t
s−q ≤ max

1≤i≤n
xti = max{xt1, xtn},

where xt = (xt1, . . . , x
t
n).

We define a new mean (for i = 1, 2) as follows:

μs,q;t(x,�i,	2) =

⎧⎨
⎩

(
μ s

t ,
q
t
(xt,�i,	2)

)1/t

, t �= 0,

μs,q(log x,�i,	1), t = 0.
(25)

These new means are also monotonous. More precisely, for s, q, u, v Î ℝ such that s ≤

u, q ≤ v, s ≠ u, q ≠ v, we have

μs,q;t(x,�i,	2) ≤ μu,v;t(x,�i,	2) (i = 1, 2) (26)
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We know that

μ s
t ,
q
t
(xt,�i,	2) =

(
�i(xt,p, fs/t)
�i(xt,p, fq/t)

) t
s−q ≤ μ u

t ,
v
t
(xt,�i,	2) =

(
�i(xt,p, fu/t)
�i(xt,p, fv/t)

) t
u−v

,

for s, q, u, v Î I such that s/t ≤ u/t, q/t ≤ v/t and t ≠ 0, since μs, q(x, Fi, Ω2) are

monotonous in both parameters, so the claim follows. For t = 0, we obtain the required

result by taking the limit t ® 0.

Example 4.3. Consider a family of functions

	3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

hs(x) =

{
s−x

ln2s
, s �= 1,

x2

2 , s = 1.

Exponential convexity of s 	→ d2

dx2 hs(x) = s−xon (0,∞) is given by Example 2 in Jakšetić

and Pečarić (submitted).

μs, q(x, Fi, Ξ) (i = 1, 2) defined in (20) in this case for xj >0 (j = 1, ..., n) are

μs,q(x,�i,	3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
�i(x,p,hs)
�i(x,p,hq)

) 1
s−q , s �= q,

exp
(
−�i(x,p,id·hs)

s�i(x,p,hs)
− 2

s ln s

)
, s = q �= 1,

exp
(
− 2�i(x,p,id·h1)

3�i(x,p,h1)

)
, s = q = 1.

Example 4.4. Consider a family of functions

	4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

ks(x) =
e−x

√
s

s

Exponential convexity of s 	→ d2

dx2 ks(x) = e−x
√
son (0, ∞) is given by Example 3 in Jakše-

tić and Pečarić (submitted).

In this case, μs, q(x, Fi, Ξ) (i = 1, 2) defined in (20) for xj >0 (j = 1, ..., n) are

μs,q(x,�i,	4) =

⎧⎪⎨
⎪⎩

(
�i(x,p,ks)
�i(x,p,kq)

) 1
s−q , s �= q,

exp
(
− �i(x,p,id·ks)

2
√
s�i(x,p,ks)

− 1
s

)
, s = q.
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