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Abstract

In this study, a discontinuous boundary-value problem with retarded argument
which contains a spectral parameter in the boundary condition and with
transmission conditions at the point of discontinuity is investigated. We obtained
asymptotic formulas for the eigenvalues and eigenfunctions.
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1 Introduction
Boundary-value problems for differential equations of the second order with retarded

argument were studied in [1-5], and various physical applications of such problems

can be found in [2].

The asymptotic formulas for the eigenvalues and eigenfunctions of boundary pro-

blem of Sturm-Liouville type for second order differential equation with retarded argu-

ment were obtained in [5].

The asymptotic formulas for the eigenvalues and eigenfunctions of Sturm-Liouville

problem with the spectral parameter in the boundary condition were obtained in [6].

In the articles [7-9], the asymptotic formulas for the eigenvalues and eigenfunctions

of discontinuous Sturm-Liouville problem with transmission conditions and with the

boundary conditions which include spectral parameter were obtained.

In this article, we study the eigenvalues and eigenfunctions of discontinuous bound-

ary-value problem with retarded argument and a spectral parameter in the boundary

condition. Namely, we consider the boundary-value problem for the differential equa-

tion

p(x)y′′(x) + q(x)y(x − �(x)) + λy(x) = 0 (1)

on
[
0, π

2

) ∪ (π
2 ,π

]
, with boundary conditions

y(0) = 0, (2)
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y′(π) + λy(π) = 0, (3)

and transmission conditions

γ1y
(π

2
− 0

)
= δ1y

(π

2
+ 0
)
, (4)

γ2y
′
(π

2
− 0

)
= δ2y

′
(π

2
+ 0
)
, (5)

where p(x) = p21 if x ∈ [0, π
2

)
and p(x) = p22 if x ∈ (π

2 ,π
]
, the real-valued function q(x)

is continuous in
[
0, π

2

) ∪ (π
2 ,π

]
and has a finite limit q(

π
2 ± 0) = limx→π

2 ±0q(x), the

real-valued function Δ(x) ≥ 0 continuous in
[
0, π

2

) ∪ (π
2 ,π

]
and has a finite limit

�(π
2 ± 0) = limx→π

2 ±0�(x), x − �(x) ≥ 0, if x ∈ [0, π
2

)
; x − �(x) ≥ π

2 if x ∈ (π
2 ,π

]
; l is

a real spectral parameter; p1, p2, g1, g2, δ1, δ2 are arbitrary real numbers and |gi| + |δi|

≠ 0 for i = 1, 2. Also, g1δ2p1 = g2δ1p2 holds.
It must be noted that some problems with transmission conditions which arise in

mechanics (thermal condition problem for a thin laminated plate) were studied in [10].

Let w1(x, l) be a solution of Equation 1 on [0, π
2 ], satisfying the initial conditions

w1(0,λ) = 0,w′
1(0,λ) = −1. (6)

The conditions (6) define a unique solution of Equation 1 on [0, π
2 ] [2, p. 12].

After defining above solution, we shall define the solution w2 (x, l) of Equation 1 on

[π
2 ,π] by means of the solution w1(x, l) by the initial conditions

w2

(π

2
,λ
)
= γ1δ

−1
1 w1

(π

2
,λ
)
, ω′

2

(π

2
,λ
)
= γ2δ

−1
2 ω′

1

(π

2
,λ
)
. (7)

The conditions (7) are defined as a unique solution of Equation 1 on [π
2 ,π].

Consequently, the function w (x, l) is defined on
[
0, π

2

) ∪ (π
2 ,π

]
by the equality

w(x,λ) =
{

ω1(x,λ), x ∈ [0, π
2

)
,

ω2(x,λ), x ∈ (π
2 ,π

]
is a such solution of Equation 1 on

[
0, π

2

) ∪ (π
2 ,π

]
; which satisfies one of the bound-

ary conditions and both transmission conditions.

Lemma 1. Let w (x, l) be a solution of Equation 1 and l > 0. Then, the following

integral equations hold:

w1(x,λ) = −p1
s
sin

s
p1

x

− 1
s

x∫
0

q(τ )
p1

sin
s

p1
(x − τ )w1(τ − �(τ ),λ)dτ

(
s =

√
λ,λ > 0

)
,

(8)

w2(x,λ) =
γ1

δ1
w1

(π

2
,λ
)
cos

s

p2

(
x − π

2

)
+

γ2p2w′
1(π

2 ,λ)

sδ2
sin

s

p2

(
x − π

2

)
− 1

s

x∫
π/2

q(τ )
p2

sin
s
p2

(x − τ )w2(τ − �(τ ),λ)dτ
(
s =

√
λ,λ > 0

)
.

(9)
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Proof. To prove this, it is enough to substitute − s2

p21
ω1(τ ,λ) − ω′′

1(τ ,λ) and

− s2

p22
ω2(τ ,λ) − ω′′

2(τ ,λ) instead of − q(τ)
p21

ω1(τ − �(τ ),λ) and − q(τ)
p22

ω2(τ − �(τ ),λ) in

the integrals in (8) and (9), respectively, and integrate by parts twice.

Theorem 1. The problem (1)-(5) can have only simple eigenvalues.

Proof. Let λ̃ be an eigenvalue of the problem (1)-(5) and

ũ(x, λ̃) =
{
ũ1(x, λ̃), x ∈ [0, π

2

)
,

ũ2(x, λ̃), x ∈ (π
2 ,π

]
be a corresponding eigenfunction. Then, from (2) and (6), it follows that the determi-

nant

W
[
ũ1(0, λ̃),w1(0, λ̃)

]
=

∣∣∣∣ ũ1(0, λ̃) 0
ũ′
1(0, λ̃) −1

∣∣∣∣ = 0,

and by Theorem 2.2.2 in [2], the functions ũ1(x, λ̃) and w1(x, λ̃) are linearly depen-

dent on [0, π
2 ]. We can also prove that the functions ũ2(x, λ̃) and w2(x, λ̃) are linearly

dependent on [π
2 ,π]. Hence,

ũ1(x, λ̃) = Kiwi(x, λ̃) (i = 1, 2) (10)

for some K1 ≠ 0 and K2 ≠ 0. We must show that K1 = K2. Suppose that K1 ≠ K2.

From the equalities (4) and (10), we have

γ1ũ
(π

2
− 0, λ̃

)
− δ1ũ

(π

2
+ 0, λ̃

)
= γ1ũ1

(π

2
, λ̃
)

− δ1ũ2
(π

2
, λ̃
)

= γ1K1w1

(π

2
, λ̃
)

− δ1K2w2

(π

2
, λ̃
)

= γ1K1δ1γ
−1
1 w2

(π

2
, λ̃
)

− δ1K2w2

(π

2
, λ̃
)

= δ1(K1 − K2)w2

(π

2
, λ̃
)
= 0.

Since δ1 (K1 - K2) ≠ 0, it follows that

w2

(π

2
, λ̃
)
= 0. (11)

By the same procedure from equality (5), we can derive that

w′
2

(π

2
, λ̃
)
= 0. (12)

From the fact that w2(x, λ̃) is a solution of the differential equation (1) on [π
2 ,π] and

satisfies the initial conditions (11) and (12) it follows that w1(x, λ̃) = 0 identically on

[π
2 ,π] (cf. [2, p. 12, Theorem 1.2.1]).

By using we may also find

w1

(π

2
, λ̃
)
= w′

1

(π

2
, λ̃
)
= 0.

From the latter discussions of w2(x, λ̃), it follows that w1(x, λ̃) = 0 identically on[
0, π

2

) ∪ (π
2 ,π

]
. But this contradicts (6), thus completing the proof.
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2 An existance theorem
The function ω(x, l) defined in Section 1 is a nontrivial solution of Equation 1 satisfy-

ing conditions (2), (4) and (5). Putting ω(x, l) into (3), we get the characteristic equa-

tion

F(λ) ≡ w′(π ,λ) + λω(π ,λ) = 0. (13)

By Theorem 1.1, the set of eigenvalues of boundary-value problem (1)-(5) coincides

with the set of real roots of Equation 13. Let q1 = 1
p1

∫ π/2
0 |q(τ )|dτ and

q2 = 1
p2

∫ π

π/2 q(τ )dτ.

Lemma 2. (1) Let λ ≥ 4q21. Then, for the solution w1(x, l) of Equation 8, the follow-

ing inequality holds:∣∣w1(x,λ)
∣∣ ≤

∣∣∣∣p1q1
∣∣∣∣ , x ∈

[
0,

π

2

]
. (14)

(2) Let λ ≥ max
{
4q21, 4q

2
2

}
. Then, for the solution w2 (x, l) of Equation 9, the follow-

ing inequality holds:∣∣w2(x,λ)
∣∣ ≤ 2p1

q1

{∣∣∣∣γ1δ1
∣∣∣∣ + ∣∣∣∣p2γ2p1δ2

∣∣∣∣} , x ∈
[π

2
,π
]
. (15)

Proof. Let B1λ = max[
0,π2

] ∣∣w1(x,λ)
∣∣. Then, from (8), it follows that, for every l > 0,

the following inequality holds:

B1λ ≤
∣∣∣∣p1s

∣∣∣∣ + 1
s
B1λq1.

If s ≥ 2q1, we get (14). Differentiating (8) with respect to x, we have

w′
1(x,λ) = − cos

s

p1
x − 1

p21

x∫
0

q(τ ) cos
s

p1
(x − τ )w1(τ − �(τ ),λ)dτ . (16)

From (16) and (14), it follows that, for s ≥ 2q1, the following inequality holds:

∣∣w′
1(x,λ)

∣∣ ≤
√

s2

p21
+ 1 + 1.

Hence,∣∣w′
1(x,λ)

∣∣
s

≤ 1
q1

. (17)

Let B2λ = max[π
2 ,π

] ∣∣w2(x,λ)
∣∣. Then, from (9), (14) and (17), it follows that, for s ≥

2q1, the following inequalities holds:

B2λ ≤
∣∣p1∣∣
q1

∣∣∣∣γ1δ1
∣∣∣∣ + ∣∣p2∣∣ ∣∣∣∣γ2δ2

∣∣∣∣ 1∣∣q1∣∣ + 1
2q2

B2λq2,

B2λ ≤ 2
∣∣p1∣∣
q1

{∣∣∣∣γ1δ1
∣∣∣∣ + ∣∣∣∣p2γ2p1δ2

∣∣∣∣} .
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Hence, if λ ≥ max
{
4q21, 4q

2
2

}
, we get (15).

Theorem 2. The problem (1)-(5) has an infinite set of positive eigenvalues.

Proof. Differentiating (9) with respect to x, we get

w′
2(x,λ) = − sγ1

p2δ1
w1

(π

2
,λ
)
sin

s

p2

(
x − π

2

)
+

γ2w′
1(π

2 ,λ)

δ2
cos

s

p2

(
x − π

2

)
− 1

p22

x∫
π/2

q(τ ) cos
s
p2

(x − τ )w2(τ − �(τ ),λ)dτ .
(18)

From (8), (9), (13), (16) and (18), we get

− sγ1
p2δ1

⎛⎜⎜⎝−p1
s
sin

sπ

2p1
− 1

sp1

π
2∫

0

q(τ ) sin
s

p1

(π

2
− τ

)
ω1(τ − �(τ ),λ)dτ

⎞⎟⎟⎠
× sin

sπ
2p2

+
γ2

δ2

⎛⎜⎜⎝− cos
sπ
2p1

− 1

p21

π
2∫

0

q(τ ) cos
s
p1

(π

2
− τ

)
ω1(τ − �(τ ),λ)dτ

⎞⎟⎟⎠
× cos

sπ
2p2

− 1

p22

π∫
π/2

q(τ ) cos
s
p2

(π − τ )ω2(τ − �(τ ),λ)dτ

+λ

⎛⎜⎜⎝γ1

δ1

⎡⎢⎢⎣−p1
s
sin

sπ
2p1

− 1
sp1

π
2∫

0

q(τ ) sin
s
p1

(π

2
− τ

)
ω1(τ − �(τ ),λ)dτ

⎤⎥⎥⎦
× cos

sπ

2p2

+
γ2p2
δ2s

⎡⎢⎢⎣− cos
sπ
2p1

− 1

p21

π
2∫

0

q(τ ) cos
s
p1

(π

2
− τ

)
ω1(τ − �(τ ),λ)dτ

⎤⎥⎥⎦

× sin
sπ

2p2
− 1

sp2

π∫
π
2

q(τ ) sin
s

p2
(π − τ )ω2(τ − �(τ ),λ)dτ

⎞⎟⎟⎠ = 0.

(19)

Let l be sufficiently large. Then, by (14) and (15), Equation 19 may be rewritten in

the form

s sin sπ
p1 + p2
2p1p2

+O(1) = 0. (20)

Obviously, for large s, Equation 20 has an infinite set of roots. Thus, the theorem is

proved.

3 Asymptotic formulas for eigenvalues and eigenfunctions
Now, we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the

following, we shall assume that s is sufficiently large. From (8) and (14), we get
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ω1(x,λ) = O(1) on
[
0,

π

2

]
. (21)

From (9) and (15), we get

ω2(x,λ) = O(1) on
[π

2
,π
]
. (22)

The existence and continuity of the derivatives ω′
1s(x,λ) for 0 ≤ x ≤ π

2 , |λ| < ∞, and

ω′
2s(x,λ) for

π
2 ≤ x ≤ π , |λ| < ∞, follows from Theorem 1.4.1 in [?].

ω′
1s(x,λ) = O(1), x ∈

[
0,

π

2

]
and ω′

2s(x,λ) = O(1), x ∈
[π

2
,π
]
. (23)

Theorem 3. Let n be a natural number. For each sufficiently large n, there is exactly

one eigenvalue of the problem (1)-(5) near p21p
2
2

(p1+p2)
2 (2n + 1)2.

Proof. We consider the expression which is denoted by O(1) in Equation 20. If for-

mulas (21)-(23) are taken into consideration, it can be shown by differentiation with

respect to s that for large s this expression has bounded derivative. It is obvious that

for large s the roots of Equation 20 are situated close to entire numbers. We shall

show that, for large n, only one root (20) lies near to each 4n2p21p
2
2

(p1+p2)
2. We consider the

function φ(s) = sin sπ p1+p2
2p1p2

+O(1). Its derivative, which has the form

φ′(s) = sin sπ p1+p2
2p1p2

+ sπ p1+p2
2p1p2

cos sπ p1+p2
2p1p2

+O(1), does not vanish for s close to n for suf-

ficiently large n. Thus, our assertion follows by Rolle’s Theorem.

Let n be sufficiently large. In what follows, we shall denote by λn = s2n the eigenvalue

of the problem (1)-(5) situated near 4n2p21p
2
2

(p1+p2)
2. We set sn = 2np1p2

p1+p2
+ δn. From (20), it fol-

lows that δn = O
( 1
n

)
. Consequently

sn =
2np1p2
p1 + p2

+O
(
1
n

)
. (24)

The formula (24) makes it possible to obtain asymptotic expressions for eigenfunc-

tion of the problem (1)-(5). From (8), (16) and (21), we get

ω1(x,λ) = O
(
1
s

)
, (25)

ω′
1(x,λ) = O(1). (26)

From (9), (22), (25) and (26), we get

ω2(x,λ) = O
(
1
s

)
. (27)

By putting (24) in (25) and (27), we derive that

u1n = w1(x,λn) = O
(
1
n

)
,

u2n = w2(x,λn) = O
(
1
n

)
.
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Hence, the eigenfunctions un(x) have the following asymptotic representation:

un(x) = O
( 1
n

)
for x ∈ [0, π

2

) ∪ (π
2 ,π

]
.

Under some additional conditions, the more exact asymptotic formulas which

depend upon the retardation may be obtained. Let us assume that the following condi-

tions are fulfilled:

(a) The derivatives q’(x) and Δ″(x) exist and are bounded in
[
0, π

2

) ∪ (π
2 ,π

]
and have

finite limits q
′(π

2 ± 0) = limx→ π
2 ±0q

′(x) and �′′(π
2 ± 0) = limx→ π

2 ±0�
′′(x), respectively.

(b) Δ’(x) ≤ 1 in
[
0, π

2

) ∪ (π
2 ,π

]
, Δ(0) = 0 and limx→ π

2 +0�(x) = 0.

Using (b), we have

x − �(x) ≥ 0 for x ∈
[
0,

π

2

)
and x − �(x) ≥ π

2
for x ∈

(π

2
,π
]
. (28)

From (25), (27) and (28), we have

w1(τ − �(τ ),λ) = O
(
1
s

)
, (29)

w2(τ − �(τ ),λ) = O
(
1
s

)
. (30)

Under the conditions (a) and (b), the following formulas

π
2∫

0

q(τ ) sin
s

p1

(π

2
− τ

)
dτ = O

(
1
s

)
,

π
2∫

0

q(τ ) cos
s
p1

(π

2
− τ

)
dτ = O

(
1
s

) (31)

can be proved by the same technique in Lemma 3.3.3 in [?]. Putting these expres-

sions into (19), we have

0 =
γ1p1
p2δ1

sin
sπ

2p1
sin

sπ

2p2
− γ2

δ2
cos

sπ

2p2
− sp1 sin

sπ

2p1
cos

2π

2p2

− sγ2p2
δ2

cos
sπ

2p1
sin

sπ

2p2
+O

(
1
s

)
,

and using g1δ2p1 = g2δ1p2 we get

0 =
γ2

δ2
cos sπ

p1 + p2
2p1p2

− sp1 sin sπ
p1 + p2
2p1p2

+O
(
1
s

)
.

Dividing by s and using sn = 2np1p2
p1+p2

+ δn, we have

sin
(
nπ +

π(p1 + p2)δn
2p1p2

)
= O

(
1
n2

)
.

Hence,

δn = O
(

1
n2

)
,
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and finally

sn =
2np1p2
p1 + p2

+O
(

1
n2

)
. (32)

Thus, we have proven the following theorem.

Theorem 4. If conditions (a) and (b) are satisfied, then the positive eigenvalues

λn = s2n of the problem (1)-(5) have the (32) asymptotic representation for n ® ∞.

We now may obtain a sharper asymptotic formula for the eigenfunctions. From (8)

and (29),

w1(x,λ) = −p1
s
sin

s
p1

x +O
(
1
s2

)
. (33)

Replacing s by sn and using (32), we have

u1n(x) =
p1 + p2
2p2n

sin
2p2n
p1 + p2

x +O
(

1
n2

)
. (34)

From (16) and (29), we have

w′
1(x,λ)
s

= −
cos s

p1
x

s
+O

(
1
s2

)
, x ∈

(
0,

π

2

]
. (35)

From (9), (30), (31), (33) and (35), we have

w2(x,λ) =

{
−

γ1p1 sin sπ
2p1

sδ1
+O

(
1
s2

)}
cos

2
p2

(
x − π

2

)
−
{

γ2p2 cos sπ
2p1

sδ2
+O

(
1
s2

)}
sin

s
p2

(
x − π

2

)
+O

(
1
s2

)
,

w2(x,λ) = −γ2p2
sδ2

sin s
(

π(p2 − p1
2p1p2

+
x

2p2

)
+O

(
1
s2

)
.

Now, replacing s by sn and using (32), we have

u2n(x) = −γ2(p1 + p2)
2np1δ2

sin n
(

π(p2 − p1)
p1 + p2

+
p1x

p1 + p2

)
+O

(
1
n2

)
. (36)

Thus, we have proven the following theorem.

Theorem 5. If conditions (a) and (b) are satisfied, then the eigenfunctions un(x) of

the problem (1)-(5) have the following asymptotic representation for n ® ∞:

un(x) =
{
u1n(x) for x ∈ [0, π

2

)
,

u2n(x) for x ∈ (π
2 ,π

]
,

where u1n(x) and u2n(x) defined as in (34) and (36), respectively.

4 Conclusion
In this study, first, we obtain asymptotic formulas for eigenvalues and eigenfunctions for

discontinuous boundary-value problem with retarded argument which contains a spec-

tral parameter in the boundary condition. Then, under additional conditions (a) and (b)

the more exact asymptotic formulas, which depend upon the retardation obtained.
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