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1. Introduction and preliminaries

To unify the theory of continuous and discrete dynamic systems, in 1990 Hilger [16]
proposed the study of dynamic systems on a time scale and developed the calculus for
functions on a time scale (i.e., any closed subset of reals). The purpose of this paper
is to establish some complements of Cauchy’s inequality on time scales, which extend
some results of Cargo [6], Diaz, Goldman, and Metcalf [7–11], Goldman [12], Greub
and Rheinboldt [13], Kantorovich [17], Schweitzer [29], Pólya and Szegö [26], and so
forth. For other related results, we refer to [2, 3, 14, 15, 18–20, 23–27, 30, 31]. To do this,
we briefly introduce the time scale calculus as follows.

Definition 1.1. A time scale T is a closed subset of the set R of all real numbers. Assume
throughout this paper that T has the topology that it inherits from the standard topology
on R. Let t ∈ T, if t < supT, define the forward jump operator σ : T→ T by

σ(t) := inf{τ ∈ T : τ > t} (1.1)

and if t > inf T, define the backward jump operator ρ : T→ T by

ρ(t) := sup{τ ∈ T : τ < t}. (1.2)

The points {t} of a time scale T can be classified into right-scattered, right-dense, left-
scattered, left-dense based on σ(t) > t, σ(t)= t, ρ(t) < t, and ρ(t)= t, respectively. More-
over, define the time scale Tκ as follows:

Tκ =
⎧
⎨

⎩

T\(ρ(supT), supT) if supT <∞,

T if supT=∞.
(1.3)
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2 Some complements of Cauchy’s inequality on time scales

Throughout this paper, suppose that
(a) R= (−∞,∞);
(b) T is a time scale;
(c) an interval means the intersection of a real interval with the given time scale.

Definition 1.2. A mapping f : T→R is called rd-continuous if the following two condi-
tions hold:

(a) f is continuous at each right-dense point or maximal element of T,
(b) the left-sided limit lims→t− f (s)= f (t−) exists at each left-dense point t ∈ T.

Definition 1.3. Assume that x : T→R and t ∈ T (if t=supT, assume t is not left-scattered).
Then x is called delta-differentiable at t ∈ T if there exists a θ ∈R such that for any given
ε > 0, there is a neighborhood U of t such that for all s∈U ,

∣
∣x
(
σ(t)
)− x(s)− θ

(
σ(t)− s

)∣
∣≤ ε

∣
∣σ(t)− s

∣
∣. (1.4)

In this case, θ is called the delta-derivative of x at t ∈ T and denote it by θ = xΔ(t). If x is
delta-differentiable at each point of T, say that x is delta-differentiable on T.

It can be shown that if x : T→R is continuous at t ∈ T, then

xΔ(t)= x
(
σ(t)
)− x(t)

σ(t)− t
if t is right-scattered, (1.5)

xΔ(t)= lim
s→t

x(t)− x(s)
t− s

if t is right-dense. (1.6)

In this paper, let

Crd
(
T,R
)
:= { f | f : T−→R is a rd-continuous function}. (1.7)

Definition 1.4. Let f : Tk →R be a mapping. Then the mapping F : T→R is an antideriv-
ative of f on T if it is delta-differentiable on T and FΔ(t)= f (t) for t ∈ Tk.

Definition 1.5. If f ∈ Crd([a,b],R) has an antiderivative F, then define the (Cauchy) in-
tegral of f by

∫ t

s
f (r)Δr = F(t)−F(s), (1.8)

for any s, t ∈ [a,b].
It follows from Theorem 1.94 of Bohner and Peterson [4] that every rd-continuous

function has an antiderivative.
For further information concerning time scales theory, refer to [4, 5, 21].

2. Main results

First, we state the well-known Cauchy inequality on a time scale T, see [1, 4].
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Theorem 2.1 (Cauchy’s inequality). Let p, f ,g ∈ Crd
(
[a,b],R

)
with p ≥ 0 on [a,b]. Then

(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

≥
(∫ b

a
p(x) f (x)g(x)Δx

)2

. (R1)

Remark 2.2. Cauchy’s inequality has the following variants.

(a) Replacing f (x) and g(x) by
√

f 2(x) + g2(x) and f (x)g(x)/
√

f 2(x) + g2(x) in (R1),
respectively, we obtain

[∫ b

a
p(x)

(
f 2(x) + g2(x)

)
Δx
][∫ b

a

p(x) f 2(x)g2(x)
f 2(x) + g2(x)

Δx
]

≥
(∫ b

a
p(x) f (x)g(x)Δx

)2

.

(2.1)

(b) Let f g ≥ 0 and f �= 0 on [a,b]. Replacing f (x) and g(x) by
√

g(x)/ f (x) and
√

f (x)g(x) in (R1), respectively, then

(∫ b

a
p(x)

g(x)
f (x)

Δx
)(∫ b

a
p(x) f (x)g(x)Δx

)

≥
(∫ b

a
p(x)g(x)Δx

)2

. (2.2)

(c) Suppose that g(x) > 0 on [a,b]. Let f (x) and g(x) be replaced by f (x)/
√

g(x) and
√

g(x) in (R1), respectively. Then

(∫ b

a

p(x) f 2(x)
g(x)

Δx
)(∫ b

a
p(x)g(x)Δx

)

≥
(∫ b

a
p(x) f (x)Δx

)2

. (2.3)

Remark 2.3. Let p, f ,g ∈ Crd([a,b],[0,∞)) and In =
∫ b
a p(x)( f (x))ng(x)Δx. Then it fol-

lows from Cauchy’s inequality (R1) that

I2n−1 ≤ InIn−2 (2.4)

for any integer n≥ 2.
Next, we state and prove some complements of Cauchy’s inequality on time scales.

Theorem 2.4. Suppose that p, f ,g ∈ Crd([a,b],R), p(x)≥ 0, and f (x) �= 0 on [a,b] with
∫ b
a p(x) f (x)g(x)Δx �= 0. Ifm,M ∈R are such that

m≤ g(x)
f (x)

≤M (2.5)

for x ∈ [a,b], then the following two statements hold:

∫ b

a
p(x)g2(x)Δx+Mm

∫ b

a
p(x) f 2(x)Δx

≤ (M +m)
∫ b

a
p(x) f (x)g(x)Δx

≤ |M +m|
√
√
√
(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

(R2)



4 Some complements of Cauchy’s inequality on time scales

with equality in the first inequality sign “≤” if and only if g(x)=mf (x) or g(x)=M f (x)
on [a,b].

1
4

(√
m

M
+

√

M

m

)2

= (M +m)2

4Mm
≥
(∫ b

a p(x) f 2(x)Δx
)(∫ b

a p(x)g2(x)Δx
)

(∫ b
a p(x) f (x)g(x)Δx

)2 ≥ 1, (R3)

if Mm> 0, that is,

1
4

(√
m

M
−
√

M

m

)2

≥
(∫ b

a p(x) f 2(x)Δx
)(∫ b

a p(x)g2(x)Δx
)

−
(∫ b

a p(x) f (x)g(x)Δx
)2

(∫ b
a p(x) f (x)g(x)Δx

)2 ≥ 0

(2.6)

if Mm> 0.

Proof. It follows from (2.5) that

p(x)
[
g(x)
f (x)

−m
][

M− g(x)
f (x)

]

f 2(x)≥ 0 on [a,b]. (2.7)

Thus,

∫ b

a
Mp(x) f (x)g(x)Δx−

∫ b

a
p(x)g2(x)Δx−Mm

∫ b

a
p(x) f 2(x)Δx

+m
∫ b

a
p(x) f (x)g(x)Δx ≥ 0.

(2.8)

This inequality and (R1) imply that (R2) holds.
On the other hand, it follows fromMm> 0 and

[(∫ b

a
p(x)g2(x)Δx

)1/2

−
(

Mm
∫ b

a
p(x) f 2(x)Δx

)1/2
]2

≥ 0 (2.9)

that

(M +m)2
(∫ b

a
p(x) f (x)g(x)Δx

)2

≥ 4Mm
∫ b

a
p(x) f 2(x)Δx

∫ b

a
p(x)g2(x)Δx. (2.10)

This and (R2) imply that (R3) holds. This completes the proof. �

Remark 2.5. Clearly, (R2) implies (R3) ifMm> 0. Hence (R2) and (R3) are equivalent.
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Remark 2.6. Under the conditions of Theorem 2.4, if λ∈ (0,1) and Mm> 0, then it fol-
lows from (R2) and the arithmetric-geometric mean inequality that

(
1

1− λ

∫ b

a
p(x)g2(x)Δx

)1−λ(Mm

λ

∫ b

a
p(x) f 2(x)Δx

)λ

≤
∫ b

a
p(x)g2(x)Δx+Mm

∫ b

a
p(x) f 2(x)Δx

≤ (M +m)
∫ b

a
p(x) f (x)g(x)Δx,

(2.11)

which implies that

(∫ b

a
p(x)g2(x)Δx

)1−λ(∫ b

a
p(x) f 2(x)Δx

)λ

≤ λλ(1− λ)1−λ
M +m

(Mm)λ

∫ b

a
p(x) f (x)g(x)Δx.

(r0)

Letting λ→ 0+ in inequality (r0), we get

∫ b

a
p(x)g2(x)Δx ≤ (M +m)

∫ b

a
p(x) f (x)g(x)Δx. (r1)

Obviously, (r1) is weaker than the inequality

∫ b

a
p(x)g2(x)Δx ≤

∫ b

a
Mp(x) f (x)g(x)Δx ifm< 0, (2.12)

and (r1) is also weaker than the inequality

∫ b

a
p(x)g2(x)Δx ≤

∫ b

a
mp(x) f (x)g(x)Δx if M < 0. (2.13)

Letting λ→ 1− in inequality (r0), we get

∫ b

a
p(x) f 2(x)Δx ≤

(
1
M

+
1
m

)∫ b

a
p(x) f (x)g(x)Δx (2.14)

=
∫ b

a
p(x) f (x)

g(x)
m

Δx+
∫ b

a
p(x) f (x)

g(x)
M

Δx. (2.15)

Evidently, it follows from (2.5) that

∫ b

a
p(x) f 2(x)Δx ≤

∫ b

a
p(x) f (x)

g(x)
m

Δx ifm> 0,

∫ b

a
p(x) f 2(x)Δx ≤

∫ b

a
p(x) f (x)

g(x)
M

Δx ifM < 0.

(2.16)

Remark 2.7. The inequality (R2) extends [6, Theorems 1 and 2] and inequality (3.3) in
Makai [22].
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Remark 2.8. Let F ∈ Crd([a,b],(0,∞)). If f = F−1/2, g = F1/2, then (R2) is reduced to

∫ b

a
p(x)F(x)Δx+Mm

∫ b

a

p(x)
F(x)

Δx ≤ (M +m)
∫ b

a
p(x)Δx, (R∗2 )

which extends Rennie’s result [28].
Conversely, if we take F = g/ f , p = p f g, then (R∗2 ) is reduced to (R2). Thus, (R2) and

(R∗2 ) are equivalent if F ∈ Crd
(
[a,b],(0,∞)

)
.

Remark 2.9. Let F ∈ Crd([a,b],(0,∞)). If f = F−1/2, g = F1/2, then (R3) is reduced to

(M +m)2

4Mm
≥
∫ b
a p(x)F(x)Δx

∫ b
a (p(x)/F(x))Δx

(∫ b
a p(x)Δx

)2 ≥ 1, (R∗3 )

which generalizes some results in [17, 29, 31]. Conversely, if F = g/ f , p = p f g, then (R∗3 )
is reduced to (R3). Hence, (R3) and (R∗3 ) are equivalent.

Moreover, if p(x)= 1, then (R3) is reduced to

(M +m)2

4Mm
≥
∫ b
a f 2(x)Δx

∫ b
a g

2(x)Δx
(∫ b

a f (x)g(x)Δx
)2 ≥ 1, (R∗∗3 )

which extends a result in [26]. Obviously, (R3) and (R∗∗3 ) are also equivalent if f and g
are replaced by

√
p f and

√
pg, respectively, in (R∗∗3 ).

Remark 2.10. Let p(x) > 0 on [a,b]. If g(x) is replaced by f (x)/p(x), then (R3) is reduced
to

(M +m)2

4Mm
≥
(∫ b

a p(x) f 2(x)Δx
)(∫ b

a

(
f 2(x)/p(x)

)
Δx
)

(∫ b
a f 2(x)Δx

)2 ≥ 1. (2.17)

Similarly, we can prove the following.

Theorem 2.11. Let p, f ,g ∈ Crd([a,b],R) with p(x)≥ 0 on [a,b]. Suppose that there exist
four constants h,H ,m,M ∈R such that

(
M f (g)−hg(x)

)(
Hg(x)−mf (x)

)≥ 0 (2.18)

on [a,b]. Then

Mm
∫ b

a
p(x) f 2(x)Δx+Hh

∫ b

a
p(x)g2(x)Δx

≤ (HM +hm)
∫ b

a
p(x) f (x)g(x)Δx

≤ |HM +hm|
(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

.

(2.19)
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Moreover, if HMhm > 0, then

(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

≤
(
HM +hm

4HMhm

)2(∫ b

a
p(x) f (x)g(x)Δx

)2

.

(2.20)

Hence
√

Mm

Hh

(∫ b

a
p(x) f 2(x)Δx

)

+

√

Hh

Mm

(∫ b

a
p(x)g2(x)Δx

)

≤
⎛

⎝

√

HM

hm
+

√

hm

HM

⎞

⎠

(∫ b

a
p(x) f (x)g(x)Δx

)

.

(2.21)

Remark 2.12. Theorem 2.11 extends a result in [20, page 18].

The following is an extension of [24, Theorem 1, page 122].

Theorem 2.13. Let p, f ,g ∈ Crd([a,b],[0,∞)). Suppose that there exist six constants α,β,h,
H ,m,M ∈ (0,∞) such that h ≤ f (x) ≤H , m ≤ g(x)≤M on [a,b], 1 > α ≥ β > 0 and α+
β = 1. Then the following two inequalities hold:

(∫ b

a
p(x) f (x)Δx

)α(∫ b

a

p(x)
f (x)

Δx
)β

≤ αH +βh

(Hh)β

(∫ b

a
p(x)Δx

)

, (R4)

(∫ b

a
p(x) f 2(x)Δx

)α(∫ b

a
p(x)g2(x)Δx

)β

≤ αHM +βhm

(Hh)β(Mm)α

(∫ b

a
p(x) f (x)g(x)Δx

)

. (R5)

Proof. Since (α f (x)−βh)( f (x)−H)≤ 0 on [a,b], we have

α f 2(x)− (αH +βh) f (x) +βHh≤ 0. (2.22)

Thus,

αp(x) f (x) +βHh
p(x)
f (x)

≤ (αH +βh)p(x). (R6)

A direct consequence of the foregoing inequality with appeal to the arithmetric-geometric
mean inequality leads to

(∫ b

a
p(x) f (x)Δx

)α(∫ b

a

p(x)
f (x)

Δx
)β

= 1
(Hh)β

(∫ b

a
p(x) f (x)Δx

)α(

Hh
∫ b

a

p(x)
f (x)

)β

≤ 1
(Hh)β

(

α
∫ b

a
p(x) f (x)Δx+βHh

∫ b

a

p(x)
f (x)

Δx
)

≤ αH +βh

(Hh)β

(∫ b

a
p(x)Δx

)

.

(2.23)

Thus, (R4) holds.
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Replacing p(x) and f (x) by p(x) f (x)g(x) and f (x)/g(x) in (R4), respectively, and
using h/M ≤ f (x)/g(x)≤H/m, we obtain

(∫ b

a
p(x) f 2(x)Δx

)α(∫ b

a
p(x)g2(x)Δx

)β

≤ αHM +βhm

(Hh)β(Mm)α

(∫ b

a
p(x) f (x)g(x)Δx

)

.

(2.24)

Hence, (R5) holds. �

Remark 2.14. Let p, f ,g ∈ Crd([a,b],R) with p(x) ≥ 0 on [a,b]. Suppose that there are
α,β,m,M ∈R such that 0 < β ≤ α < 1, α+β = 1, and

m≤ g(x)
f (x)

≤M on [a,b]. (2.25)

Replacing h,H and f (x) bym,M and g(x)/ f (x) in (R6), respectively, and then integrating
the resulting inequality from a to b, we obtain

α
∫ b

a
p(x)g2(x)Δx+βMm

∫ b

a
p(x) f 2(x)Δx ≤ (βm+αM)

∫ b

a
p(x) f (x)g(x)Δx, (2.26)

which is an extension of inequality (R2).

Remark 2.15. Clearly, (R4) and (R5) are equivalent. In fact, let f 2(x) = F(x), g2(x) =
1/F(x), where F ∈ Crd([a,b],(0,∞)). If 0 < k ≤ F(x)≤ K on [a,b], then

h :=
√
k ≤ f (x)≤√K :=H ,

m := 1√
K
≤ g(x)≤ 1√

k
:=M.

(2.27)

Thus, (R5) is reduced to (R4). Similarly, (R4) is reduced to (R5). Hence, (R4) and (R5) are
equivalent.

Remark 2.16. Let α= β = 1/2. Then (R5) is reduced to

(HM +hm)2

4HMhm
≥
(∫ b

a p(x) f 2(x)Δx
)(∫ b

a p(x)g2(x)Δx
)

(∫ b
a p(x) f (x)g(x)Δx

)2 ≥ 1, (R∗∗∗3 )

which is an extension of a result in Greub and Rheinboldt [13], see also [3, 23, 24]. In
fact, (R3) and (R∗∗∗3 ) are equivalent.

The following is an example of the presented theory with T= Z.
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Remark 2.17. Let pi ≥ 0, 0 < h≤ ai ≤H , 0 <m≤ bi ≤M for i= 1,2, . . . ,n. If 1 > α≥ β > 0
with α+β = 1, then (R3), (R4) and (R∗∗∗3 ) are reduced to

( n∑

i=1
piai

)α( n∑

i=1

pi
ai

)β

≤ αH +βh

(Hh)β

( n∑

i=1
pi

)

, (a)

( n∑

i=1
pia

2
i

)α( n∑

i=1
pib

2
i

)β

≤ αHM +βhm

(Hh)β(Mm)α

( n∑

i=1
piaibi

)

, (b)

1
4

(√

HM

hm
+

√

hm

HM

)2

= (HM +hm)2

4HMhm
≥
(∑n

i=1 pia
2
i

)(∑n
i=1 pib

2
i

)

(∑n
i=1 piaibi

)2 , (c)

respectively (see [24, pages 121 and 122]). Inequality (c) generalizes some results of [13,
16].

If α= β = 1/2, then (a), (b) are reduced to

( n∑

i=1
ai

)( n∑

i=1

1
ai

)

≤ (H +h)2

4Hh
n2 (Schweitzer [29]), (a∗)

( n∑

i=1
piai

)( n∑

i=1

pi
ai

)

≤ (H +h)2

4Hh

( n∑

i=1
pi

)

(Kantorovich [17]), (a∗∗)

n∑

i=1
a2i

n∑

i=1
b2i ≤

HM +hm

4HMhm

( n∑

i=1
aibi

)2

(Pólya and Szegö [26]). (b∗)

3. More results

In this section, we give some inequalities on time scales which extend some results in
[23, 27, 31]. To do this, let f ,g ∈ Crd([a,b],R) and p ∈ Crd([a,b],[0,∞)), we define the
operator Tp( f ,g) as follows:

Tp( f ,g) := 1
2

∫ b

a

∫ b

a
p(x)p(t)

(
f (x)− f (t)

)(
g(x)− g(t)

)
ΔxΔt. (3.1)

In fact,

Tp( f ,g)=
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

−
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]

(3.2)

and Tp( f , f ) ≥ 0. Invoking (3.1) and Cauchy’s inequality (R1) yields the following in-
equality

[
Tp( f ,g)

]2 ≤ Tp( f , f )Tp(g,g). (3.3)
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Remark 3.1. It follows from (3.3) that

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

−
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

≤
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

−
(∫ b

a
p(x) f (x)Δx

)2
]

×
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

−
(∫ b

a
p(x)g(x)Δx

)2
]

,

(3.4)

that is,

(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f (x)g(x)Δx

)2

− 2
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)g(x)Δx

)2

≤
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

−
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g(x)Δx

)2

−
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)g(x)Δx

)2

,

(3.5)

which implies that

(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

−
(∫ b

a
p(x) f (x)g(x)Δx

)2

≥ 1
∫ b
a p(x)Δx

[(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)2

+
(∫ b

a
p(x)g2(x)Δx

)(∫ b

a
p(x) f (x)Δx

)2

− 2
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)]

.

(R7)
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It follows from the arithmetric-geometric mean inequality that the right-hand side of
inequality (R7) is greater than or equal to

1
∫ b
a p(x)Δx

[

2
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

×
√
√
√
(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

− 2
(∫ b

a
p(x) f (x)g(x)Δx

)(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]

= 2
∫ b
a p(x)Δx

(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

×
[(∫ b

a
p(x) f (x)g(x)Δx

)

−
(∫ b

a
p(x) f (x)g(x)Δx

)]

= 0.

(3.6)

This means (R7) is stronger than inequality (R1).

Theorem 3.2. Let p, f ,g ∈ Crd([a,b],[0,∞)).
(a) If there exist four constants H ,h,M,m ∈ R such that [Hg(x)−mf (x)][M f (x)−

hg(x)]≥ 0 on [a,b], then

(HM +hm)
∫ b

a
p(x) f (x)g(x)Δx ≥Hh

∫ b

a
p(x)g2(x)Δx+Mm

∫ b

a
p(x) f 2(x)Δx. (3.7)

(b) If there exist four constantsH ,h,M,m∈R such that for all x, t∈[a,b] with [Hg(x)−
mf (t)][M f (t)−hg(x)]≥ 0, then

(HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

≥Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

.

(3.8)

(c) If Hh > 0 andMm> 0, then

(HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

≥Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

.

(3.9)

(d) If Hh > 0 andMm> 0, then

(HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

≥Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

.

(3.10)
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Proof

Case (a). It follows from the assumption that

p(x)
(
Hg(x)−m f (x)

)(
M f (x)−hg(x)

)≥ 0 on [a,b], (3.11)

which implies that

(HM +hm)p(x) f (x)g(x)≥Hhp(x)g2(x) +Mmp(x) f 2(x) on [a,b]. (3.12)

Thus,

(HM +hm)
∫ b

a
p(x) f (x)g(x)Δx ≥Hh

∫ b

a
p(x)g2(x)Δx+Mm

∫ b

a
p(x) f 2(x)Δx. (3.13)

Case (b). It follows from the assumption that for x, t ∈ [a,b],

p(x)p(t)
(
Hg(x)−m f (t)

)(
M f (t)−hg(x)

)≥ 0, (3.14)

which implies that

HMp(x)p(t) f (t)g(x) +hmp(x)p(t) f (t)g(x)

≥Hhp(x)p(t)g2(x) +Mmp(x)p(t) f 2(t).
(3.15)

Therefore,

(HM +hm)
(∫ b

a
p(x)g(x)Δx

)(∫ b

a
p(t) f (t)Δt

)

≥Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

.

(3.16)

Cases (c) and (d). It follows from Cauchy’s inequality (R1) that

(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≥
(∫ b

a
p(x) f (x)Δx

)2

,
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

≥
(∫ b

a
p(x)g(x)Δx

)2

.

(3.17)

Combining (a), (b), and the preceding two inequalities, we see that

(HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

≥Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≥Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

.

(3.18)

This completes the proof of (c).
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Furthermore,

(HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

≥Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≥Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

.

(3.19)

Hence, (d) holds. �

Remark 3.3. It follows from (a) of Theorem 3.2 that

− (HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≤ 0,

(3.20)

hence

− (HM +hm)Tp( f ,g) +Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≤ (HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

,

(3.21)

where Tp( f ,g) is defined as in (3.1). The foregoing inequality is stronger than Theorem
3.2(b). Hence, by Cauchy’s inequality,

− (HM +hm)Tp( f ,g) +Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

≤ (HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

.

(R8)

Remark 3.4. If HMhm > 0, then it follows from (a) of Theorem 3.2 that

(HM +hm)
(∫ b

a
p(x) f (x)g(x)Δx

)

≥ 2

√
√
√
HMhm

(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

.

(3.22)
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Moreover, if
∫ b
a p(x) f (x)g(x)Δx > 0, then

(HM +hm)2

4HMhm
= 1

4

(
√

HM

hm
+

√

hm

HM

)2 ≥
(∫ b

a p(x) f 2(x)Δx
)(∫ b

a p(x)g2(x)Δx
)

(∫ b
a p(x) f (x)g(x)Δx

)2 .

(3.23)

This is a generalized Cauchy’s inequality.

Remark 3.5. It follows from (b) of Theorem 3.2 that

(HM +hm)2
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)g(x)Δx

)2

≥H2h2
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x)g2(x)Δx

)2

+M2m2
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f 2(x)Δx

)2

+ 2HMhm
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

≥ 4HMhm
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

.

(3.24)

Hence, if HMhm > 0, then

(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

≤ (HM +hm)2

4HMhm

(∫ b
a p(x) f (x)Δx

∫ b
a p(x)g(x)Δx

∫ b
a p(x)Δx

)2

.

(3.25)

Remark 3.6. It follows from (b) of Theorem 3.2 that

− (HM +hm)
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)

+Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≤ 0,

(3.26)
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hence

(HM +hm)
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

−
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]

+Hh
(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+Mm
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

≤ (HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

.

(3.27)

Then by Cauchy’s inequality (R1),

(HM +hm)Tp( f ,g) +Hh
(∫ b

a
p(x)g(x)Δx

)2

+Mm
(∫ b

a
p(x) f (x)Δx

)2

≤ (HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

,

(R9)

where Tp( f ,g) is defined as (3.1).

Remark 3.7. If HMhm > 0, then it follows from (c) of Theorem 3.2 that

(HM +hm)
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

≥ 2

√
√
√
HMhm

(∫ b

a
p(x)g(x)Δx

)2(∫ b

a
p(x) f (x)Δx

)2

.

(3.28)

Hence

1
2

⎛

⎝

√

HM

hm
+

√

hm

HM

⎞

⎠= HM +hm

2
√
HMhm

≥
(∫ b

a p(x) f (x)Δx
)(∫ b

a p(x)g(x)Δx
)

(∫ b
a p(x)Δx

)(∫ b
a p(x) f (x)g(x)Δx

) . (3.29)

Theorem 3.8. Let p, f ,g ∈ Crd([a,b],[0,∞)). Then
(a)

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]

×
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)g(x)Δx

)2
]

≥
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

.

(3.30)

Moreover, under the assumption of (a) and (b) in Theorem 3.2, then the following two in-
equalities hold:
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(b)

(HK +hm)2
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

≥ 4HMhm

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)g(x)Δx

)2
]

×
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]2

.

(3.31)

(c)

1≤
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]

×
[(∫ b

a p(x)Δx
)(∫ b

a p(x)g2(x)Δx
)
+
(∫ b

a p(x)g(x)Δx
)2
]

[(∫ b
a p(x)Δx

)(∫ b
a p(x) f (x)g(x)Δx

)
+
(∫ b

a p(x) f (x)Δx
)(∫ b

a p(x)g(x)Δ
)]2

≤ (HM +hm)2

4HMhm
.

(3.32)

Proof

Case (a). A straightforward calculation shows that
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]

×
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)g(x)Δx

)2
]

=
(∫ b

a
p(x)Δx

)2(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g(x)Δx

)2

+
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)g(x)Δx

)2

≥
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)]2

+ 2
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)Δx

)

×
(∫ b

a
p(x)g(x)Δx

)
√
√
√
(∫ b

a
p(x) f 2(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2(∫ b

a
p(x)g(x)Δx

)2

(by Cauchy’s inequality)
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≥
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)]2

+ 2
(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
[(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

=
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

.

(3.33)

Case (b). It is follows from (R8) and (R9) that

(HM +hm)2
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f (x)g(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)(∫ b

a
p(x)g(x)Δx

)]2

≥
{

Hh

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)g(x)Δx

)2
]

+Mm

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]}2

≥ 4HMhm

[(∫ b

a
p(x)Δx

)(∫ b

a
p(x)g2(x)Δx

)

+
(∫ b

a
p(x)g(x)Δx

)2
]

×
[(∫ b

a
p(x)Δx

)(∫ b

a
p(x) f 2(x)Δx

)

+
(∫ b

a
p(x) f (x)Δx

)2
]2

.

(3.34)

This completes the proof of (b).

Case (c). Clearly, (c) follows from (a) and (b).

�
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