RESEARCH

Open Access

On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville type problem with retarded argument which contains a spectral parameter in the boundary condition

Erdoğan Şen^{*} and Azad Bayramov

* Correspondence: esen@nku.edu.tr Department of Mathematics, Faculty of Arts and Science, Namik Kemal University, 59030 Tekirdağ, Turkey

Abstract

In this study, a discontinuous boundary-value problem with retarded argument which contains a spectral parameter in the boundary condition and with transmission conditions at the point of discontinuity is investigated. We obtained asymptotic formulas for the eigenvalues and eigenfunctions. **MSC (2010)**: 34L20; 35R10.

Keywords: differential equation with retarded argument, transmission conditions, asymptotics of eigenvalues and eigenfunctions

1 Introduction

Boundary-value problems for differential equations of the second order with retarded argument were studied in [1-5], and various physical applications of such problems can be found in [2].

The asymptotic formulas for the eigenvalues and eigenfunctions of boundary problem of Sturm-Liouville type for second order differential equation with retarded argument were obtained in [5].

The asymptotic formulas for the eigenvalues and eigenfunctions of Sturm-Liouville problem with the spectral parameter in the boundary condition were obtained in [6].

In the articles [7-9], the asymptotic formulas for the eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problem with transmission conditions and with the boundary conditions which include spectral parameter were obtained.

In this article, we study the eigenvalues and eigenfunctions of discontinuous boundary-value problem with retarded argument and a spectral parameter in the boundary condition. Namely, we consider the boundary-value problem for the differential equation

$$p(x)\gamma''(x) + q(x)\gamma(x - \Delta(x)) + \lambda\gamma(x) = 0$$
⁽¹⁾

on $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$, with boundary conditions

$$y(0) = 0, \tag{2}$$

© 2011 \$\$en and Bayramov; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$y'(\pi) + \lambda y(\pi) = 0, \tag{3}$$

and transmission conditions

$$\gamma_1 \gamma \left(\frac{\pi}{2} - 0\right) = \delta_1 \gamma \left(\frac{\pi}{2} + 0\right),\tag{4}$$

$$\gamma_2 \gamma' \left(\frac{\pi}{2} - 0\right) = \delta_2 \gamma' \left(\frac{\pi}{2} + 0\right),\tag{5}$$

where $p(x) = p_1^2$ if $x \in [0, \frac{\pi}{2})$ and $p(x) = p_2^2$ if $x \in (\frac{\pi}{2}, \pi]$, the real-valued function q(x) is continuous in $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$ and has a finite limit $q(\frac{\pi}{2} \pm 0) = \lim_{x \to \frac{\pi}{2} \pm 0} q(x)$, the real-valued function $\Delta(x) \ge 0$ continuous in $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$ and has a finite limit $\Delta(\frac{\pi}{2} \pm 0) = \lim_{x \to \frac{\pi}{2} \pm 0} \Delta(x), x - \Delta(x) \ge 0$, if $x \in [0, \frac{\pi}{2}); x - \Delta(x) \ge \frac{\pi}{2}$ if $x \in (\frac{\pi}{2}, \pi]; \lambda$ is a real spectral parameter; $p_1, p_2, \gamma_1, \gamma_2, \delta_1, \delta_2$ are arbitrary real numbers and $|\gamma_i| + |\delta i| \neq 0$ for i = 1, 2. Also, $\gamma_1 \delta_2 p_1 = \gamma_2 \delta_1 p_2$ holds.

It must be noted that some problems with transmission conditions which arise in mechanics (thermal condition problem for a thin laminated plate) were studied in [10]. Let $w_1(x, \lambda)$ be a solution of Equation 1 on $[0, \frac{\pi}{2}]$, satisfying the initial conditions

$$w_1(0,\lambda) = 0, w'_1(0,\lambda) = -1.$$
(6)

The conditions (6) define a unique solution of Equation 1 on $\left[0, \frac{\pi}{2}\right]$ [2, p. 12].

After defining above solution, we shall define the solution $w_2(x, \lambda)$ of Equation 1 on $[\frac{\pi}{2}, \pi]$ by means of the solution $w_1(x, \lambda)$ by the initial conditions

$$w_2\left(\frac{\pi}{2},\lambda\right) = \gamma_1 \delta_1^{-1} w_1\left(\frac{\pi}{2},\lambda\right), \quad \omega_2'\left(\frac{\pi}{2},\lambda\right) = \gamma_2 \delta_2^{-1} \omega_1'\left(\frac{\pi}{2},\lambda\right). \tag{7}$$

The conditions (7) are defined as a unique solution of Equation 1 on $\left[\frac{\pi}{2}, \pi\right]$. Consequently, the function $w(x, \lambda)$ is defined on $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$ by the equality

$$w(x,\lambda) = \begin{cases} \omega_1(x,\lambda), x \in [0,\frac{\pi}{2}), \\ \omega_2(x,\lambda), x \in (\frac{\pi}{2},\pi] \end{cases}$$

is a such solution of Equation 1 on $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$; which satisfies one of the boundary conditions and both transmission conditions.

Lemma 1. Let $w(x, \lambda)$ be a solution of Equation 1 and $\lambda > 0$. Then, the following integral equations hold:

$$w_{1}(x,\lambda) = -\frac{p_{1}}{s} \sin \frac{s}{p_{1}} x$$

$$-\frac{1}{s} \int_{0}^{x} \frac{q(\tau)}{p_{1}} \sin \frac{s}{p_{1}} (x-\tau) w_{1}(\tau-\Delta(\tau),\lambda) d\tau \quad \left(s = \sqrt{\lambda}, \lambda > 0\right),$$
(8)

$$w_{2}(x,\lambda) = \frac{\gamma_{1}}{\delta_{1}}w_{1}\left(\frac{\pi}{2},\lambda\right)\cos\frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) + \frac{\gamma_{2}p_{2}w_{1}\left(\frac{\pi}{2},\lambda\right)}{s\delta_{2}}\sin\frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) - \frac{1}{s}\int_{\pi/2}^{x}\frac{q(\tau)}{p_{2}}\sin\frac{s}{p_{2}}(x-\tau)w_{2}(\tau-\Delta(\tau),\lambda)d\tau \quad \left(s=\sqrt{\lambda},\lambda>0\right).$$
⁽⁹⁾

Theorem 1. The problem (1)-(5) can have only simple eigenvalues.

Proof. Let $\tilde{\lambda}$ be an eigenvalue of the problem (1)-(5) and

$$\tilde{u}(x,\tilde{\lambda}) = \begin{cases} \tilde{u}_1(x,\tilde{\lambda}), x \in \left[0,\frac{\pi}{2}\right], \\ \tilde{u}_2(x,\tilde{\lambda}), x \in \left(\frac{\pi}{2},\pi\right] \end{cases}$$

be a corresponding eigenfunction. Then, from (2) and (6), it follows that the determinant

$$W\left[\tilde{u}_1(0,\tilde{\lambda}),w_1(0,\tilde{\lambda})\right] = \left| \begin{array}{c} \tilde{u}_1(0,\tilde{\lambda}) & 0\\ \tilde{u}_1'(0,\tilde{\lambda}) & -1 \end{array} \right| = 0,$$

and by Theorem 2.2.2 in [2], the functions $\tilde{u}_1(x, \tilde{\lambda})$ and $w_1(x, \tilde{\lambda})$ are linearly dependent on $[0, \frac{\pi}{2}]$. We can also prove that the functions $\tilde{u}_2(x, \tilde{\lambda})$ and $w_2(x, \tilde{\lambda})$ are linearly dependent on $[\frac{\pi}{2}, \pi]$. Hence,

$$\tilde{u}_1(x,\tilde{\lambda}) = K_i w_i(x,\tilde{\lambda}) \quad (i=1,2)$$
(10)

for some $K_1 \neq 0$ and $K_2 \neq 0$. We must show that $K_1 = K_2$. Suppose that $K_1 \neq K_2$. From the equalities (4) and (10), we have

$$\begin{split} \gamma_1 \tilde{u} \left(\frac{\pi}{2} - 0, \tilde{\lambda}\right) &- \delta_1 \tilde{u} \left(\frac{\pi}{2} + 0, \tilde{\lambda}\right) = \gamma_1 \tilde{u}_1 \left(\frac{\pi}{2}, \tilde{\lambda}\right) - \delta_1 \tilde{u}_2 \left(\frac{\pi}{2}, \tilde{\lambda}\right) \\ &= \gamma_1 K_1 w_1 \left(\frac{\pi}{2}, \tilde{\lambda}\right) - \delta_1 K_2 w_2 \left(\frac{\pi}{2}, \tilde{\lambda}\right) \\ &= \gamma_1 K_1 \delta_1 \gamma_1^{-1} w_2 \left(\frac{\pi}{2}, \tilde{\lambda}\right) - \delta_1 K_2 w_2 \left(\frac{\pi}{2}, \tilde{\lambda}\right) \\ &= \delta_1 (K_1 - K_2) w_2 \left(\frac{\pi}{2}, \tilde{\lambda}\right) = 0. \end{split}$$

Since $\delta_1 (K_1 - K_2) \neq 0$, it follows that

$$w_2\left(\frac{\pi}{2},\widetilde{\lambda}\right) = 0. \tag{11}$$

By the same procedure from equality (5), we can derive that

$$w_2'\left(\frac{\pi}{2},\widetilde{\lambda}\right) = 0. \tag{12}$$

From the fact that $w_2(x, \tilde{\lambda})$ is a solution of the differential equation (1) on $[\frac{\pi}{2}, \pi]$ and satisfies the initial conditions (11) and (12) it follows that $w_1(x, \tilde{\lambda}) = 0$ identically on $[\frac{\pi}{2}, \pi]$ (cf. [2, p. 12, Theorem 1.2.1]).

By using we may also find

$$w_1\left(\frac{\pi}{2},\widetilde{\lambda}\right) = w_1'\left(\frac{\pi}{2},\widetilde{\lambda}\right) = 0.$$

From the latter discussions of $w_2(x, \tilde{\lambda})$, it follows that $w_1(x, \tilde{\lambda}) = 0$ identically on $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$. But this contradicts (6), thus completing the proof.

2 An existance theorem

The function $\omega(x, \lambda)$ defined in Section 1 is a nontrivial solution of Equation 1 satisfying conditions (2), (4) and (5). Putting $\omega(x, \lambda)$ into (3), we get the characteristic equation

$$F(\lambda) \equiv w'(\pi, \lambda) + \lambda \omega(\pi, \lambda) = 0.$$
⁽¹³⁾

By Theorem 1.1, the set of eigenvalues of boundary-value problem (1)-(5) coincides with the set of real roots of Equation 13. Let $q_1 = \frac{1}{p_1} \int_0^{\pi/2} |q(\tau)| d\tau$ and $q_2 = \frac{1}{p_2} \int_{\pi/2}^{\pi} q(\tau) d\tau$.

Lemma 2. (1) Let $\lambda \ge 4q_1^2$. Then, for the solution $w_1(x, \lambda)$ of Equation 8, the following inequality holds:

$$\left|w_{1}(x,\lambda)\right| \leq \left|\frac{p_{1}}{q_{1}}\right|, \quad x \in \left[0,\frac{\pi}{2}\right].$$
(14)

(2) Let $\lambda \ge \max \{4q_1^2, 4q_2^2\}$. Then, for the solution $w_2(x, \lambda)$ of Equation 9, the following inequality holds:

$$\left|w_{2}(x,\lambda)\right| \leq \frac{2p_{1}}{q_{1}} \left\{ \left|\frac{\gamma_{1}}{\delta_{1}}\right| + \left|\frac{p_{2}\gamma_{2}}{p_{1}\delta_{2}}\right| \right\}, \quad x \in \left[\frac{\pi}{2},\pi\right].$$

$$(15)$$

Proof. Let $B_{1\lambda} = \max_{\left[0, \frac{\pi}{2}\right]} |w_1(x, \lambda)|$. Then, from (8), it follows that, for every $\lambda > 0$, the following inequality holds:

$$B_{1\lambda} \leq \left|\frac{p_1}{s}\right| + \frac{1}{s}B_{1\lambda}q_1.$$

If $s \ge 2q_1$, we get (14). Differentiating (8) with respect to *x*, we have

$$w_1'(x,\lambda) = -\cos\frac{s}{p_1}x - \frac{1}{p_1^2} \int_0^x q(\tau)\cos\frac{s}{p_1}(x-\tau)w_1(\tau-\Delta(\tau),\lambda)d\tau.$$
(16)

From (16) and (14), it follows that, for $s \ge 2q_1$, the following inequality holds:

$$|w'_1(x,\lambda)| \leq \sqrt{\frac{s^2}{p_1^2}+1}+1.$$

Hence,

$$\frac{\left|w'_{1}(x,\lambda)\right|}{s} \leq \frac{1}{q_{1}}.$$
(17)

Let $B_{2\lambda} = \max_{\left\lfloor \frac{\pi}{2}, \pi \right\rfloor} |w_2(x, \lambda)|$. Then, from (9), (14) and (17), it follows that, for $s \ge 2q_1$, the following inequalities holds:

$$B_{2\lambda} \leq \frac{\left|p_{1}\right|}{q_{1}} \left|\frac{\gamma_{1}}{\delta_{1}}\right| + \left|p_{2}\right| \left|\frac{\gamma_{2}}{\delta_{2}}\right| \frac{1}{\left|q_{1}\right|} + \frac{1}{2q_{2}}B_{2\lambda}q_{2},$$

$$B_{2\lambda} \leq \frac{2\left|p_{1}\right|}{q_{1}} \left\{ \left|\frac{\gamma_{1}}{\delta_{1}}\right| + \left|\frac{p_{2}\gamma_{2}}{p_{1}\delta_{2}}\right| \right\}.$$

Theorem 2. The problem (1)-(5) has an infinite set of positive eigenvalues. **Proof**. Differentiating (9) with respect to *x*, we get

$$w'_{2}(x,\lambda) = -\frac{s\gamma_{1}}{p_{2}\delta_{1}}w_{1}\left(\frac{\pi}{2},\lambda\right)\sin\frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) + \frac{\gamma_{2}w'_{1}\left(\frac{\pi}{2},\lambda\right)}{\delta_{2}}\cos\frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) - \frac{1}{p_{2}^{2}}\int_{\pi/2}^{x}q(\tau)\cos\frac{s}{p_{2}}(x-\tau)w_{2}(\tau-\Delta(\tau),\lambda)d\tau.$$
(18)

From (8), (9), (13), (16) and (18), we get

$$-\frac{s\gamma_{1}}{p_{2}\delta_{1}}\left(-\frac{p_{1}}{s}\sin\frac{s\pi}{2p_{1}}-\frac{1}{sp_{1}}\int_{0}^{\frac{\pi}{2}}q(\tau)\sin\frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right)\omega_{1}(\tau-\Delta(\tau),\lambda)d\tau\right)$$

$$\times\sin\frac{s\pi}{2p_{2}}$$

$$+\frac{\gamma_{2}}{\delta_{2}}\left(-\cos\frac{s\pi}{2p_{1}}-\frac{1}{p_{1}^{2}}\int_{0}^{\frac{\pi}{2}}q(\tau)\cos\frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right)\omega_{1}(\tau-\Delta(\tau),\lambda)d\tau\right)$$

$$\times\cos\frac{s\pi}{2p_{2}}-\frac{1}{p_{2}^{2}}\int_{\pi/2}^{\pi}q(\tau)\cos\frac{s}{p_{2}}(\pi-\tau)\omega_{2}(\tau-\Delta(\tau),\lambda)d\tau$$

$$+\lambda\left(\frac{\gamma_{1}}{\delta_{1}}\left[-\frac{p_{1}}{s}\sin\frac{s\pi}{2p_{1}}-\frac{1}{sp_{1}}\int_{0}^{\frac{\pi}{2}}q(\tau)\sin\frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right)\omega_{1}(\tau-\Delta(\tau),\lambda)d\tau\right]$$

$$\times\cos\frac{s\pi}{2p_{2}}$$

$$+\frac{\gamma_{2}p_{2}}{\delta_{2}s}\left[-\cos\frac{s\pi}{2p_{1}}-\frac{1}{p_{1}^{2}}\int_{0}^{\frac{\pi}{2}}q(\tau)\cos\frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right)\omega_{1}(\tau-\Delta(\tau),\lambda)d\tau\right]$$

$$\times\sin\frac{s\pi}{2p_{2}}-\frac{1}{sp_{2}}\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}q(\tau)\sin\frac{s}{p_{2}}(\pi-\tau)\omega_{2}(\tau-\Delta(\tau),\lambda)d\tau\right]$$

$$(19)$$

Let λ be sufficiently large. Then, by (14) and (15), Equation 19 may be rewritten in the form

$$s\sin s\pi \frac{p_1 + p_2}{2p_1 p_2} + O(1) = 0.$$
⁽²⁰⁾

Obviously, for large *s*, Equation 20 has an infinite set of roots. Thus, the theorem is proved.

3 Asymptotic formulas for eigenvalues and eigenfunctions

Now, we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following, we shall assume that s is sufficiently large. From (8) and (14), we get

$$\omega_1(x,\lambda) = O(1) \quad \text{on} \quad \left[0,\frac{\pi}{2}\right]. \tag{21}$$

From (9) and (15), we get

$$\omega_2(x,\lambda) = O(1) \quad \text{on} \quad \left[\frac{\pi}{2},\pi\right].$$
 (22)

The existence and continuity of the derivatives $\omega'_{1s}(x,\lambda)$ for $0 \le x \le \frac{\pi}{2}$, $|\lambda| < \infty$, and $\omega'_{2s}(x,\lambda)$ for $\frac{\pi}{2} \le x \le \pi$, $|\lambda| < \infty$, follows from Theorem 1.4.1 in [?].

$$\omega_{1s}'(x,\lambda) = O(1), \quad x \in \left[0, \frac{\pi}{2}\right] \quad \text{and} \quad \omega_{2s}'(x,\lambda) = O(1), \quad x \in \left[\frac{\pi}{2}, \pi\right].$$
(23)

Theorem 3. Let *n* be a natural number. For each sufficiently large *n*, there is exactly one eigenvalue of the problem (1)-(5) near $\frac{p_1^2 p_2^2}{(p_1+p_2)^2} (2n+1)^2$.

Proof. We consider the expression which is denoted by O(1) in Equation 20. If formulas (21)-(23) are taken into consideration, it can be shown by differentiation with respect to *s* that for large *s* this expression has bounded derivative. It is obvious that for large *s* the roots of Equation 20 are situated close to entire numbers. We shall show that, for large *n*, only one root (20) lies near to each $\frac{4n^2p_1^2p_2^2}{(p_1+p_2)^2}$. We consider the function $\phi(s) = \sin s\pi \frac{p_1+p_2}{2p_1p_2} + O(1)$. Its derivative, which has the form $\phi'(s) = \sin s\pi \frac{p_1+p_2}{2p_1p_2} \cos s\pi \frac{p_1+p_2}{2p_1p_2} + O(1)$, does not vanish for *s* close to *n* for sufficiently large *n*. Thus, our assertion follows by Rolle's Theorem.

Let *n* be sufficiently large. In what follows, we shall denote by $\lambda_n = s_n^2$ the eigenvalue of the problem (1)-(5) situated near $\frac{4n^2p_1^2p_2^2}{(p_1+p_2)^2}$. We set $s_n = \frac{2np_1p_2}{p_1+p_2} + \delta_n$. From (20), it follows that $\delta_n = O(\frac{1}{n})$. Consequently

$$s_n = \frac{2np_1p_2}{p_1 + p_2} + O\left(\frac{1}{n}\right).$$
(24)

The formula (24) makes it possible to obtain asymptotic expressions for eigenfunction of the problem (1)-(5). From (8), (16) and (21), we get

$$\omega_1(x,\lambda) = O\left(\frac{1}{s}\right),\tag{25}$$

$$\omega_1'(x,\lambda) = O(1). \tag{26}$$

From (9), (22), (25) and (26), we get

$$\omega_2(x,\lambda) = O\left(\frac{1}{s}\right). \tag{27}$$

By putting (24) in (25) and (27), we derive that

$$\begin{split} u_{1n} &= w_1(x,\lambda_n) = O\left(\frac{1}{n}\right), \\ u_{2n} &= w_2(x,\lambda_n) = O\left(\frac{1}{n}\right). \end{split}$$

Hence, the eigenfunctions $u_n(x)$ have the following asymptotic representation:

$$u_n(x) = O\left(\frac{1}{n}\right) \quad \text{for } x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right].$$

Under some additional conditions, the more exact asymptotic formulas which depend upon the retardation may be obtained. Let us assume that the following conditions are fulfilled:

(a) The derivatives q'(x) and $\Delta''(x)$ exist and are bounded in $\left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$ and have finite limits $q'\left(\frac{\pi}{2} \pm 0\right) = \lim_{x \to \frac{\pi}{2} \pm 0} q'(x)$ and $\Delta''\left(\frac{\pi}{2} \pm 0\right) = \lim_{x \to \frac{\pi}{2} \pm 0} \Delta''(x)$, respectively. (b) $\Delta'(x) \leq 1$ in $\left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$, $\Delta(0) = 0$ and $\lim_{x \to \frac{\pi}{2} + 0} \Delta(x) = 0$.

Using (b), we have

$$x - \Delta(x) \ge 0$$
 for $x \in \left[0, \frac{\pi}{2}\right)$ and $x - \Delta(x) \ge \frac{\pi}{2}$ for $x \in \left(\frac{\pi}{2}, \pi\right]$. (28)

From (25), (27) and (28), we have

$$w_1(\tau - \Delta(\tau), \lambda) = O\left(\frac{1}{s}\right),\tag{29}$$

$$w_2(\tau - \Delta(\tau), \lambda) = O\left(\frac{1}{s}\right). \tag{30}$$

Under the conditions (a) and (b), the following formulas

$$\int_{0}^{\frac{\pi}{2}} q(\tau) \sin \frac{s}{p_1} \left(\frac{\pi}{2} - \tau\right) d\tau = O\left(\frac{1}{s}\right),$$

$$\int_{0}^{\frac{\pi}{2}} q(\tau) \cos \frac{s}{p_1} \left(\frac{\pi}{2} - \tau\right) d\tau = O\left(\frac{1}{s}\right)$$
(31)

can be proved by the same technique in Lemma 3.3.3 in [?]. Putting these expressions into (19), we have

$$0 = \frac{\gamma_1 p_1}{p_2 \delta_1} \sin \frac{s\pi}{2p_1} \sin \frac{s\pi}{2p_2} - \frac{\gamma_2}{\delta_2} \cos \frac{s\pi}{2p_2} - sp_1 \sin \frac{s\pi}{2p_1} \cos \frac{2\pi}{2p_2}$$
$$-\frac{s\gamma_2 p_2}{\delta_2} \cos \frac{s\pi}{2p_1} \sin \frac{s\pi}{2p_2} + O\left(\frac{1}{s}\right),$$

and using $\gamma_1 \delta_2 p_1 = \gamma_2 \delta_1 p_2$ we get

$$0 = \frac{\gamma_2}{\delta_2} \cos s\pi \frac{p_1 + p_2}{2p_1 p_2} - sp_1 \sin s\pi \frac{p_1 + p_2}{2p_1 p_2} + O\left(\frac{1}{s}\right)$$

Dividing by *s* and using $s_n = \frac{2np_1p_2}{p_1+p_2} + \delta_n$, we have

$$\sin\left(n\pi+\frac{\pi(p_1+p_2)\delta_n}{2p_1p_2}\right)=O\left(\frac{1}{n_2}\right).$$

Hence,

$$\delta_n = O\left(\frac{1}{n^2}\right),$$

and finally

$$s_n = \frac{2np_1p_2}{p_1 + p_2} + O\left(\frac{1}{n^2}\right).$$
(32)

Thus, we have proven the following theorem.

Theorem 4. If conditions (a) and (b) are satisfied, then the positive eigenvalues $\lambda_n = s_n^2$ of the problem (1)-(5) have the (32) asymptotic representation for $n \to \infty$.

We now may obtain a sharper asymptotic formula for the eigenfunctions. From (8) and (29),

$$w_1(x,\lambda) = -\frac{p_1}{s}\sin\frac{s}{p_1}x + O\left(\frac{1}{s^2}\right).$$
(33)

Replacing *s* by s_n and using (32), we have

$$u_{1n}(x) = \frac{p_1 + p_2}{2p_2 n} \sin \frac{2p_2 n}{p_1 + p_2} x + O\left(\frac{1}{n^2}\right).$$
(34)

From (16) and (29), we have

$$\frac{w'_1(x,\lambda)}{s} = -\frac{\cos\frac{s}{p_1}x}{s} + O\left(\frac{1}{s^2}\right), \quad x \in \left(0, \frac{\pi}{2}\right].$$
(35)

From (9), (30), (31), (33) and (35), we have

$$w_{2}(x,\lambda) = \left\{ -\frac{\gamma_{1}p_{1}\sin\frac{s\pi}{2p_{1}}}{s\delta_{1}} + O\left(\frac{1}{s^{2}}\right) \right\} \cos\frac{2}{p_{2}}\left(x - \frac{\pi}{2}\right) \\ - \left\{ \frac{\gamma_{2}p_{2}\cos\frac{s\pi}{2p_{1}}}{s\delta_{2}} + O\left(\frac{1}{s^{2}}\right) \right\} \sin\frac{s}{p_{2}}\left(x - \frac{\pi}{2}\right) + O\left(\frac{1}{s^{2}}\right), \\ w_{2}(x,\lambda) = -\frac{\gamma_{2}p_{2}}{s\delta_{2}}\sin s\left(\frac{\pi(p_{2} - p_{1})}{2p_{1}p_{2}} + \frac{x}{2p_{2}}\right) + O\left(\frac{1}{s^{2}}\right).$$

Now, replacing s by s_n and using (32), we have

$$u_{2n}(x) = -\frac{\gamma_2(p_1 + p_2)}{2np_1\delta_2} \sin n \left(\frac{\pi(p_2 - p_1)}{p_1 + p_2} + \frac{p_1x}{p_1 + p_2}\right) + O\left(\frac{1}{n^2}\right).$$
(36)

Thus, we have proven the following theorem.

Theorem 5. If conditions (a) and (b) are satisfied, then the eigenfunctions $u_n(x)$ of the problem (1)-(5) have the following asymptotic representation for $n \to \infty$:

$$u_n(x) = \begin{cases} u_{1n}(x) & \text{for } x \in \left[0, \frac{\pi}{2}\right], \\ u_{2n}(x) & \text{for } x \in \left(\frac{\pi}{2}, \pi\right], \end{cases}$$

where $u_{1n}(x)$ and $u_{2n}(x)$ defined as in (34) and (36), respectively.

4 Conclusion

In this study, first, we obtain asymptotic formulas for eigenvalues and eigenfunctions for discontinuous boundary-value problem with retarded argument which contains a spectral parameter in the boundary condition. Then, under additional conditions (a) and (b) the more exact asymptotic formulas, which depend upon the retardation obtained.

Authors' contributions

Establishment of the problem belongs to AB (advisor). ES obtained the asymptotic formulas for eigenvalues and eigenfunctions. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no completing interests.

Received: 7 June 2011 Accepted: 17 November 2011 Published: 17 November 2011

References

- Norkin, SB: On boundary problem of Sturm-Liouville type for second-order differential equation with retarded argument, Izv. Vysś.Ućebn. Zaved. Matematika. 6(7), 203–214 (1958)
- Norkin, SB: Differential equations of the second order with retarded argument. Translations of Mathematical Monographs 31 (1972). AMS, Providence
- 3. Bellman, R, Cook, KL: Differential-difference Equations. New York Academic Press, London (1963)
- Demidenko, GV, Likhoshvai, VA: On differential equations with retarded argument. Sib Mat Zh. 46, 417–430 (2005). doi:10.1007/s11202-005-0045-7
- 5. Bayramov, A, Calı&kan, S, Uslu, S: Computation of eigenvalues and eigen-functions of a discontinuous boundary value problem with retarded argument. Appl Math Comput. **191**, 592–600 (2007). doi:10.1016/j.amc.2007.02.118
- Fulton, CT: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc R Soc Edinburgh A. 77, 293–308 (1977)
- Mukhtarov, OSH, Kadakal, M, Muhtarov, FS: Eigenvalues and normalized eigenfunctions of discontinuous Sturm-Liouville problem with transmission conditions. Rep Math Phys. 54(1):41–56 (2004). doi:10.1016/S0034-4877(04)80004-1
- Altinisik, N, Kadakal, M, Mukhtarov, OSH: Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary conditions. Acta Math Hungar. 102(1-2), 159–175 (2004)
- 9. Akdoğan, Z, Demirci, M, Mukhtarov, OSH: Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmission conditions. Acta Appl Math. **86**, 329–344 (2005). doi:10.1007/s10440-004-7466-3
- Titeux, I, Yakubov, Y: Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients. Math Models Methods Appl Sci. 7(7), 1035–1050 (1997). doi:10.1142/S0218202597000529

doi:10.1186/1029-242X-2011-113

Cite this article as: Şen and Bayramov: **On calculation of eigenvalues and eigenfunctions of a Sturm-Liouville** type problem with retarded argument which contains a spectral parameter in the boundary condition. *Journal of Inequalities and Applications* 2011 **2011**:113.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com